空气比热容比实验报告

合集下载

测定空气比热容比实验报告

测定空气比热容比实验报告

测定空气比热容比实验报告实验报告:测定空气比热容比一、实验目的1.学习和掌握比热容比的概念及其物理意义。

2.通过实验测定空气的比热容比。

3.提高实验操作技能和数据处理能力。

二、实验原理比热容比是指一种物质在等压比热容与等容比热容之比,即γ=cp/cv。

对于理想气体,其比热容比为γ=cp/cv=1+1/273K+1/373K。

本实验采用绝热压缩过程的方法测定空气的比热容比。

三、实验步骤1.准备实验器材:温度计、压力表、空气压缩机、秒表、恒温水槽、保温杯、绝热材料等。

2.将恒温水槽设定在不同温度值,测量恒温水槽的实际温度。

3.将保温杯置于恒温水槽中,使其保持稳定的温度。

4.使用空气压缩机将空气压缩到保温杯中,同时记录压缩时间和压力。

5.将保温杯中的空气通过绝热材料导入绝热材料下方的恒温水槽中,测量压缩空气的温度变化。

6.重复步骤4和5,改变恒温水槽的温度值,得到多组数据。

四、数据处理与分析1.根据实验数据,计算出空气的等压比热容cp和等容比热容cv。

2.利用空气的等压比热容cp和等容比热容cv,计算出空气的比热容比γ。

3.将空气的比热容比γ与理想气体的比热容比进行比较,分析误差来源和实验误差。

4.根据实验数据和误差分析,得出结论,并讨论实验中需要注意的问题。

五、结论通过本实验,我们学习和掌握了比热容比的概念和物理意义,通过测定空气的比热容比实验提高了实验操作技能和数据处理能力。

同时,通过误差分析和讨论,我们发现实验中存在一些误差来源,例如温度测量误差、压力测量误差、气体不完全绝热等。

为了提高实验精度,需要采取措施减小误差,例如使用高精度的温度计和压力传感器、确保绝热材料的密封性能等。

本实验所用的方法可以推广到其他气体,例如二氧化碳、氧气等。

通过对比不同气体的比热容比,可以研究它们的物理性质和反应特性。

同时,对于一些复杂的气体,其比热容会受到压力、温度等因素的影响,本实验方法可以用来研究这些影响的大小和规律。

空气比热容比的测定

空气比热容比的测定

实验二 空气比热容比和液体粘滞系数的测定(一) 空气比热容比的测定【实验简介】空气的比热容比 又称气体的绝热指数, 是系统在热力学过程中的重要参量。

测定 值在研究气体系统的内能, 气体分子的热运动以及分子内部的运动等方面都有很重要的作用。

如气体系统作绝热压缩时内能增加, 温度升高;反之绝热膨胀时, 内能减少, 温度降低。

在生产和生活实践中广泛应用的制冷设备正是利用系统的绝热膨胀来获得低温的。

除此以外, 测定比热容比还可以研究声音在气体中的传播。

由上可见, 测定气体的比热容比是一个重要的实验。

本实验采用绝热膨胀法测定空气的 值。

【实验目的】1.用绝热膨胀法测定空气的比热容比。

2.观察热力学过程中系统的状态变化及基本物理规律。

3.学习使用空气比热容比测定仪和福廷式气压计。

【实验仪器】空气比热容比测定仪(FD —NCD 型, 包括主机, 10升集气瓶连橡皮塞和活塞, 打气球, 硅压力传感器及同轴电缆, AD590温度传感器及电缆)、低压直流电源(VD1710—3A )、电阻箱(或 定值标准电阻)、福廷式气压计(共用)。

【实验原理】1.理想气体的绝热过程有 , 叫做理想气体的比热容比或绝热指数。

和 分别是理想气体的定压摩尔热容和定体摩尔热容, 二者之间的关系为 ( 为普适气体恒量) 2.如图所示, 关闭集气瓶上的活塞 , 打开 , 用打气球缓慢而稳定地将空气打入集气瓶内, 瓶内空气的压强逐渐增大, 温度逐渐升高。

