高中数学竞赛讲义(8)平面向量
平面向量讲义

平面向量讲义考纲泛读高考展望①理解平面向量的概念,理解平面向量和向量相等的含义,理解向量的几何表示.②理解向量加、减法及向量数乘运算,并理解其几何意义,以及两个向量共线的含义.了解向量的线性运算性质及其几何意义.近几年的高考数学试题中,平面向量每年都考,题型多以填空题为主,有时也与三角函数、解析几何知识综合在一起以解答题形式进行考查,特别是向量的数量积的概念,几乎年年考查,估计今后几年仍然会保持这种命题趋势.③了解平面向量基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加、减法运算与数乘运算,理解用坐标表示的平面向量共线的条件.④掌握平面向量的数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系.掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的平行或垂直关系.预计2012年的高考,一是考查平面向量的基本概念及运算,此类题一般难度不大,用以解决有关长度、夹角、垂直等问题;二是有可能出现以向量为工具,在三角函数、解析几何、数列等知识交汇点处命题的题目.⑤会用向量方法解决某些简单的平面几何问题,会用向量方法解决某些简单的力学问题和其他一些实际问题.⑥理解复数的概念,如复数相等、共轭复数、复数与复平面内的点或向量的一一对应关系.⑦理解复数的四则运算,了解复数的几何意义. 高考对复数知识的考查要求不高,多以填空题的形式考查复数的概念与复数的四则运算.因此,在考试中,应力求在与复数知识相关的小题中拿满分.一、平面向量的概念1、向量的概念2、向量的表示3、几种特殊向量:零向量、单位向量、共线向量(平行向量)例1、判断下列命题真假或给出问题的答案(1)平行向量的方向一定相同?(2)不相等的向量一定不平行.(3)与零向量相等的向量是什么向量?(4)与任何向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的条件是什么?(7)共线向量一定在同一直线上吗?【变式练习1】下列命题中正确的有_______.①单位向量都相等;②长度相等且方向相反的两个向量不一定是共线向量;③若非零向量a ,b 满足|a|=|b|,且a 与b 同向,则a>b ;④对于任意向量a 、b ,必有|a +b|≤|a|+|b|.二、向量的运算(包括线性运算和坐标运算)1、加法运算:平行四边形法则、矢量三角形法则2、减法运算:三角形法则3、数乘运算例2、在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A.14a +12b B.23a +13b C.12a +14b D.13a +23b 例3、(2010·广东中山六校联考)在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD=13CA +λCB 则λ等于( ) A.23 B.13 C .-13 D .-23三、向量的数量积1、数量积的定义2、数量积的运算公式:3、数量积的作用:4、向量垂直与平行的充要条件【例4】设a 、b 、c 是任意的非零平面向量,且相互不共线,则下列命题①(a ·b)c -(c ·a)b =0;②|a|-|b|<|a -b|;③(b ·c)a -(c ·a)b 不与c 垂直;④(3a +2b)·(3a -2b)=9|a|2-4|b|2.其中是真命题的有________.【变式练习】下列命题中正确的个数是________.①若a ·b =0,则a =0或b =0;②(a ·b)·c =a ·(b ·c);③若a ·b =b ·c(b ≠0),则a =c ;④a ·b =b ·a ;⑤若a 与b 不共线,则a 与b 的夹角为锐角【变式练习】已知a 和b 的夹角为60°,|a|=10,|b|=8,求:(1)|a +b|;(2)a +b 与a 的夹角θ的余弦值.【例3】设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a ⊥(b -2c),求tan(α+β)的值;(2)求|b +c|的取值范围;(3)若tan αtan β=16,求证a ∥b. 例4(2010·湖南高考)在Rt △ABC 中,∠C =90°,AC =4,则AB ·AC 等于( )A .-16B .-8C .8D .16四、平面向量的基本定理1、基本定理2、基底 例5。
中学数学竞赛讲义——平面向量

中学数学竞赛讲义——平面向量一、基础知识定义1 既有大小又有方向的量,称为向量。
画图时用有向线段来表示,线段的长度表示向量的模。
向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。
书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。
零向量和零不同,模为1的向量称为单位向量。
定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。
定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。
加法和减法都满足交换律和结合律。
定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λf定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。
定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。
定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos<a, b>,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。
