定义新运算练习题 (2)
新定义运算练习题

新定义运算练习题在数学中,有许多不同的运算符号和符号定义来执行各种数学操作。
本文将为您介绍一些新定义的运算练习题,以帮助您加深对这些运算符号的理解和应用。
1. 定义1:⊕表示两个数的异或运算。
给定两个二进制数A和B,计算A⊕B的结果。
练习题1:计算十进制数8和5的异或运算结果。
2. 定义2:⊗表示两个数的乘积。
给定两个整数A和B,计算A ⊗ B的结果。
练习题2:计算7和3的乘积。
3. 定义3:⊖表示两个数的减法运算。
给定两个实数A和B,计算A ⊖ B的结果。
练习题3:计算10.5和4.2的减法运算结果。
4. 定义4:√表示一个数的平方根。
给定一个正实数A,计算√A的结果。
练习题4:计算25的平方根。
5. 定义5:∑表示一组数的总和。
给定一组数字A1, A2, ... , An,计算∑(Ai)的结果。
练习题5:计算1, 2, 3, 4, 5的总和。
6. 定义6:!表示一个数的阶乘。
给定一个正整数A,计算A!的结果。
练习题6:计算5的阶乘。
7. 定义7:%表示两个数的取余运算。
给定两个整数A和B,计算A%B的结果。
练习题7:计算14除以3的余数。
8. 定义8:^表示一个数的指数运算。
给定一个实数A和一个整数B,计算A 的B次方。
练习题8:计算2的3次方。
9. 定义9:∫表示一个函数的积分运算。
给定一个函数f(x),计算∫f(x)dx的结果。
练习题9:计算函数f(x) = x^2的积分。
10. 定义10:| |表示一个数的绝对值。
给定一个实数A,计算|A|的结果。
练习题10:计算|-5|的结果。
通过完成这些新定义运算的练习题,您可以巩固对不同运算符号的理解,并进一步提高数学运算的能力。
挑战自己,享受数学的乐趣吧!。
七上数学每日一练:定义新运算练习题及答案_2020年压轴题版

七上数学每日一练:定义新运算练习题及答案_2020年压轴题版答案解析答案解析答案解析2020年七上数学:数与式_代数式_定义新运算练习题1.(2019东阳.七上期末) 东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x , x , x , 称为数列x , x, x .计算|x |,,,将这三个数的最小值称为数列x , x , x 的最佳值.例如,对于数列2,-1,3,因为|2|=2, =, = ,所以数列2,-1,3的最佳值为 .东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的价值为 ;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为 .根据以上材料,回答下列问题:(1) 数列-4,-3,1的最佳值为;(2) 将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);(3) 将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.考点: 定义新运算;2.(2019椒江.七上期末) 阅读理解:整体代换是一个重要的数学思想方法.例如:计算4(a+b)-7(a+b)+(a+b)时可将(a+b)看成一个整体,合并同类项得-2(a+b),再利用分配律去括号得-2a-2b.同时,我们也知道:代数的基本要义就是用字母表示数使之更具一般性。
所以,在计算a(a+b)时,同样可以利用分配律得a +a b .(1) 请你尝试着把(a-2)或(b-2)看成整体计算:(a-2)(b-2)(2) 创新应用:如果两个数的乘积等于它们的和的两倍,则我们称这两个数为“积倍和数对”.即:若ab=2(a+b),则a 、b 是一对积倍和数对,记为(a 、b).例如:因为3×6=2(3+6),所以3和6是一对积倍和数对,记为(3、6).请你找出所有a 、b 均为整数的积倍和数对.考点: 定义新运算;3.(七上期末) 在一个m (m≥3,m 为整数)位的正整数中,若从左到右第n (n≤m ,n 为正整数)位上的数字与从右到左第n 位上的数字之和都等于同一个常数k (k 为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.(1) 已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位上的数字为s (1≤s≤9,s 为整数),百位上的数字为t (0≤t≤9,t 为整数), 是整数,求这个四位“对称等和数”;(2) 已知数A ,数B ,数C 都是三位“对称等和数”.A= (1≤a≤9,a 为整数),设数B 十位上的数字为x (0≤x≤9,x为整数),数C 十位上的数字为y (0≤y≤9,y 为整数),若A+B+C=1800,求证:y=﹣x+15.考点:用字母表示数;列式表示数量关系;定义新运算;4.(2020海淀.七上期中) 阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点 在线段上(点可以与点或重合),则称点与点 关于线段 径向对称.下图为点 与点 关于线段 径向对称的示意图.12312311232答案解析答案解析解答下列问题:如图1,在数轴上,点为原点,点 表示的数为-1,点 表示的数为2.(1) ①点,, 分别表示的数为-3, ,3,在,,三点中,与点关于线段径向对称;②点表示的数为 ,若点与点关于线段径向对称,则 的取值范围是;(2)在数轴上,点 ,,表示的数分别是-5,-4,-3,当点以每秒1个单位长度的速度向正半轴方向移动时,线段同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为()秒,问为何值时,线段 上至少存在一点与点 关于线段径向对称.考点: 数轴及有理数在数轴上的表示;定义新运算;一元一次方程的其他应用;5.(2018天河.七上期末) A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离的2倍,我们就称点C 是【A ,B 】的和谐点.例如:图1中,点A 表示的数为-1,点B 表示的数为2。
【初中数学】专题四 定义新运算 (练习题)

