自动控制理论第三版课后习题答案(夏德钤翁贻方版)

合集下载

自动控制理论课后习题详细解答答案(夏德钤翁贻方版)第五章

自动控制理论课后习题详细解答答案(夏德钤翁贻方版)第五章

第五章5-1 已知单位反馈系统的开环传递函数,试绘制其开环频率特性的极坐标图(1)解:幅频特性:相频特性:列表取点并计算。

0.5 1.0 1.5 2.0 5.010.01.790.7070.370.2240.0390.0095-116.6-135-146.3-153.4-168.7-174.2系统的极坐标图如下:(2)解:幅频特性:相频特性:列表取点并计算。

00.20.50.8 1.0 2.0 5.010.910.630.4140.3170.1720.01950-15.6-71.6-96.7-108.4-139.4-162.96系统的极坐标图如下:(3)解:幅频特性:相频特性:列表取点并计算。

0.20.30.51254.55 2.74 1.270.3170.0540.0039-105.6-137.6-161-198.4-229.4-253系统的极坐标图如下:(4)解:幅频特性:相频特性:列表取点并计算。

0.20.250.30.50.60.8122.7513.87.86 2.520.530.650.317-195.6-220.6-227.6-251.6-261.6-276.7-288.4系统的极坐标图如下:5-2 试绘制上题中各系统的开环对数频率特性(伯德图)。