当压强增大到一定值时, 关闭 , 停止打气。

待集气瓶内的温度降至室温 状态稳定时, 这时瓶内气体处处密度均匀, 压力均匀, 温度均匀。

此时取瓶内体积为 的一部分气体作为我们的研究对象, 系统处于状态1 , 这部分气体在接下来的膨胀中体积可以恰好充满整个瓶的容积 。

突然打开活塞 进行放气, 放掉多余的气体, 使系统迅速的膨胀, 达到状态2 , 随即又迅速关闭 。

是环境大气压。

由于放气过程迅速, 可视为绝热过程, 故有1102PV PV γγ= (1)3.关闭 后, 瓶内气体的温度会由 缓慢回升至室温 , 与此同时, 压强也会逐渐增大。

空气比热容比测定实验报告

空气比热容比测定实验报告

空气比热容比测定实验报告一、实验目的通过测量空气比热容比,掌握气体的热力学性质,了解气体的热膨胀特性,从而深入理解物理学中的热力学基础知识。

二、实验原理空气比热容比测定实验主要利用了两个方面的知识,一个是气体的状态方程,另一个是热力学第一定律。

对于理想气体来说,其状态方程可以表示为PV = nRT,其中P表示气体压强,V表示气体体积,n表示气体摩尔数,R表示气体普适气体常数,T表示气体温度。

对于气体在绝热条件下的变化,根据热力学第一定律可以得出:ΔU = Q - W,其中,ΔU表示气体内能的变化量,Q表示热量,W表示功。

在绝热条件下,Q = 0,所以ΔU = -W。

气体的内能是由分子的内部能量和分子运动所带来的动能组成的,比热容则是热量增加单位温度所需要的比率,所以等于内能和温度的比率,可以表示为Cp = ΔU/ΔT。

对于压缩气体来说,功是负值,所以ΔU也是负值。

得到如下公式:Cp - Cv = R,其中Cv表示气体的等密比热容。

三、实验内容1. 实验器材1) 绝热容器2) 气压计3) 温度计4) 手摇式风扇5) 水壶6) 水槽2. 实验步骤实验步骤如下:1) 在绝热容器中加入适量的干燥空气,并使用气压计记录其初始压强和初始温度。

2) 手摇风扇使其在绝热条件下进行气体的压缩。

3) 当气体温度上升一定温度时,暂停手摇风扇。

4) 记录停止手摇风扇后的气体压强和温度。

5) 将停止手摇风扇后的绝热容器放入水壶中的水中,并记录水的温度。

6) 将绝热容器中的气体放入水槽中,与水进行热交换直至稳定。

7) 测量气体最终的压强和温度。

四、实验结果通过实验,我们得到的数据如下表所示:| | 初始气压(Pa) | 初始温度(℃) | 停止风扇后气压(Pa) | 停止风扇后气温(℃) | 热交换后气压(Pa) | 热交换后气温(℃) | 水的温度(℃) || --- | --- | --- | --- | --- | --- | --- | --- ||1 | 98683 | 21.5 | 128340 | 40.0 | 100092 | 21.5 | 25.0||2 | 98703 | 21.5 | 130330 | 44.0 | 101325 | 21.5 | 25.0||3 | 98703 | 21.5 | 131320 | 46.0 | 101325 | 21.5 | 25.0|根据热力学第一定律,得到:ΔU = -W绝热容器中压缩气体所做的功可以表示为:W = P1V1 - P2V2其中,P1和V1表示气体的初始压强和体积,P2和V2表示气体的压强和体积。

空气比热容比的测量实验报告

空气比热容比的测量实验报告

空气比热容比的测量实验报告一、实验目的本实验旨在通过测量空气的比热容比,加深对热力学过程和热学基本概念的理解,掌握一种测量气体比热容比的方法,并培养实验操作和数据处理的能力。