专题四定义新运算(361)1.现规定一种运算“*”,对于a,b两数有a∗b=a b−2ab,则计算(−3)∗2的值为2.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k (其中k为使n2k为奇数的正整数).运算重复进行下去,例如,取n=26,运算如图.若n=449,则第449次“F运算”的结果是.3.已知a,b均为有理数,现我们定义一种新的运算,规定:a#b=a2+ab−5.例如:1#2=12+1×2−5=−2.求:(1)(−3)#6的值;(2)[2#(−32)]−[(−5)#9]的值.4.定义一种新运算:1⊙3=1×4+3=7;3⊙(−1)=3×4−1=11;5⊙4=5×4+4=24;4⊙(−3)=4×4−3=13.(1)请你想一想:a⊙b=;(2)若a≠b,则a⊙b b⊙a(填入“=”或“≠”);(3)若a⊙(−2b)=4,则2a−b=,并计算(a−b)⊙(2a+b)的值.5.若“∗”是一种新的运算符号,并且规定a∗b=a+bb2.例如:3∗5=3+552=825,求[2∗(−2)]∗(−3)的值.6.计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式是()A.8B.15C.30D.317.小亮在电脑上设计了一个有理数运算的程序:输入a,※键,再输入b,得到运算a※b=a2−b2−2b×(a−b),则(−2)※3等于.参考答案1.【答案】:21【解析】:(−3)∗2=(−3)2−2×(−3)×2=9+12=21.2.【答案】:8【解析】:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=449为奇数应先进行F①运算,即3×449+5=1352(偶数),需再进行F②运算,即1352÷23=169(奇数),再进行F①运算,得到3×169+5=512(偶数),再进行F②运算,即512÷29=1(奇数),再进行F①运算,得到3×1+5=8(偶数),再进行F②运算,即8÷23=1,再进行F①运算,得到3×1+5=8(偶数),…,即第1次运算结果为1352,…,第4次运算结果为1,第5次运算结果为8,可以发现第6次运算结果为1,第7次运算结果为8,从第6次运算结果开始循环,且奇数次运算的结果为8,偶数次运算的结果为1,而第449次是奇数次,故这样循环计算一直到第449次“F运算”,得到的结果为8.3(1)【答案】解:(−3)#6=(−3)2+(−3)×6−5=9−18−5=−14.(2)【答案】[2#(−3)]−[(−5)#9]2=[22+2×(−3)−5]−[(−5)2+(−5)×9−5]2=(4−3−5)−(25−45−5)=−4+25=21.4(1)【答案】4a+b(2)【答案】≠【解析】:因为a⊙b=4a+b,b⊙a=4b+a,所以(a⊙b)−(b⊙a)=(4a+b)−(4b+a)=4a+b−4b−a=3(a−b).因为a≠b,所以3(a−b)≠0,所以(a⊙b)≠(b⊙a).故答案为≠.(3)【答案】因为a⊙(−2b)=4,a⊙(−2b)=4a+(−2b)=4a−2b,所以4=4a−2b,所以2a−b=2.故答案为2.(a−b)⊙(2a+b)=4(a−b)+(2a+b)=6a−3b=3(2a−b)=3×2=6.5.【答案】:解:原式=2+(−2)∗(−3)(−2)2=0∗(−3)=0+(−3)(−3)2.=−136.【答案】:B【解析】:1×23+1×22+1×21+1×20=8+4+2+1=15.7.【答案】:25【解析】:(−2)※3=(−2)2−32−2×3×(−2−3)=4−9+30=25.。
四年级数学 --- 定义新运算 练习题