(1)解:系统为Ⅰ型,伯德图起始斜率为-20dB/dec,在处与=20=0相交。

环节的交接频率,斜率下降20dB/dec,变为-40dB/de c。

系统的伯德图如图所示:(2)解:伯德图起始为0dB线,的交接频率,斜率下降20dB/dec,变为-20dB/de c。

的交接频率,斜率下降20dB/dec,变为-40dB/de c。

系统的伯德图如图所示。

(3)解:系统为Ⅰ型,伯德图起始斜率为-20dB/dec,其延长线在=1处与=20=0相交。

的交接频率,斜率下降20dB/dec,变为-40dB/de c。

的交接频率,斜率下降20dB/dec,变为-60dB/de c。

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。

用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。

(2)弊端:不可以自动调理被控量的偏差。

所以系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。

它是一种按偏差调理的控制系统。

在实质中应用宽泛。

⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。

1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。

闭环控制系统常采纳负反应。

由1-1 中的描绘的闭环系统的长处所证明。

比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。

1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。

控制的目的是保持水位为必定的高度。

(完整版)自动控制原理谢克明第三版部分习题答案

(完整版)自动控制原理谢克明第三版部分习题答案

《自动控制原理(第3版)》部分习题答案第2章C2-1(a) 21211()(1)()()(1)R sL R Cs G s R sL R Cs R ++=+++C2-221114232233342526()()(1)(1)()()()()()()()()()()()()()m a a a a a e ma a L a a a a e m f fR G s K R R G s R Cs K T s R G s K c s G s U s JL s L f JR s fR c c L s R s G s M s JL s L f JR s fR c c U s G s K s =-=-=-+=-+=-Ω==++++-+Ω==++++==Ω 123412346512346()()()()()()1()()()()()()()()1()()()()()r L G s G s G s G s s U s G s G s G s G s G s G s s M s G s G s G s G s G s Ω=+Ω=+C2-4(a) 3123123()()()R LsG s R R R Ls R R R =++++C2-4(b) 323123()()()R LsG s R R Ls R R R =+++C2-5321122211212311(1)(1)(),(),(),()()1a b c d R Cs R Cs R C s R C s RG s RCs G s G s G s R Cs R C s R R R Cs ++++=-=-=-=-++ C2-612314512123214342123312341232233344()()()()()()()1()()()()()()()()()()()()()()()()()()()()1()()()()()()()()()()a b G s G s G s G s G s G s G s G s G s H s G s G s H s G s G s H s G s H s G s G s G s H s G s G s G s G s G s G s G s G s H s G s G s H s G s G s H s +=++++++=+++-12341()()()()()G s G s G s G s H sC2-713241761113241762851324()()[1()()]()()()()()1()()()()()()()()()()()()()()G s G s G s G s G s G s G s C s R s G s G s G s G s G s G s G s G s G s G s G s G s G s G s ++=+++++ 283261213241762851324()()()()()()()1()()()()()()()()()()()()()()G s G s G s G s G s C s R s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +=+++++ 24132852213241762851324()()[1()()]()()()()()1()()()()()()()()()()()()()()G s G s G s G s G s G s G s C s R s G s G s G s G s G s G s G s G s G s G s G s G s G s G s ++=+++++ 17413152113241762851324()()()[1()()]()()()()1()()()()()()()()()()()()()()G s G s G s G s G s G s G s C s R s G s G s G s G s G s G s G s G s G s G s G s G s G s G s ++=+++++ C2-812341123243123312312()()()()()1()()()()()()()()()()()()()()()()G s G s G s G s G s G s H s G s G s H s G s H s G s G s G s H s G s G s G s H s H s +=+++++C2-9 12345214561111452145145124561112322()()()[1()()()]()()()()()()()1()()()()()()()()()()()()()()()()[1()()]()()(()()()G s G s G s G s G s H s G s G s G s G s C s s R s G s H s G s G s H s G s G s G s G s G s G s H s H s G s G s G s G s H s G s G s G C s s R s --Φ==+-+-++Φ==4511452145145121122)()()1()()()()()()()()()()()()()()()()()()s G s G s G s H s G s G s H s G s G s G s G s G s G s H s H s C s s R s s R s +-+-=Φ+Φ C2-1013453564256313421356253431342535643535123561434523345624()()[1()()]()[1()()]()()1()()()()()()()()()a G s G G G s G H s G G H s G G G s G H s G G H s G G G G s G G G G s G H s G G H s G H s G G H s G G s G G H H s G G G H H s G G G H H s G G G G H H s =++++++-+++++++++12353241212131223123()()()()()[1()]()[1()()2()()]()1()()2()()()()2()()()b G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s ++++++=+++++第3章C3-1 21()Ts TsK e Tse G s T s ----=C3-2 220.910()1110s s s s s ++Φ=++C3-3105050()10.283sin(545)()1 1.4sin(545)t t tc t e e t c t et ---=--+=-+精近C3-422*0.23()(0.5)2*0.23()0.50.23G s s s s s s =+Φ=++C3-51212T T bK T T ε+<<C3-6 阶跃信号作用下稳态误差为零,要求n m a b =加速度信号作用下稳态误差为零,要求1122,,n m n m n m a b a b a b ----=== C3-7 21()(1)c sG s K T s =+C3-8 24()(46)G s s s s =++C3-9 250()(1225)G s s s s =++ C3-100.243τ=C3-11 (1)06,(2)303,(4)010/3K K K <<<<<<结构不稳()C3-12 (1)015,(2)0.72 6.24K K <<<< C3-13(1)(2)34系统稳定系统不稳定,有两个右根,()系统稳定()系统不稳定,有三个右根C3-14 3,K ω==C3-1533231()()1()()()()()n r G s G s G s H s G s G s G s =-+=第4章C4-1 图略C4-2 (1)图略 (2) 2233()24x y ++=C4-3 (1)图略 (2) 0.40.5K <<C4-4 分会点和渐近线123=0,,2,22a a d d d a πδϕ-+==±12320,2a d d d ====-(1)当时,图略 123180,6a d d d ====-(2)当时,图略 120,0a a d σ<=>(3)当0<时,图略 1180,0a a d δ<=<(4)当2<时,图略12318,,0a a d d d δ><(5)当时,三个不同实数分会点,图略C4-5(1) 图略,原系统不稳定;(2)增加零点且选择合适位置,可是系统稳定,零点05z << C4-6图略,系统稳定34K > C4-7 (1) 图略(2)当0.8629.14K <<,系统为欠阻尼状态,且 1.87K =阻尼比最小,系统地闭环极点为3 2.8j -±(3)试探求得 2,4 2.8K j =-±闭环极点, 1.06,0.75~1P s M t == C4-8 (1)等效开环传递函数为: (1)()(2)K s G s s s --=+正反馈系统根轨迹, 图略(2)系统稳定02K <<(3) 2,K ω==C4-9等效开环传递函数为: 22()===10)(44)(4410)Ka K G s K a s s s K s s s ''++++等(,图略 C4-10(1) 图略(2) 64,K ω==(3)1,20.5,1s ζ==-±C4-11(1) 图略 (2) 不在根轨迹上; (3) ()1cos 4c t t =-C4-12等效开环传递函数为: 322()=(4416)(4)(4)K KG s s s s s s s s =+++++等,K=8时试探求第5章C5-1(1)C5-1(2)C5-1(3)C5-2000(1)()0.83sin(30 4.76)(2)()0.83sin( 4.76) 1.64cos(2459.46)c t t c t t t =+-=----C5-3当12T T <,系统稳定当12T T >,系统不稳定. C5-4 2100()10100G s s s =++ C5-5(a) 0110(1)300(),4111(1)(1)510s G s s s γ+==++ (b) 00.1(),2581(1)50sG s s γ==+(c) 032(),141(1)2G s s s γ==+(d) 025(), 1.66(1001)(0.11)G s s s s γ==-++(e) 020.5(21)(),36.8(0.51)s G s s s γ+==+ (f) 0231.62(),9.860.010.0981G s s s γ==++ C5-6 (1) K=1(2)K=25(3)K=2.56(或精确求K=3.1) C5-7()()()a g i 稳定,(b)不稳定,(c)稳定,(d)稳定,(e)不稳定,(f)稳定,不稳定,(h)不稳定,不稳定,(j)不稳定,C5-8 102510000K K <<<和 C5-9(1)(2)闭环系统稳定; (3)078.5,g K γ==∞(4)K 增大10倍,对数幅值上升,但相频特性不变,系统的快速性提高,平稳性降低,系统地抗干扰性降低。