定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)=222221212121yx y x y y x x +⋅++(a, b ≠0),4. a ⇔⊥⇔定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分21P P 所成的比,若O 为平面内任意一点,则λλ++=121OP OP OP 。
(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
高考数学竞赛平面向量教案讲义

高考数学竞赛平面向量教案讲义一、平面向量的概念1. 向量的定义:在平面直角坐标系中,一个向量可以用一个有序数对(a, b)表示,其中a和b分别是向量在x轴和y轴上的分量。
2. 向量的表示方法:用箭头“→”表示向量,例如→v = (3, 2)。
3. 向量的长度(模):向量→v的长度等于√(a²+ b²),表示为|→v|。
4. 向量的方向:向量的方向由其分量的符号确定,正方向为右上方向,负方向为左下方向。
二、向量的加法和减法1. 向量的加法:两个向量→v1 = (a1, b1)和→v2 = (a2, b2)的和表示为→v1 + →v2 = (a1 + a2, b1 + b2)。
2. 向量的减法:两个向量→v1 = (a1, b1)和→v2 = (a2, b2)的差表示为→v1 →v2 = (a1 a2, b1 b2)。
3. 三角形法则:对于任意三个向量→v1, →v2, →v3,有→v1 + →v2 + →v3 = (a1 + a2 + a3, b1 + b2 + b3)。
三、向量的数乘1. 数乘向量:给定向量→v = (a, b),数k乘以该向量得到k→v = (ka, kb)。
2. 数乘的性质:k(→v1 + →v2) = k→v1 + k→v2,(k1 + k2)→v = k1→v + k2→v。
3. 数乘与向量长度的关系:|k→v| = |k||→v|。
四、向量的数量积(点积)1. 数量积的定义:两个向量→v1 = (a1, b1)和→v2 = (a2, b2)的数量积表示为→v1 ·→v2 = a1a2 + b1b2。
2. 数量积的性质:→v1 ·→v2 = →v2 ·→v1,(k→v1) ·→v2 = k(→v1 ·→v2),→v1 ·(→v2 + →v3) = →v1 ·→v2 + →v1 ·→v3。
高中数学《平面向量》知识点讲解附真题PPT课件

考点二 平面向量基本定理及坐标运算
1.共线向量定理 (1)判定定理:a是一个非零向量,若存在一个实数λ使得⑤ b=λa ,则向量b 与a共线. (2)性质定理:若向量b与非零向量a共线,则存在唯一一个实数λ,使得b=λa. (3)A,B,C是平面上三点,且A与B不重合,P是平面内任意一点,若点C在直线 AB上,则存在实数λ,使得 PC=(1-λ) PA+λ PB,如图.
知能拓展
考法一 与平面向量线性运算有关的解题策略
例1 (2019豫南九校第三次联考,8)如图所示,在△ABC中,点M是AB的中
点,且 AN = 1 NC ,BN与CM相交于点E,设AB =a,AC =b,则AE 等于 ( )
2
A. 2 a+ 1 b
55
B. 1 a+ 2 b
55
C. 1a+ 1b
33
2.平面向量基本定理 如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意 向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2. 其中,⑥ 不共线 的向量e1、e2叫做表示这一平面内所有向量的一组基底.
温馨提示 (1)构成基底的两向量不共线; (2)基底给定,同一向量的分解形式唯一; (3)若λ1e1+λ2e2=0,则λ1=λ2=0. 3.平面向量的坐标表示 (1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、 j 作为基底.对于平面内的一个向量a,由平面向量基本定理知,有且只有一对 实数x、y,使得a=xi+yj,这样,平面内的任一向量a都可由x、y唯一确定,我们 把有序数对⑦ (x,y) 叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上 的坐标,y叫做a在y轴上的坐标,显然0=(0,0),i=(1,0), j=⑧ (0,1) . (2)设OA =xi+yj,则向量OA 的坐标(x,y)就是终点A的坐标,即若OA =(x,y),则A 点坐标为⑨ (x,y) ,反之亦成立(O是坐标原点). 4.向量的坐标运算
高中数学平面向量PPT课件

a
CA OA OC
空间向量的加减法
k a (k>0)
空间向量的数乘
2021/3/8
k a (k<0)
思考:空间任意两个向量是否可能异面?
B
b
O
A
思考:它们确定的平面是否唯一?
a
结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关20结21/3论/8 仍适用于它们。
向量减法的三角形法则 2021/3/8
b a
向量加法的平行四边形法则
a k a (k>0) k a (k<0)
向量的数乘
3、平面向量的加法、减法与数乘运算律
加法交换律: a b b a 加法结合律: (a b) c a (b c) 数乘分配律: k(a b) k a+kb
2021/3/8
点分别重合; (2)模相等的两个平行向量是相等的向量; (3)如果两个向量是单位向量,那么它们相等; (4)两个相等向量的模相等。
2021/3/8
正确的有:(4)
练习:
1.设O为正△ABC的中心,则向量AO,BO,CO是 (B )
A.相等向量
B.模相等的向量
C.共线向量 C
D.共起点的向量
A2021/3/8
F
若不相等,则之间有什么关系?