二、实验原理空气比热容比γ定义为定压比热容Cp与定容比热容Cv之比,即γ = Cp / Cv。

在热力学中,理想气体的绝热过程满足方程:pV^γ =常数。

在本实验中,我们利用一个带有活塞的圆柱形绝热容器,容器内封闭一定质量的空气。

通过改变活塞的位置,使容器内的气体经历绝热膨胀或绝热压缩过程。

测量绝热过程中气体压强和体积的变化,从而计算出空气的比热容比。

三、实验仪器1、储气瓶:储存一定量的压缩空气。

2、打气球:用于向储气瓶内充气。

3、压强传感器:测量气体压强。

4、体积传感器:测量气体体积。

5、数据采集器:采集和记录压强和体积的数据。

6、计算机:处理和分析实验数据。

四、实验步骤1、仪器调试检查各仪器连接是否正确,确保无漏气现象。

打开数据采集器和计算机,设置好采集参数。

2、测量初始状态用打气球向储气瓶内缓慢充气,直至压强达到一定值,记录此时的压强p1和体积V1。

3、绝热膨胀过程迅速打开活塞,使气体绝热膨胀,记录压强和体积的变化,直到压强稳定,此时的压强为p2,体积为V2。

4、绝热压缩过程迅速关闭活塞,使气体绝热压缩,记录压强和体积的变化,直到压强稳定,此时的压强为p3,体积为V3。

5、重复实验重复上述步骤多次,以减小测量误差。

五、实验数据记录与处理以下是一组实验数据的示例:|实验次数| p1(kPa)| V1(mL)| p2(kPa)| V2(mL)| p3(kPa)| V3(mL)|||||||||| 1 | 1050 | 500 | 700 | 700 | 950 | 450 || 2 | 1080 | 480 | 720 | 720 | 980 | 460 || 3 | 1060 | 510 | 680 | 750 | 960 | 440 |根据绝热过程方程pV^γ =常数,可得:p1V1^γ =p2V2^γ (1)p2V2^γ =p3V3^γ (2)由(1)式除以(2)式可得:p1V1^γ /p3V3^γ =p2V2^γ /p2V2^γ即:p1V1^γ /p3V3^γ = 1γ = ln(p1 / p3) / ln(V3 / V1)将上述实验数据代入公式,计算出每次实验的比热容比γ,然后取平均值。

实验五空气比热容比的测定

实验五空气比热容比的测定

实验五空气比热容比的测定气体的比热容比γ(亦称绝热指数),是一个重要的热力学参量。

测量γ值的方法有多种,绝热膨胀测量γ是一种重要的方法。

传统的比热容比实验大多是利用开口U 型水银压力计测量气体的压强,用水银温度计测温度,测量结果较为粗略。

本实验采用的是高灵敏度的硅压力传感器和高灵敏温度传感器,分别测量气体的压强和温度,克服了原来实验中的不足,实验时能更明显地观察分析热力学现象,实验结果较为准确。

【实验目的】1、 学习用绝热膨胀法测定空气的比热容比γ;2、观察和分析热力学系统的状态和过程特征,掌握实现等值过程的方法。

*3、了解硅压力传感器的工作原理,掌握其使用方法。

【实验原理】一 测量比热容比的原理单位质量(1kg )的物质温度升高(或降低)1℃所吸收(或放出)的热量称为这种物质的比热容。

同一种气体由于受热过程不同,有不同的比热容。

对应于气体受热的等容过程及等压过程,气体的比热容有定容比热容C V 和定压比热容C P 。

定容比热容是将气体在保证体积不变的情况下加热,当温度升高1 ℃时所需的热量;而定压比热容则是在保持压强不变的情况下加热,温度升高1℃所需的热量。

显然,对同一种气体C P >C V ,因为定压膨胀过程要对外做功。

{对理想气体C P -C V =R, R=8.31J/mo l ·k,为气体普适恒量}。

通常称γ=C P /C V 为该气体的比热容比。

理想气体的压强p 、体积V 、温度T ,在任何状态下都遵守气态方程C TpV 常量=。

此外,在准静态绝热过程中还遵守绝热过程方程C pV '=γ。

因此γ亦称为绝热指数。

γ的大小与气体种类有关,还与温度有关。

对同一种气体,在常温下γ基本不随温度变化。

测量装置如图示(见实物)。

以储气瓶内空气作研究的热力学系统,进行如下实验过程。

(1) 首先打开放气阀A ,储气瓶与大气相通,再关闭阀 A ;瓶内充满与外界同温、同压气体。

空气比热容比测定实验报告

空气比热容比测定实验报告

空气比热容比测定实验报告篇一:空气比热容比测定实验报告007 实验报告评分:课程:******** 学期:*****指导老师: ****年级专业:***** 学号:******姓名:!习惯一个人007实验3-5空气比热容比的测定一、实验目的1. 用绝热膨胀法测定空气的比热容。