自动控制原理答案+夏德钤

自动控制原理答案+夏德钤

《自动控制理论 第2版》习题参考答案第二章2-1 (a)()()1121211212212122112+++⋅+=+++=CS R R R R CS R R R R R R CS R R R CS R R s U s U (b)()()1)(12221112212121++++=s C R C R C R s C C R R s U s U 2-2 (a)()()RCs RCs s U s U 112+=(b) ()()141112+⋅-=Cs R R R s U s U (c) ()()⎪⎭⎫⎝⎛+-=141112Cs R R R s U s U 2-3 设激磁磁通f f i K =φ恒定()()()⎥⎦⎤⎢⎣⎡++++=Θφφπφm e a a a a m a C C f R s J R f L Js L s C s U s 2602 2-4()()()φφφπφm A m e a a a a m A C K s C C f R i s J R f L i Js iL C K s R s C +⎪⎭⎫⎝⎛++++=260232-5 ()2.0084.01019.23-=⨯--d d u i2-8 (a)()()()()3113211G H G G G G s R s C +++= (b) ()()()()()31243212143211H G H G G G H G G G G G G s R s C +++++=2-9 框图化简中间结果如图A-2-1所示。

0.7C(s)++_R(s)113.02++s s s22.116.0+Ks+图A-2-1 题2-9框图化简中间结果()()()()52.042.018.17.09.042.07.023++++++=s k s k s s s R s C 2-10()()4232121123211G H G G H G G H G G G G s R s C ++-+=2-11 系统信号流程图如图A-2-2所示。