D C
解:(1)BC,OA
A
B
(2)BC FE
(3)虽然OA // BC,且|OA|=|BC|,
但是它们方向相反,故这两个向量不相等.
2021/3/8
OA BC
例2:在图中的4×5方格纸中有一个向量 AB,
最新高一数学优质课比赛课件:平面向量基本定理

1
2
11
22
C . 空 间 任 一 向 量 a可 以 表 示 为 a e e ,
11
22
这里、 是实数
1
2
D .若 实 数 、 使 e e 0,则 0
1
2
11
22
1
2
小结:
一维,向量的共线定理; 二维,平面向量的基本定理; 三维,空间向量的基本定理。
结束语
谢谢大家聆听!!!
18
培养学生观察能力、抽象概括能力,激发学习兴趣
教学重点与难点
1.重点:平面向量基本定理的应用 2.难点: 定理的发现和形成过程
平面向量基本定理:
如果e1、 e2是同一平面内的两个不共线的向量, 那么对于这一平面内的任一向量a,有且只有一对
实数1、2,可使 a1e1 +2e2
这 里 不 共 线 的 向 量 e 1 、 e 2 叫 做 表 示 这 一 平 面 内 所 有 向 量 的 一 组 基 底 .
几点说明: (1) 基底不变,平面内的任意向量都可以由这两个
作为基底的向量表示。 (2) 平面内的任意向量不变,表示这个向量的基底
可以有无数组。 (3) 当平面的任意向量与一个基底共线时,这个向
量也可以由基底表示出来。 引导学生说出“这个定理实际上就告诉了我们平
面内的任意向量通过平行四边形法则都可以分解成两 个向量的和向量。”并举在实际生活中的例子:火箭 在飞行过程中某一时刻的速度可以分解成竖直向上和
(1).3e12e2; (2). 4e1e2;
e1
e2
3 . 如 果 e1、e 2是 平 面 内 所 有 向 量 的 一 组 基 底 , 那 么 ( D)
A . 对 平 面 中 的 任 一 向 量 a, 使 a e e
平面向量基础讲义

平面向量【复习目标】1. 理解向量平行(共线)的充要条件,会用该结论证明共线问题; 2. 掌握向量加减法,实数与向量的积以及向量数量积的坐标运算;3. 掌握向量加减法,实数与向量的积以及向量数量积的运算的几何意义;4. 强化平面向量的工具意识,培养使用平面向量解决平面几何,解析几何,三角函数及某些应用问题的能力。
【重点难点】向量加减法,实数与向量的积以及向量数量积的运算的几何意义。
【典型例题】例1(1)如图,已知2,1,4,OA OB OC OA OB === 与的夹角为1200,OA OC 与的夹角为300,用,OA OB OC 表示.(2)已知,a b是两个非零向量,且,a b a b a a b ==-+ 求与的夹角.(3)已积OB =(2,0),OC =(2,2),CA = (2cos α,2sin α),则OA 与OB夹角的范围是______________ (4)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,AH 为BC 边上的高.以下结论: ①⋅=+⋅)(;②2AH AC AH ⋅= ;③sin ||AHAC c B AH ⋅= ;④ A bc c b AB AC BC cos 2)(22-+=-⋅.其中正确的是 .(写出所有你认为正确的结论的序号)例2(1)已知,,,OA a OB b OC c ===(如图),求证:A 、B 、C 三点在一直线上的充要条件是存在实数m 、n 使得n m +=并且1=+n mO(2)平面直角坐标坐标系中,O 为坐标原点,已知两点A(3,1),B (-1,3),若点C 满足OC =αOA+βOB,若中α、β∈R ,且α+β=1,则点C 的轨迹方程为______ ______(3)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E.若,0,,≠==xy AC y AE AB x AD 则yx 11+的值为______ ______例3(1)在同一平面内,Rt △ABC 和Rt △ACD 拼接如图所示,现将△ACD 绕A 点顺时针旋转α角 (0<α<π3)后得△AC 1D 1,AD 1交DC 于点E ,AC 1交BC 于点F .∠BAC =∠ACD =π2, ∠ACB =∠ADC =π6,AC①当AF =1时,求α; ②求证:对任意的α∈(0,π3),BE AC ⋅ 为定值.(2)已知不共线的,,a b c 三向量两两所成的角相等,并且1,2,3a b c ===,试求向量a b c ++ 的长度以及与已知三向量的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛讲义(八)──平面向量一、基础知识定义1 既有大小又有方向的量,称为向量。
画图时用有向线段来表示,线段的长度表示向量的模。
向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。
书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。
零向量和零不同,模为1的向量称为单位向量。
定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。