2. 观察热力学过程中状态变化及基本物理规律。

3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。

二、实验原理测量仪器如图4-6-1所示。

1为进气活塞C1,2 为放气活塞C2,3为电流型集成温度传感器,4为气体压力传感器探头。

实验时先关闭活塞C2,将原处于环境大气压强为P0、室温为T0的空气经活塞C1送入贮气瓶B内,这时瓶内空气压强增大,温度升高。

关闭活塞C1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(P1,T0,V1),V1为贮气瓶容积。

然后突然打开阀门C2,使瓶内空气与周围大气相通,到达状态Ⅱ(P0,T2,V2)后,迅速关闭活塞C2。

由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。

绝热膨胀过程应满足下述方程p1r?1rr?1rTo?poT1(3-5-2)在关闭活塞C2之后,贮气瓶内气体温度将升高,当升到温度T0时,原气体的状态为Ⅰ(P1,T0,V1)改变为状态Ⅲ(P2,T0,V2),两个状态应满足如下关系:poT1?p2T0/ (3-5-4)利用(3-5-4)式可以通过测量P0、P1和P2值,求得空气的比热容比?值。

实验原理图1实验图2三、实验仪器NCD-I型空气比热容比测量仪由如下几个部分组成:贮气瓶(由玻璃瓶、进气活塞、橡皮塞组成)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测空气压强的三位半数字电压表、测空气温度的四位半数字电压表。

测空气压强的数字电压表用于测量超过环境气压的那部分压强,测量范围0~10000Pa,灵敏度为20mv/Kpa (表示1000Pa的压强变化将产生20mv 的电压变化,或者50Pa/mv,单位电压变化对应50Pa的压强变化)。

空气比热容比的实验报告

空气比热容比的实验报告

空气比热容比的实验报告空气比热容比的实验报告一、实验目的本实验主要探究不同温度下空气的比热容比,通过对比实验数据,加深对比热容这一概念的理解,并掌握实验方法和实验数据处理能力。

二、实验原理比热容比(Specific Heat Capacity Ratio)是定压比热容与定容比热容的比值,通常用符号γ表示。

其数学定义为:γ=cp/cv其中,cp和cv分别表示定压比热容和定容比热容。

对于理想气体,根据气体状态方程,其定压比热容和定容比热容可以表示为:cp=1.00+1.08T+0.45T^2+0.0036T^3 (1)cv=cp-Rg (2)其中,T表示绝对温度(K),Rg表示气体常数。

对于实际气体,由于分子间相互作用力的存在,上述公式会有一定误差。

但实际应用中,在温度变化不大且压力不高的情况下,我们仍然可以使用这两个公式近似计算比热容比。

三、实验步骤1.准备实验器材:恒温水槽、温度计、压力计、已知容积的空气囊、加热器和绝热手套。

2.将恒温水槽设定在不同温度(如0℃、25℃、50℃、75℃和100℃),并确保恒温精度在±0.1℃之间。

3.用温度计和压力计测量空气囊内的初始温度和压力。

4.将空气囊放入恒温水槽中,保持水温略高于室温。

然后关闭水槽,等待空气囊内的气体达到热平衡。

5.使用加热器加热空气囊,使其内气体温度升高。

在加热过程中,使用绝热手套保护自己,避免热量外泄。

6.当空气囊内的气体达到预定温度时,迅速取出温度计和压力计,测量气体温度和压力。

7.根据测量数据计算定压比热容和定容比热容,并求得比热容比。

8.重复步骤3至7,在不同温度下进行多次实验,得到多组数据。

9.对实验数据进行整理和分析,得出空气比热容比的平均值和误差范围。

四、实验结果与数据分析据进行整理和分析,我们可以得出以下结论:1.随着温度的升高,空气的比热容比逐渐增大。

这可能是因为随着温度的升高,分子运动加剧,导致气体比热容增大。

空气比热容比的测量实验报告

空气比热容比的测量实验报告

一、实验名称: 空气比热容比的测量二、实验目的:测量室温下的空气比热容比;学习用绝热膨胀法测定空气的比热容比;观测热力学过程中状态变化及基本物理规律。

三、实验器材:储气瓶一套(包括玻璃瓶、活塞两只、橡皮塞、打气球)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测空气压强的三位半数字电压表、测空气温度的四位半数字电压表、连接电缆及电阻。