《自动控制理论(第3版)》全套参考答案

《自动控制理论(第3版)》全套参考答案

第一章习题参考答案1-1多速电风扇的转速控制为开环控制。

家用空调器的温度控制为闭环控制。

1-2 设定温度为参考输入,室内温度为输出。

1-3 室温闭环控制系统由温度控制器、电加热装置、温度传感器等组成,其中温度控制器可设定希望达到的室温,作为闭环控制系统的参考输入,温度传感器测得的室温为反馈信号。

温度控制器比较参考输入和反馈信号,根据两者的偏差产生控制信号,作用于电加热装置。

1-4 当实际液面高度下降而低于给定液面高度h r ,产生一个正的偏差信号,控制器的控制作用使调节阀增加开度,使液面高度逼近给定液面高度。

第二章 习题参考答案2-1 (1)()()1453223++++=s s s s s R s C ; (2)()()1223+++=s s s ss R s C ; (3)()()1223+++=-s s s e s R s C s2-2 (1)单位脉冲响应t t e e t g 32121)(--+=;单位阶跃响应t t e e t h 3612132)(----=; (2)单位脉冲响应t e t g t 27sin72)(-=;单位阶跃响应)21.127sin(7221)(2+-=-t e t h t 。

2-3 (1)极点3,1--,零点2-;(2) 极点11j ±-.2-4)2)(1()32(3)()(+++=s s s s R s C . 2-5 (a)()()1121211212212122112+++⋅+=+++=CS R R R R CS R R R R R R CS R R R CS R R s U s U ;(b)()()1)(12221112212121++++=s C R C R C R s C C R R s U s U 2-6 (a)()()RCsRCs s U s U 112+=;(b)()()141112+⋅-=Cs RR R s U s U ; (c)()()⎪⎭⎫⎝⎛+-=141112Cs R R R s U s U . 2-7 设激磁磁通f f i K =φ恒定()()()⎥⎦⎤⎢⎣⎡++++=Θφφπφm e a a a a m a C C f R s J R f L Js L s C s U s 2602.2-8()()()φφφπφm A m e a a a a m A C K s C C f R i s J R f L i Js iL C K s R s C +⎪⎭⎫⎝⎛++++=26023.2-9 ()2.0084.01019.23-=⨯--d d u i . 2-10 (2-6) 2-11(2-7)2-12 前向传递函数)(s G 改变、反馈通道传递函数)(s H 改变可引起闭环传递函数)()(s R s C 改变。

自动控制理论第版夏德钤 翁贻方第三章 线性系统的时域分析

自动控制理论第版夏德钤 翁贻方第三章 线性系统的时域分析

A2
C(s)(ss2) ss2
2
1
2 1(
2 1)
求拉§氏3反变-换3,二得 阶系统的时域响应
1 e (2 1 ) n t e (2 1 ) n t
c(t) 1 22 1 2 12 1 ,t 0
)2
c (t) 1 e n t( 1 n t) , t 0
此时二阶系统的单位阶跃响应为单调上升曲线。
二阶系统有两个参数 和 n ,阻尼比 是二阶
系统的重要特征参数,不同阻尼比的二阶系统的阶 跃响应有很大区别。
取横坐标为 n t ,不同阻尼比 值下的二阶系统单位阶跃响

1
e

t

t

0
0
2 3 t

也可直接由单位阶跃响应的求导得出上式结果
一阶系统的特征可用一个参量—时间常数 来
表示.
①②响 t=0应时时,§间单3为位(阶-3跃2~响4应一)的阶变化系率统为的1 时1 c域(t) 响应
t=0时,单位脉冲响应的幅值为
1
③单位斜坡响应的稳态误差为
则必 12有 ntrarc1 ta 2n n,n0,1,2.....
因为上升时间是第一次达到稳态值的时间,故取
n=1,于是§3-3二阶系统的时域响应
tr
a

rc
12 tan
n 12
1d(a
rc
12 tan )
C(t)
2.峰值时间 t p
1
MP
0.05或 0.02
有足够的准确度了.
j
2.欠§阻3尼-03二1阶的系情况统的时域× 响应 jn 1 2
系统的闭环极点为

