初一数学一元一次方程优秀教案
《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
初一数学一元一次方程优秀教案

一元一次方程一、 知识结构导入2例如: 1700+50x=1800, 2(x+=5等都是一元一次方程。
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
(二)等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等。
等式的性质(1)用式子形式表示为:如果a=b ,那么a±c=b±c。
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c = bc。
(三)移项法则:把等式一边的某项变号后移到另一边,叫做移项。
(四)去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。
(五)解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x = ba)二、 知识点回顾+典型例题讲解+变式练习知识点1:方程的有关概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 . 典型例题例1、 下列方程中不是一元一次方程的是( ). A .x=1 =3x-5 =y-22x=5x 例2、 如果(m-1)x |m| +5=0是一元一次方程,那么m =___.例3、 一个一元一次方程的解为2,请写出这个一元一次方程 .例4、根据实际问题列方程。
初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。
符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。
本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。
教学方法是“引导分类归纳”。
本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
七年级《一元一次方程》教学设计(通用6篇)

七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计(通用6篇)作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
教学设计应该怎么写才好呢?以下是小编整理的七年级《一元一次方程》教学设计,欢迎大家分享。
七年级《一元一次方程》教学设计篇1一、教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法讲练结合、注重师生互动。
四、教学准备课件五、教学过程(师生活动)(一)情境引入教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:问题3:能否用方程的知识来解决这个问题呢?(二)学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.2、教师引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.(三)举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。
今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。
初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。
在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。
这为过渡到本节的学习起着铺垫作用。
合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。
因而,解方程是初中数学中必须要掌握的重点内容。
设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。
其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。
教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。
3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。
教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。
《解一元一次方程》教案优秀7篇