四、实验原理:遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。

气体的定压比热容和定容比热容之比称为气体的比热容比,用符号P C V C 表示(即),又称气体的绝热系数。

γpVC C γ=如图所示,实验开始时,首先打开活塞C2,储气瓶与大气相通,当瓶内充满与周围空气同压强同温度的气体后,再关闭活塞C2。

打开充气活塞C1,将原处于环境大气压强为、室温为的空气,0p 0T 用打气球从活塞C1处向瓶内打气,充入一定量的气体,然后关闭充气活塞C1。

此时瓶内空气被压缩而压强增大,温度升高,等待瓶内气体温度稳定,即达到与周围温度平衡。

此时的气体处于状态I(,,),1p 1V 0T 其中为储气瓶容积。

1V 然后迅速打开放气阀门C2,使瓶内空气与周围大气相通,瓶内气体做绝热膨胀,将有一部分体积为的气V ∆体喷泻出储气瓶。

当听不见气体冲出的声音,即瓶内压强为大气压强,瓶内0p 温度下降到(<),此时,立即关闭放气阀门C2,。

由于放气过程较快,1T 1T 0T 瓶内保留的气体由状态I(,,)转变为状态(,,)。

1p 1V 0T II 0p 2V 1T由于瓶内气体温度低于室温,所以瓶内气体慢慢从外界吸热,直至达1T 0T 到室温为止,此时瓶内气体压强也随之增大为。

稳定后的气体状态为(0T 1p III ,,),从状态到状态的过程可以看作是一个等容吸热的过程。

2p 2V 0T II III 总之,气体从状态I 到状态是绝热过程,由泊松公式得:II (1)110101p p T T γγγ-γ-=从状态到状态是等容过程,对同一系统,由盖吕萨克定律得II III 0210p p T T =(2)由以上两式子可以得到11200p p P P γγ-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭ (3)两边取对数,化简得 (4)()()0121lg lg /lg lg p p p p γ=--利用 (4)式,通过测量、和的值就可求得空气的比热容比的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竭诚为您提供优质文档/双击可除空气比热容比实验报告
篇一:实验报告空气比热容比的测定
1.实验名称
空气比热容比的测定2.实验目的
(1)了解绝热、等容的热力学过程及有关状态方程。

(2)测定空气的比热容比。

3.实验原理:主要原理公式及简要说明、原理图
(1)热力学第一定律及定容比热容和定压比热容热力学第一定律:系统从外界吸收的热量等于系(:空气比热容比实验报告)统内能的增加和系统对外做功之和。

考虑在准静态情况下气体由于膨胀对外做功为dA?pdV,所以热力学第一定律的微分形式为
dQ?de?dA?de?pdV(1)
定容比热容cv是指1mol的理想气体在保持体积不变的情况下,温度升高1K所吸收的热量。

由于体积不变,那么
由(1)式可知,这吸收的热量也就是内能的增加(dQ=de),所以
?dQ?de
?cvdT??dT(2)??v
由于理想气体的内能只是温度的函数,所以上述定义虽然是在等容过程中给出,实际上
任何过程中内能的变化都可以写成de=cvdT
定压比热容是指1mol的理想气体在保持压强不变的情况下,温度升高1K所吸收的热量。


?dQ?
?(3)cpdTp
由热力学第一定律(3)式,考虑在定压过,就有
dV?dQ??de?
p(4)
dT?dT?p?dT?p
由理想气体的状态方程pV=RT可知,在定压过程中入(4)式,就得到定压比热容与定容比热容的关系
dVRde
?,又利用?cv代dTpdT
cp?cv?R(5)
R是气体普适常数,为8.31J/mol·K,引入比热容比?为
??cp/cv(6)
在热力学中,比热容比是一个重要的物理量,它与温度无关。

气体运动理论告诉我们,
?与气体分子的自由度f
有关
??
例如,对单原子气体(Ar、he)
f?2
(7)f
f?3,??1.67对双原子气体(n2、h2、o2)f?5
??1.40,对多原子气体(co2、ch4)f?6,??1.33
(2)绝热过程
系统如果与外界没有热交换,这种过程称为绝热过程,因此,在绝热过程中,dQ=0。

所以由热力学第一定律有dA??de或pdV??cvdT(8)
由气态方程pV?RT,两边微分,得pdV?Vdp?RdT(9)
(8)、(9)两式中消去dT,得
pdV?Vdp??
两边除pV,即得
RdV
cvV
dpdV0(10)pV
对(10)式积分,就得到绝热过程的状态方程
pV??常数(11)
利用气态方程pV?RT,还可以得到绝热过程状态方程的另外两种形式:
TV??1?常数(12)p??1T常数(13)
4.实验内容
用一个大玻璃瓶作为贮气瓶。