定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。
加法和减法都满足交换律和结合律。
定理2 非零向量a, b共线的充要条件是存在实数0,使得a=f定理 3 平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。
定义 3 向量的坐标,在直角坐标系中,取与x 轴,y轴方向相同的两个单位向量i, j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。
定义4 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos=|a|·|b|cos<a, b>,也称内积,其中|b|cos叫做b 在a上的投影(注:投影可能为负值)。
定理4 平面向量的坐标运算:若a=(x1, y1), b=(x2, y2),1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2),2.λa=(λx1, λy1), a·(b+c)=a·b+a·c,3.a·b=x 1x2+y1y2, cos(a, b)=(a, b0),4. a//b x1y2=x2y1, a b x1x2+y1y2=0.定义5 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。
由此可得若P1,P,P2的坐标分别为(x1, y1), (x, y), (x2, y2),则定义6 设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h, k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。
设p(x, y)是F上任意一点,平移到上对应的点为,则称为平移公式。
定理5 对于任意向量a=(x1, y1), b=(x2, y2), |a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|.【证明】因为|a|2·|b|2-|a·b|2=-(x1x2+y1y2)2=(x1y2-x2y1)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。
1)对n维向量,a=(x1, x2,…,x n),b=(y1, y2, …, y n),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+x n y n)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。
1)对n维向量,a=(x1, x2,…,x n), b=(y1, y2, …, y n),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+x n y n)2。
2)对于任意n个向量,a1, a2, …,a n,有| a1, a2, …,a n|≤| a1|+|a2|+…+|a n|。
二、方向与例题1.向量定义和运算法则的运用。
例1 设O是正n边形A1A2…A n的中心,求证:【证明】记,若,则将正n边形绕中心O旋转后与原正n边形重合,所以不变,这不可能,所以例2 给定△ABC,求证:G是△ABC重心的充要条件是【证明】必要性。
如图所示,设各边中点分别为D,E,F,延长AD至P,使DP=GD,则又因为BC与GP互相平分,所以BPCG为平行四边形,所以BG PC,所以所以充分性。
若,延长AG交BC于D,使GP=AG,连结CP,则因为,则,所以GB CP,所以AG平分BC。
同理BG平分CA。
所以G为重心。
例 3 在凸四边形ABCD中,P和Q分别为对角线BD和AC的中点,求证:AB2+BC2+CD2+DA2=AC2+BD2+4PQ2。
【证明】如图所示,结结BQ,QD。
因为,所以=·=①又因为同理,②,③由①,②,③可得。
得证。
2.证利用定理2证明共线。
例4 △ABC外心为O,垂心为H,重心为G。
求证:O,G,H为共线,且OG:GH=1:2。
【证明】首先=其次设BO交外接圆于另一点E,则连结CE后得CE又AH BC,所以AH//CE。
又EA AB,CH AB,所以AHCE为平行四边形。
所以所以,所以,所以与共线,所以O,G,H共线。
所以OG:GH=1:2。
3.利用数量积证明垂直。
例5 给定非零向量a, b. 求证:|a+b|=|a-b|的充要条件是a b.【证明】|a+b|=|a-b|(a+b)2=(a-b)2a2+2a·b+b2=a2-2a·b+b2a·b=0a b.例6 已知△ABC内接于⊙O,AB=AC,D为AB中点,E为△ACD重心。
求证:OE CD。
【证明】设,则,又,所以a·(b-c). (因为|a|2=|b|2=|c|2=|OH|2)又因为AB=AC,OB=OC,所以OA为BC的中垂线。
所以a·(b-c)=0. 所以OE CD。
4.向量的坐标运算。
例7 已知四边形ABCD是正方形,BE//AC,AC=CE,EC的延长线交BA的延长线于点F,求证:AF=AE。