《自动控制理论(第4版)》夏德钤、翁贻方(习题参考答案)第三章习题参考答案

《自动控制理论(第4版)》夏德钤、翁贻方(习题参考答案)第三章习题参考答案

第三章习题参考答案(缺1张图)3-1 分三种情况讨论 (a) 当1>ζ时()()()()()⎥⎥⎦⎤⎢⎢⎣⎡-+----+-=-+-=---=⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛---221221222211112121,122ζζζζωζωζωζζωζζωζζωζζt t n n nn n n e e t t c s s (b) 当10<<ζ时()()()⎪⎪⎭⎫⎝⎛-----+-=---+---=-+-=---=---22222222222121121sin 1121sin 1211cos 221,1ζζζωζωζωζωζωζζωζωζωζωζζωζζζωζωζωarctg t et t e t et t c j s j s n tnnn t nn tnnn n n n n(c) 当1=ζ时3-3 (1)())24.0,/12.2(,%286.7%,6.46==±==ζωs rad s t M n s p ;(2)())5.0,/1(,%28%,3.16==±==ζωs rad s t M n s p ;(3)s t s 15=)25.1,/4.0(,==ζωs rad n ,过阻尼系统,无超调。

3-4s rad n /588.19,598.0==ωζ.3-7 (1) %).2(33.3,96.1,%49.9±===s t s t M s p p(2)44.240)()(2++=s s s R s C ,s rad n /2,6.0==ωζ. 3-8 (1) t te e t g 10601212)(--+-=;(2)60070600)()(2++=s s s R s C , .s rad n /49.24,429.1==ωζ 3-10 (1)系统稳定。

()⎪⎭⎫⎝⎛++-=-=-t e t t c s n t n nn n 21222,1ωωωωω(2)劳斯阵列第一列符号改变两次,根据劳斯判据,系统有两个极点具有正实部,系统不稳定。

自动控制理论第三版课后练习题含答案

自动控制理论第三版课后练习题含答案

自动控制理论第三版课后练习题含答案前言自动控制理论是现代自动控制技术的基础课程,课后练习题是巩固理论知识和巩固实践技能最重要的方法之一。

本文档整理了自动控制理论第三版的课后习题,提供了详细的解题思路和答案,希望能够帮助读者更好地掌握自动控制理论。

1. 第一章课后习题1.1 第一章习题1题目已知一个系统的开环传递函数为$G(s)=\\frac{1}{s(s+1)(s+2)}$,求该系统的稳定性。

解答该系统的零点为0。

该系统的极点为−1和−2。

因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。

1.2 第一章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{(s+2)(s+3)}$,求该系统的单位阶跃响应。

解答该系统的传递函数可以表示为$G(s)=\\frac{A}{s+2}+\\frac{B}{s+3}$的形式,解得$A=\\frac{1}{s+3}$,$B=-\\frac{1}{s+2}$。

所以,该系统的单位阶跃响应为y(t)=1−e−2t−e−3t1.3 第一章习题3题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+5s+6}$,求该系统的单位阶跃响应。

解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+2)(s+3)}$的形式。

所以,该系统的单位阶跃响应为$$ y(t)=1-\\frac{1}{2}e^{-2t}-\\frac{1}{3}e^{-3t} $$2. 第二章课后习题2.1 第二章习题1题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的稳定性。