【例1】(★★)(数学解题能力展示试题) 规定n※b=3×n-b÷2。例如:1※2=3×1-2÷2=2。 根据以上的规定,10※6=( )
【例3】b=3a-2b,例如, 当a=6,b=5时,6※5 =3×6-2×5=8。 计算:(8※7)※9;
【例4】⑵(★★★) 定义运算※为a※ b a b (a b) , ①求12※(3※4),(12※3)※4; ②这个运算“※”有结合律吗? ③如果3※(5※x)=3,求x。 1
【例5】(★★★) 定义新运算:已知:※满足4※1=15,5※1=24, 4※5=11,8※16=48,那么:10※9=( )
【例2】(★★) 两个不相等的非零自然数a、b ,较大的数除以较小的数商为a△b, 余数记为a◇b,如3△11=3、3◇11=2,那么6◇(2△7)=( )。
【例3】⑵(★★★) 规定ab= 3a 2b ,例如 45 3 4 2 5 2, 那么当 x5比5 x大5时,x等于几?
【例4】⑴(★★) 规定 a b a 3 b 2 ,其中a、b都是自然数。 ① 6 8 的值 ② 8 6的值。
2
【例6】(★★★★)(中环杯试题) 已知 A* B AB A B , 则 1*9 *9 *9* *9 *9 _______。
共10次运算
【例7】(★★★★★) (祖冲之杯数学邀请赛) 小明来到红毛族探险,看到下面几个红毛族的算式: 8 8 8, 9 9 9 5 。 9 3 3, (93 8) 7 837。 老师告诉他,红毛族算术中所用的符号:“+、-、×、÷、 ( )、=”与我们算术中的意义相同,进位也是十进制,只 是每个数字虽然与我们写法相同,但代表的数却不同。 请你按红毛族的算术规则,完成下面算式: 89×57 =_____。
定义新运算练习题

定义新运算练习题一、选择题1. 下列哪个选项不是新定义运算的示例?A. 对于任意实数a和b,定义a*b=a+b+abB. 对于任意自然数a和b,定义a#b=a×b+1C. 对于任意整数a和b,定义a△b=a-b+1D. 对于任意实数a和b,定义a⊕b=a×b2. 如果定义新运算a@b=a×b+a+b,那么3@4的值是:A. 27B. 19C. 25D. 233. 根据新定义a*b=a+b-ab,计算2*3的结果:A. 1B. 5C. 7D. 3二、填空题4. 定义新运算a⊗b=a×b-a-b+1,计算5⊗6的结果为______。
5. 如果a⊕b表示a的b次方,那么2⊕3等于______。
6. 定义新运算a&b=a×b÷(a+b),计算4&6的结果为______。
三、解答题7. 定义新运算a⊥b=a^2-b^2,求5⊥3的值。
8. 定义新运算a⊕b=a×b-a-b,计算8⊕5的值,并解释运算规则。
9. 定义新运算a⊞b=a+b+ab,如果a=2,b=3,求a⊞b的值。
四、应用题10. 某学校定义了一种新运算a⊝b=a×b+a+b,现在需要计算4个学生的平均分,已知他们的分数分别为85、90、78、88,用新定义的运算求出平均分。
11. 定义新运算a⊟b=a×b-a-b+1,如果a=3,b=5,求a⊟b的值,并解释运算规则。
12. 某数学竞赛中,定义了一种新运算a⊡b=a×b+a-b,现在有两组数字,第一组为2、3、4,第二组为5、6、7,求每组数字新运算的和。
五、开放性问题13. 设计一种新运算a⊣b,使得对于任意正整数a和b,a⊣b的值总是大于a和b的乘积。
请给出运算定义,并证明你的设计满足条件。
14. 如果定义新运算a⊤b=a×b+a-b,现在有一系列数字,a1=1, a2=2, a3=3, ..., an=n,求a1⊤a2⊤a3⊤...⊤an的值。
定义新运算练习题(含解析)

定义新运算练习题1.定义一种新的运算*:规定a*b=30×a+20×b,例如5*6=30×5+20×6=270,计算3*8==。
2.定义新运算a△b=(a+b)×(a﹣b),则6.2△3.8=。
3.定义新运算:△表示一种运算符号,其意义是a△b=2.5a﹣b,计算(4△5)△6。
4.如果2△3=2+3+4=9,5△4=5+6+7+8=26,照这样计算,求9△5。
5.定义一种新运算:3△2=3+33=36,5△4=5+55+555+5555=6170,那么7△4的结果是。
6.定义新运算:若2※3=2+3+4,5※4=5+6+7+8,求2※(3※2)的值。
7.规定:符号“△”为选择两数中较大的数,“○”为选择两数中较小的数.例如5△2=5,3○6=3,求[(8○3)△5]×(4○7)。
附加题:8.2▽4=8,5▽3=13,3▽5=11,9▽7=25.按此规律计算,求10▽12。
定义新运算-解析1.定义一种新的运算*:规定a*b=30×a+20×b,例如5*6=30×5+20×6=270,计算3*8==。
【分析】根据规定a*b=30×a+20×b,计算3*8时,a=3,b=8。
运用新定义计算。
【解答】a*b=30×a+20×b3*8=30×3+20×8=2502.定义新运算a△b=(a+b)×(a﹣b),则6.2△3.8=。
【分析】△的运算是两数和与两数差的乘积;据此解答即可。
【解答】6.2△3.8=(6.2+3.8)×(6.2﹣3.8)=10×2.4=243.定义新运算:△表示一种运算符号,其意义是a△b=2.5a﹣b,计算(4△5)△6。
【分析】根据a△b=2.5a﹣b,把4△5改写为2.5×4﹣5,算出结果,再用这个结果的2.5倍减6,即是(4△5)△6的结果。
小学奥数 定义新运算 精选练习例题 含答案解析(附知识点拨及考点)