【证明】如图所示,以CD所在的直线为x轴,以C为原点建立直角坐标系,设正方形边长为1,则A,B坐标分别为(-1,1)和(0,1),设E点的坐标为(x, y),则=(x, y-1), ,因为,所以-x-(y-1)=0.又因为,所以x2+y2=2.由①,②解得所以设,则。
由和共线得所以,即F,所以=4+,所以AF=AE。
三、基础训练题1.以下命题中正确的是__________. ①a=b的充要条件是|a|=|b|,且a//b;②(a·b)·c=(a·c)·b;③若a·b=a·c,则b=c;④若a, b不共线,则xa+yb=ma+nb的充要条件是x=m, y=n;⑤若,且a, b共线,则A,B,C,D共线;⑥a=(8, 1)在b=(-3, 4)上的投影为-4。
2.已知正六边形ABCDEF,在下列表达式中:①;②;③;④与,相等的有__________.3.已知a=y-x, b=2x-y, |a|=|b|=1, a·b=0,则|x|+|y|=__________.4.设s, t为非零实数,a, b为单位向量,若|sa+tb|=|ta-sb|,则a和b的夹角为__________.5.已知a, b不共线,=a+kb, =la+b,则“kl-1=0”是“M,N,P共线”的__________条件.6.在△ABC中,M是AC中点,N是AB的三等分点,且,BM与CN交于D,若,则λ=__________.7.已知不共线,点C分所成的比为2,,则__________.8.已知=b, a·b=|a-b|=2,当△AOB面积最大时,a与b的夹角为__________.9.把函数y=2x2-4x+5的图象按向量a平移后得到y=2x2的图象,c=(1, -1), 若,c·b=4,则b的坐标为__________.10.将向量a=(2, 1)绕原点按逆时针方向旋转得到向量b,则b的坐标为__________.11.在Rt△BAC中,已知BC=a,若长为2a的线段PQ以点A为中点,试问与的夹角取何值时的值最大?并求出这个最大值。
12.在四边形ABCD中,,如果a·b=b·c=c·d=d·a,试判断四边形ABCD的形状。
四、高考水平训练题1.点O是平面上一定点,A,B,C是此平面上不共线的三个点,动点P满足则点P的轨迹一定通过△ABC的________心。
2.在△ABC中,,且a·b<0,则△ABC的形状是__________.3.非零向量,若点B关于所在直线对称的点为B1,则=__________.4.若O为△ABC 的内心,且,则△ABC 的形状为__________.5.设O点在△ABC 内部,且,则△AOB与△AOC的面积比为__________.6.P是△ABC所在平面上一点,若,则P是△ABC 的__________心.7.已知,则||的取值范围是__________.8.已知a=(2, 1), b=(λ, 1),若a与b的夹角为锐角,则λ的取值范围是__________.9.在△ABC中,O为中线AM上的一个动点,若AM=2,则的最小值为__________.10.已知集合M={a|a=(1, 2)+ λ(3, 4), λ∈R},集合N={a|a=(-2, -2)+ λ(4, 5), λ∈R},mj MN=__________.11.设G为△ABO的重心,过G的直线与边OA和OB分别交于P和Q,已知,△OAB与△OPQ的面积分别为S和T,(1)求y=f(x)的解析式及定义域;(2)求的取值范围。
12.已知两点M(-1,0),N(1,0),有一点P使得成公差小于零的等差数列。
(1)试问点P的轨迹是什么?(2)若点P坐标为(x0, y0), 为与的夹角,求tan.五、联赛一试水平训练题1.在直角坐标系内,O为原点,点A,B坐标分别为(1,0),(0,2),当实数p,q满足时,若点C,D分别在x轴,y轴上,且,则直线CD恒过一个定点,这个定点的坐标为___________.2.p为△ABC内心,角A,B,C所对边长分别为a, b, c. O为平面内任意一点,则=___________(用a, b, c, x, y, z表示).3.已知平面上三个向量a, b, c均为单位向量,且两两的夹角均为1200,若|ka+b+c|>1(k ∈R),则k的取值范围是___________.4.平面内四点A,B,C,D满足,则的取值有___________个.5.已知A1A2A3A4A5是半径为r的⊙O内接正五边形,P为⊙O上任意一点,则取值的集合是___________.6.O为△ABC所在平面内一点,A,B,C为△ABC 的角,若sinA·+sinB·+sinC·,则点O为△ABC 的___________心.7.对于非零向量a, b, “|a|=|b|”是“(a+b)(a-b)”的___________条件.8.在△ABC 中,,又(c·b):(b·a):(a·c)=1:2:3,则△ABC 三边长之比|a|:|b|:|c|=____________.9.已知P为△ABC内一点,且,CP交AB于D,求证:10.已知△ABC的垂心为H,△HBC,△HCA,△HAB的外心分别为O1,O2,O3,令,求证:(1)2p=b+c-a;(2)H为△O1O2O3的外心。