解答该系统的极点为−1和−3。

因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。

2.2 第二章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的单位冲击响应。

解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+1)(s+3)}$的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《自动控制理论 第3版》习题参考答案第二章2-1 (a)()()1121211212212122112+++⋅+=+++=CS R R R R CS R R R R R R CS R R R CS R R s U s U(b)()()1)(12221112212121++++=s C R C R C R s C C R R s U s U 2-2 (a)()()RCs RCs s U s U 112+= (b) ()()141112+⋅-=Cs R R R s U s U (c) ()()⎪⎭⎫⎝⎛+-=141112Cs R R R s U s U 2-3 设激磁磁通f f i K =φ恒定()()()⎥⎦⎤⎢⎣⎡++++=Θφφπφm e a a a a m a C C f R s J R f L Js L s C s U s 26022-4()()()φφφπφm A m e a a a a m A C K s C C f R i s J R f L i Js iL C K s R s C +⎪⎭⎫⎝⎛++++=260232-5 ()2.0084.01019.23-=⨯--d d u i 2-8 (a)()()()()3113211G H G G G G s R s C +++= (b) ()()()()()31243212143211H G H G G G H G G G G G G s R s C +++++=2-9 框图化简中间结果如图A-2-1所示。

0.7C(s)++_R(s)113.02++s s s22.116.0+Ks+图A-2-1 题2-9框图化简中间结果()()()()52.042.018.17.09.042.07.023++++++=s k s k s s s R s C 2-10()()4232121123211G H G G H G G H G G G G s R s C ++-+=2-11 系统信号流程图如图A-2-2所示。

图A-2-2 题2-11系统信号流程图()()()()2154214212654212215421421321111H H G G G G G G G H G G G G G s R s C H H G G G G G G G G G G s R s C -++=-++=2-12(a)()()()adgi abcdi agdef abcdef cdhs R s C +++-=11(b)()()()1221211222112++++=s C R C R C R s C R C R R s R s C 2-13 由选加原理,可得()()()()()()[]s D H G G s D G s D G s R G G G H G H s C 3121221221221111--+++=第三章3-1 分三种情况讨论 (a) 当1>ζ时()()()()()⎥⎥⎦⎤⎢⎢⎣⎡-+----+-=-+-=---=⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛---221221222211112121,122ζζζζωζωζωζζωζζωζζωζζt t n n nn n n e e t t c s s (b) 当10<<ζ时()()()⎪⎪⎭⎫⎝⎛-----+-=---+---=-+-=---=---22222222222121121sin 1121sin 1211cos 221,1ζζζωζωζωζωζωζζωζωζωζωζζωζζζωζωζωarctg t et t e t et t c j s j s n tnnn t nn tnnn n n n n(c) 当1=ζ时()⎪⎭⎫⎝⎛++-=-=-t e t t c s n t n nn n 21222,1ωωωωω设系统为单位反馈系统,有()()()()()2222nn n r s s s s R s c s R s E ωζωζω+++=-= 系统对单位斜坡输入的稳态误差为 ()nn n n s sr s s s s s s im e ωζωζωζω22212220=+++⋅⋅=→ 3-2 (1) 0,0,50===a v p K K K (2) 0,,==∞=a v p K K K K(3) 10,,K K K K a v p =∞=∞= (4) 0,200,==∞=a v p K KK K 3-3 首先求系统的给定误差传递函数()101.0)11.0()(11)()(2+++=+==Φs s s s s G s R s E s e 误差系数可求得如下()()()0)101.0()12.0(20)101.0(2lim lim 1.0)101.0()12.0(10lim lim 0101.0)11.0(limlim 322202202220012000=+++-++=Φ==+++=Φ==+++=Φ=→→→→→→s s s s s s ds d C s s s s ds d C s s s s s C s e s s e s s e s(1) 0)(R t r =,此时有0)()(,)(0===t r t r R t r ss s ,于是稳态误差级数为 ()0)(0==t r C t e s sr ,0≥t(2) t R R t r 10)(+=,此时有0)(,)(,)(110==+=t r R t r t R R t r ss s ,于是稳态误差级数为 ()1101.0)()(R t rC t r C t e s s sr =+= ,0≥t (3) 221021)(t R t R R t r ++=,此时有t R R t r t R t R R t r s s 212210)(,21)(+=++= ,2)(R t r s = ,于是稳态误差级数为())(1.0)(!2)()(21210t R R t r C t rC t r C t e s s s sr +=++= ,0≥t 3-4 首先求系统的给定误差传递函数()5001.0)11.0()(11)()(2+++=+==Φs s s s s G s R s E s e 误差系数可求得如下()()()232220220222001200050098)5001.0()12.0(1000)5001.0(100lim lim 5001)5001.0()12.0(500lim lim 05001.0)11.0(limlim =+++-++=Φ==+++=Φ==+++=Φ=→→→→→→s s s s s s ds d C s s s s ds d C s s s s s C s es s e s s e stt r t t rt t r s s s 5sin 25)(5cos 5)(5sin )(-===稳态误差级数为()[][][]tt tC t C C t e sr 5cos 1015sin 109.45cos 55sin 25224120 -⨯++⨯=-⨯+⎥⎦⎤⎢⎣⎡+⨯-=- 3-6 系统在单位斜坡输入下的稳态误差为 nsr e ωζ2=加入比例—微分环节后()()()()[]()()()()()()()()()()()()()()()nns sr nn nnnnna s sE im e s s R s R s s sa s s C s R s E s R s s as s R s G s G as s C s G s C as s R s C ωωζωζωωωζωζωω-===++-+=-=+++=++=-+=→21222111102222222可见取na ωζ2=,可使0=sr e3-7588.19,598.0==n ωζ3-8 ()()6442++=s s s s G3-9 按照条件(2)可写出系统的特征方程2)22()2())(22())(1)(1(232=+++++=+++=+++-+a s a s a s a s s s a s j s j s将上式与0)(1=+s G 比较,可得系统的开环传递函数[])22()2(2)(2a s a s s as G ++++=根据条件(1),可得aae K sr v 2225.01+===解得1=a ,于是由系统的开环传递函数为[]432)(2++=s s s s G3-10()()()())5.0,/1(,%28%,3.162)24.0,/12.2(,%299.7%,6.461========ζωζωs rad s t Ms rad s t M n s pn s p()s ts153=)25.1,/4.0(,==ζωs rad n ,过阻尼系统,无超调。