定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
定义新运算练习题

定义新运算典型例题例【1】若A*B表示(A+3B)×(A+B),求5*7的值。
分析 A A*B是这样结果这样计算出来:先计算A+3B的结果,再计算A+B的结果,最后两个结果求乘积。
解由A*B=(A+3B)×(A+B)可知:5*7=(5+3×7)×(5+7)12)×12=(5+21×=2626××12=312例【2】定义新运算为a△b=(a+1)÷b,求的值。
6△(3△4)分析 所求算式是两重运算,先计算括号,所得结果再计算。
所求算式是两重运算,先计算括号,所得结果再计算。
解由a△b=(a+1÷)÷44=4÷4=1;)÷b b得,3△4=(3+1÷6△(3△4)=6△1)÷1 1=(6+1÷=7例【3】对于数a、b、c、d,规定,< a、b、c、d >=2ab-c+d,已知< 1、3、5、x >=7,求x的值。
分析根据新定义的算式,列出关于x的等式,解出x即可。
解将1、3、5、x代入新定义的运算得:2×1×3-5+x=1+x,又根据已知< 1、3、5、x >=7,故1+x=7,x=6。
例【4】规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。
计算下式:[(7◎3)&5]5]××[ 5◎(3 &7)]分析新定义运算进行计算时如果遇到有括号的,要先计算小括号里的,再计算中括号里的。
解 [(7◎6)&5]5]××[ 5◎(3 3 && 9)]5] ××[ 5◎9 ]=[ 6[ 6 & & 5]=6×5=30例【5】如果1※2=1+112※3=2+22+2223※4=3+33+333+333+3333)×55。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义新运算练习
1. 对于任意的两个数a 和b ,规定a*b=3×a-b ÷3。
求8*9的值
2. 已知a b 表示a 除以3的余数再乘以b ,求134的值。
3. 已知a b 表示(a-b )÷(a+b ),试计算:(53)(106)。
4.若a ◎b 表示a 与b 的积与a 除以b 所得的商的和,求8◎2值。
5.假定m ◇n 表示m 的3倍减去n 的2倍,即 m ◇n=3m-2n 。
6.定义: a △b=ab-3b ,a b=4a-b/a 。
计算:(4△3)△(2
b )。
7.已知: 23=2×3×4,45=4×5×6×7×8,……
求(44)÷(33)的值。
8. 设b a ,表示两个不同的数,规定b a b a ⨯-⨯=∆34.求2)34(∆∆.
9. 定义运算“∑”为x ∑)(2y x xy y +-=.求1∑2(3∑4).
10. 设b a ,表示两个不同的数,规定b a b a ⨯-⨯=⊕23,如果已知42=⊕b .求b .
11.定义新的运算a ⊖b a b a b ++⨯=.求(1⊖2)⊖3.
12. 有一个数学运算符号“⊗”,使下列算式成立:2⊗4=10,5⊗3=18,3⊗5=14, 9⊗7=34.求7⊗3=?
13. 定义新运算为b
a b a 1+=
∇.求)43(2∇∇的值.
14. 对于数y x ,规定运算“○”为x ○)3()4(-⨯+=b a y .求7○(8○9)的值.
15. 设a ∑b 表示a 的3倍减去b 的2倍,即a ∑b =b a 23-,已知x ∑(4∑1)=7.求x .
16. 定义两种运算“⊕”、“⊗”,对于任意两个整数b a ,,1-+=⊕b a b a , 1-⨯=⊗b a b a .计算)]53()86[(4⊕⊕⊕⊗的值.
17. 对于数b a ,规定运算“∇”为)1()1(b a b a -⨯+=∇,若等式)1()(+∇∇a a a )()1(a a a ∇∇+=成立,求a 的值.
18. y x ,表示两个数,规定新运算“※”及“○”如下:x ※y x y 45+=,x ○xy y 6=.求(3※4)○5的值.
19. 设b a ,分别表示两个数,如果a ∑b 表示
3b a -,照这样的规则,3∑[6∑(8∑ 5)]的结果是什么?
20. 规定xy
y Ax y x +=
*,且5∑6=6∑5,求(3∑2)×(1∑10)的值.
21. 有一个数学运算符号“○”,使下列算式成立:21○6332=,5
4○451197=,6
5○42671=.求113○54的值.。