《解一元一次方程》教案优秀7篇元一次方程篇一一元一次方程的复习复习目标:(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)会解一元一次方程。
(3)会根据具体问题中的数量关系列出一元一次方程并求解。
重点、难点:1. 重点:一元一次方程及方程的解的基本概念。
一元一次方程的解法。
会用一元一次方程解决实际问题。
2. 难点:一元一次方程的解法的灵活应用。
寻找实际问题中的等量关系。
【典型例题】例1.分析:明确一元一次方程的概念。
方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。
在这里特别注意:未知数的次数及系数。
这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。
解:例2.分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。
(2)方程的解,即使方程左右两边相等的未知数的值。
此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。
解:将m=1代入关于x的方程,得:例3.解:注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。
例4.分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。
解:例5.分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。
解:注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。
解:例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程
一、 知识结构导入
2 3(或几个数值),
而解方程的含义是指求出方程的解或判断方程无解的过程。
⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
(二)等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等。
等式的性质(1)用式子形式表示为:如果a=b ,那么a±c=b±c。
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c = b
c 。
(三)移项法则:把等式一边的某项变号后移到另一边,叫做移项。
(四)去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。
(五)解方程的一般步骤
1. 去分母(方程两边同乘各分母的最小公倍数)
2. 去括号(按去括号法则和分配律)
3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x = b
a
)
二、 知识点回顾+典型例题讲解+变式练习
知识点1:方程的有关概念
⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程
解的 叫做解方程. 方程的解与解方程不同.
⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 . 典型例题
例1、 下列方程中不是一元一次方程的是( ). A .x=1 =3x-5 =y-2
2
x
=5x 例2、 如果(m-1)x |m|
+5=0是一元一次方程,那么m =___.
例3、 一个一元一次方程的解为2,请写出这个一元一次方程 .
例4、根据实际问题列方程。
(1)世界上最大的动物是蓝鲸,一只鲸重124吨。
比一头大象体重的25倍少一吨,这头大象重几吨若已知大象的重量(如X 吨)如何求蓝鲸的重量
(2)俄罗斯小说家契诃夫的小说《家庭教师》中,写了一位教师为一道算术题大伤脑筋。
我们来看看这道题。
问题(买布问题):顾客用540卢布买了两种布料共138尺,其中蓝布料每俄尺3卢布,黑布料每俄尺3卢布,黑布料每俄尺5卢布。
两种布料各买了多少(设蓝布料买了X 尺)
例5、 若关于x 的一元一次方程2313
2
x k x k ---=的解是1x =-,则k 的值是( )
A . 27
B .1
C .1311-
D .0
变式练习
1、下列各式:①3x+2y=1 ②m-3=6 ③x/2+2/3= ④x2+1=2 ⑤z/3-6=5z ⑥(3x-3)/3=4 ⑦5/x+2=1 ⑧x+5中,一元一次方程的个数是( )
A、1 B、2 C、3 D、4 2、若方程3(x-1)+8=2x+3与方程3
25x
k x -=+的解相同,求k 的值. 3、已知2x
1
-m +4=0是一元一次方程,则m= .
4、若关于x 的方程2(x-1)-a=0的解是x=3,则a 的值是( )
A 、4
B 、-4
C 、 5
D 、 -5 5、根据实际问题列方程。
(1)x 的2倍与3的差是5.
(2)长方形的长比宽大5,周长为36,求长方形的宽.(设长方形的宽为x )
(3)甲种铅笔每只元,乙种铅笔每支元,用9元钱买了两种共20支,两种铅笔各买了多少支(设甲种铅笔买了x 支)
知识点2:等式及其性质
⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:等式的性质① 如果,那么 ;
等式的性质② 如果,那么 ;如果,那么 .
典型例题
例1、已知等式,则下列等式中不一定...
成立的是( ) (A ) (B )
(C ) (D )
例2、下列说法正确的是( )
A 、在等式ab=ac 中,两边都除以a ,可得b=c
B 、在等式a=b 两边都除以c 2
+1可得
1
1
2
2
+=+c
b
c
a
C 、在等式
a
c
a b =两边都除以a ,可得b=c D 、在等式2x=2a 一b 两边都除以2,可得x=a 一b 变式练习
1、将等式4x=2x+8变形为x=4,下列说法正确的是( ) A 运用了等式的性质1,没有运用等式的性质2 B 运用了等式的性质2,没有运用等式的性质1 C 既运用了等式的性质1,又运用等式的性质2 D 等式的两条性质都没有运用
2、(1)在等式3x-4=5的两边都 得3x=9,依据是 . (2)在等式
x x =-2
1
3的两边都 得2x-3=6x ,依据是 . 知识点3: 解一元一次方程
解一元一次方程的步骤:(1) (2) (3) (4) (5) 典型例题
例1、 解方程4
1
31312-+
=--
y y y . 例2、 解方程:
111623
x x x ---+=. 例3、 解方程 23{32[1
2
(x-1)-3]-3}=3
例4、如果2005200.520.05x -=-,那么x 等于( ) (A) (B) (C) (D)
例5、 要解方程(x+=9x ,最简便的方法应该首先( )
A、去括号 B、移项 C、方程两边同时乘以10 D、方程两边同时除以
难点:熟练解方程
变式练习
1、已知A=2x-5,B=3x+3,求A 比B 大7时的x 的值.
2、解下列方程:
(1)2732+=-x x (2)x x 21423=- (3)1)4(3)1(2=---x x (4)223
146
y y +--=
(5)56
2523+=+-x x (6)
三、 课堂习题演练
1、下列结论正确的是( ) A .若x+3=y-7,则x+7=y-11; B .若7y-6=5-2y,则7y+6=17-2y; C .若=-4,则x=-1; D .若7x=-7x,则7=-7.
2、列说法错误的是( ).
A .若
a y
a x =,则x=y; B .若x 2=y 2,则-4x 2=-4y 2
; C .若-41x=6,则x=-2
3
;
D .若6=-x,则x=-6.
3、知等式ax=ay,下列变形不正确的是( ).
A .x=y
B .ax+1= ay+1
C .ay=ax
D .3-ax=3-ay
4、列说法正确的是( )
A .等式两边都加上一个数或一个整式,所得结果仍是等式;
B .等式两边都乘以一个数,所得结果仍是等式;
C .等式两边都除以同一个数,所以结果仍是等式;
D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式; 5、等式2-
3
1
-x =1变形,应得( ) A .6-x+1=3
B .6-x-1=3
C .2-x+1=3
D .2-x-1=3
6、在梯形面积公式S=
2
1(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2
,那么h=( ) A .2cm B .5cm C .4cm D .1cm
7、若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ). A .a,b 为任意有理数 B .a ≠0 C .b ≠0 D .b ≠3 8、方程12-x =4x+5的解是( ). A .x=-3或x=-3
2 B .x=3或x=3
2 C .x=-
3
2
D .x=-3
9、下列方程①
3
1
3262-=
+x x ②4532x x =+ ③2(x+1)+3=x 1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个.
10、若关于x 的方程10-4
)
2(35)3(--
=+x k x x k 与方程8-2x=3x-2的解相同,则k 的值为( )
四、 课后作业 1、将公式S=
2
1
(a+b )h 变形,得a= (其中字母都不等于0). 2、若232
3
4+x a 与4
31
52+x a 是同类项,则x=
.
3、当a=
时,方程
14
523-+=-a
x a x 的解是x=0. 4、若(1-3x )2
+mx -4=0,,则6+m 2
= .
5、a+b=0,可得a=
;由a-b=0,可得a= ;由ab=1,可得a=
6、解方程
(1)2(3)15(23)t t +-=- (2)
54324
x x -= (3)21101136x x ---= (4)12
225x x x -+-=- (5)
30.4110.50.3
x x ---= (6)32[23(x-21
)-3]-2=4x 7、有粗细不同的两支蜡烛,细蜡烛之长为粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小
时.有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停
电的时间有多长。