3-11 (1)当a = 0时,22,354.0==n ωζ。

(2)n ω不变,要求7.0=ζ,求得a = 0.25 3-12 1. 单位脉冲响应 (a) 无零点时 ()()0,1s i n 122≥--=-t t e t c n t nn ωζζωζω(b )有零点1-=z 时()()0,111sin 1212222≥⎪⎪⎭⎫ ⎝⎛--+--⋅+-=-t arctg t e t c n n ntnn n n ζωωζωζζωωζωζω 比较上述两种情况,可见有1-=z 零点时,单位脉冲响应的振幅较无零点时小,而且产生相移,相移角为nna rctgζωωζ--112。

2.单位阶跃响应 (a) 无零点时()()0,11sin 111222≥⎪⎪⎭⎫⎝⎛-+---=-t arctg t et c n tn ζζωζζζω (b )有零点1-=z 时()()0,11sin 12112222≥⎪⎪⎭⎫⎝⎛-----+-+=-t arctgt e t c n n t nn n ζωζωζζωζωζω 加了1-=z 的零点之后,超调量p M 和超调时间p t 都小于没有零点的情况。

3-13 系统中存在比例-积分环节()ss K 111+τ,当误差信号()0=t e 时,由于积分作用,该环节的输出保持不变,故系统输出继续增长,知道出现()0<t e 时,比例-积分环节的输出才出现减小的趋势。

因此,系统的响应必然存在超调现象。

3-14 在()t r 为常量的情况下,考虑扰动()t n 对系统的影响,可将框图重画如下()122+s s K τ()s s K 111+τ()122+s s K τ()ss K 111+τ+_N(s)C(s)图A-3-2 题3-14系统框图等效变换()()()()s N s K K s s sK s C 11121222+++=ττ根据终值定理,可求得()t n 为单位阶跃函数时,系统的稳态误差为0,()t n 为单位斜坡函数时,系统的稳态误差为11K 。

相关文档
最新文档