(1)实验开始时,先打开放气阀b和进气阀A,打开充气开关(左旋充气球阀门c),使贮气与大气相通。

将仪器显示的气压差数调零(注意,仪器显示的是贮气瓶内气压与大气压p0的差)。

(2)然后关闭放气阀b,关闭充气开关(右旋拧紧气阀c),用打气球向瓶内送气,使瓶内气压上升,瓶中空气的温度也上升。

当瓶内气压比大气压高5~6kpa时(瓶内气压与大气压之差由比热容比测定仪上显示),关闭进气阀A。

这时瓶内气温略高于环境温度,因此瓶内空气与环境有热交换,使瓶内的气压与温度都不稳定,而是逐渐下降的。

直到瓶内气温与环境温度相同时,瓶内气压趋于稳定值p1,这时瓶内气体处于p—V图中状态Ⅰ(p1、V1、T0)。

这T0为环境温度。

这时记下仪器气压差显示值p1示(瓶内气压p1=p0+p1示)。

(3)后打开放气阀A,听到放气声,待放气声结束(仪器显示的气压差值为0)立即迅速关闭放气阀A,这时瓶内有一
部分空气从瓶内放出,剩余在瓶内的空气气压下降到大气
p0(仪器上显示的与大气压差为0)。

由于放气过程极迅速,空气又是热的不良导体,因此剩在瓶
内的那部分空气从状态Ⅰ(p1、V1、T0)到状态Ⅱ(p0、V2、T2)经历的过程是绝热过程(在放气过程中瓶内空气来不及与外界行热交换)。

V2为贮气瓶体积,V1为保留在瓶中这部分气体在状态Ⅰ(p1、T0)时的体积。

(4)放气后由于瓶内气压下降,使瓶内气温也下降到T2 上述过程如图4-18所示我们以放气后瓶内的那部分气体作为考虑的对象,这部分气体占前瓶内的大部分,但不是全部。

这部分气体在状态Ⅰ时压强为p1温度为T0,而放气后压强降为p0(大气压),温度降为T2( ??1??p1T0
?p1??p0??1T2??即??p??
?0?
??1
?T2T??(14)?0?
??
Ⅱ到III过程是等容过程,在这过程中瓶内气温又从T2升到环境温度T0,气压上升到p2。

根据等容过程的状态方程,有
T0p2
?(15)T2p0
联合(14)、(15)式
?p1p0?
两边取对数,即可解出
??1
?p2p???0?
?
?
?
lnp1?lnp0
(16)
lnp?lnp12
图1状态变化过程
5.注意事项
(1)放气的过程应该特别小心,打开b阀后,瓶内空气达到大气压时应立即关闭b阀。

(2)由于硅压力传感器灵敏度不完全相同,一台仪器配一只专用压力传感器,请勿互换。

(3)状态Ⅰ的记录要注意向瓶内压入空气后关闭进气阀门A,等气压稳定后(即容器内温度下降到室温时)才读出p1示。

实际上只要等p1示值稳定即可读出。

(4)状态Ⅲ的压强p2示要等到容器内气温达到室温时记录瓶内气压,实际上只要等p2示
值稳定即可读出。

(5)实验内容中打开放气阀门时,当听到放气声结束应迅速关闭放气阀门,提早或推迟关闭放气阀门,都将影响实验要求,引入误差。

由于数字电压表尚有滞后显示,经计算机实时测量,发现此放气时间约零点几秒,并与放气声产生消失很一致,所以关闭放所阀门用听放气声较准确。

6.实验仪器:主要实验主要仪器的名称、型号及主要技术参数(测量范围和仪器误差)
(1)实验仪器
ncD-1空气比热容比测定仪。

(2)仪器介绍
①ncD-1空气比热容比测定仪:1-充气球(打气球)2-充气阀开关(气阀c),左旋放气;打气时须右旋拧紧。

3-进气阀、4-出气阀连接电缆固定于瓶盖、5-压力传感器、6-温度传感器Lm35。

②技术指标:①压差测量范围0.01kpa—10.00kpa,三位半数码管显示。

②10kpa以上蜂鸣器报警。

③温度电压显示0—19.99mV四位半数码管显示。

④稳压电源输出电压6.00V。

7.数据记录及处理:①数据记录
p
=103Kpa
②数据处理。

相关文档
最新文档