2020年七年级数学上册 3.1.2 等式的性质导学案(新版)新人教版-2.doc
新人教版初中数学七年级上册《3.1.2等式的性质》公开课导学案_2

等式的性质2:等式两边同乘以或除以一个不为0的数,结果仍相等。
用式子表示为:如果a=b,那么ac=bc;
如果a=b(c≠0),那么a/c=b/c
【课堂学习】:
1、知识应用:
用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形(改变式子的形状)的。
①、如果2x = 5 - 3x,那么2x +()= 5
②、如果0.2x = 10,那么x =()
2、利用等式的性质解下列方程:
(1) (2) (3)
例x+7=26
解:方程两边同时_减7___,得___x+7-7=26-7___,
所以:___x=19_______________
反思学习:这道题你应用了_____等式性质1___来解决的。
3、牛刀小试
【拓展延伸】:你会检验方程的解吗?
【课堂小结】
等式的两边加(或减)同一个数或同一个式子,结果仍相等。
利用等式性质解方程。
学会验解。
【教师小结、反思】
【作业】
中学校初二数学
学科
课题
等式的性质
课型
新授
学习目标
1、会探索等式的两条基本性质
2、会利用等式的基本性质来解方程。
学习重点
等式的两条性质。
学习难点
用等式的性质解方程。
导ቤተ መጻሕፍቲ ባይዱ
学
过
程
【预习检测】:
1、什么是方程,什么是一元一次方程,什么是方程的解
2、等式的性质有:
等式的性质1:等式的两边加(或减)同一个数或同一个式子,结果仍相等。
3.1.2等式的性质(导学案)七年级数学上册(人教版)

3.1.2 等式的性质导学案1. 理解并掌握等式的性质.2. 能正确应用等式的性质解简单的一元一次方程.★知识点1:对等式两个性质得理解和把握理解等式性质是对等式进行变形的重要理论依据,应用时需要把握两点:①等式两边变形做到两个“同”,即同加、同减、同乘或同除以,这是第一个“同”,另一个是同一个数(或式子);②等式性质2中,当两边除以某一个数时,次数不能为0,这一点容易忽略,需特别注意.★知识点2:依据等式性质解简单的方程要使方程逐渐化为“a=b”的形式,关键是判断,需使方程两边做怎样的变形,弄清这种变化依据的是等式的哪一个性质.1. 等式的性质1:;用式子表示: .2. 等式的性质2:;用式子表示: .问题1:回答下列问题:(1)什么是方程?(2)指出下列式子中,哪些是方程,哪些不是,并说明理由;①3+x=5;②3x+2y=7;③2+3=3+2;④a+b=b+a(a、b已知);⑤5x+7= x–5.(3)上面的式子有哪些共同特点?问题2:用估算的方法可以求出简单的一元一次方程的解.你能用估算的方法求出下列方程的解吗?(1)3x-5=22;(2)-yy+1.问题3:方程是含有未知数的等式,那什么叫做等式呢?用等号表示相等关系的式子,叫做等式.可以用a = b 来表示一般的等式.问题4:探究、归纳等式的性质1(借助图1).图1追问1:等式具有与上面的事实同样的性质.你能用文字叙述等式的这个性质吗?追问2:等式一般可以用a =b 来表示,等式的性质1怎样用式子的形式来表示呢?问题5:探究、归纳等式的性质2(借助图2).图 21. 思考回答下列问题:(1)怎样从等式 x -5= y -5 得到等式 x = y ?(2)怎样从等式 3+x =1 得到等式 x =-2? (3)怎样从等式 4x =12 得到等式 x =3?(4)怎样从等式100100a b =得到等式a =b ? 2. 已知x =y ,则下列各式中,正确的有( ). ①x -3=y -3; ②3x =3y ; ③-2x =-2y ; ④1y x =. A. 1个 B. 2个 C. 3个 D. 4个3. 已知mx =my ,下列结论错误的是 ( )A. x =yB. a +mx =a +myC. mx -y =my -yD. amx =amy例:利用等式的性质解下列方程:(1)x +7=26;(2)-5x =20;(3)1543x --=.问题6:怎样检验方程的解?问题7:用等式的性质对这个等式3a +b -2=7a +b -2进行变形,其过程如下:两边加2,得3a +b =7a +b .两边减b ,得 3a =7a .两边除以a ,得3=7.请同学们检查变形过程,找出错误来.1. 下列说法正确的是()A. 等式都是方程B. 方程都是等式C. 不是方程的就不是等式D. 未知数的值就是方程的解2. 下列各式变形正确的是()A. 由3x-1= 2x+1得3x-2x =1+1B. 由5+1= 6得5= 6+1C. 由2(x+1) = 2y+1得x +1= y +1D. 由2a + 3b = c-6 得2a = c-18b3. 下列变形,正确的是()A. 若ac = bc,则a = bB. 若a bc c=,则a = bC. 若a2 = b2,则a = bD. 若163x-=,则x =-24. 填空:(1)将等式x-3=5的两边都_____得到x =8 ,这是根据等式的性质_____;(2)将等式112x=-的两边都乘以___或除以___得到x =-2,这是根据等式性质_____;(3)将等式x + y =0的两边都_____得到x = -y,这是根据等式的性质_____;(4)将等式xy =1的两边都______得到1yx=,这是根据等式的性质_____.5. 利用等式的性质解下列方程:(1)x+6= 17 ;(2)-3x = 15;(3)2x-1= -3 ;(4)1123x-+=-.1. 已知2a-3=2b+1,试用等式的性质判断a和b的大小.2. 已知关于x的方程17642mx+=和方程3x-10 =5的解相同,求m的值.1.(2022•青海)根据等式的性质,下列各式变形正确的是()A.若a bc c=,则a=b B.若ac=bc,则a=bC.若a2=b2,则a=b D.若163x-=,则x=-22.(2022•滨州)在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻R之间有以下关系:UIR=,去分母得IR=U,那么其变形的依据是()A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质23.(4分)(2021•安徽7/23)设a,b,c为互不相等的实数,且4155b a c=+,则下列结论正确的是()A.a>b>c B.c>b>aC.a-b=4(b-c) D.a-c=5(a-b)(1)等式有哪两条性质,你能举例说明吗?(2)如何根据等式的性质解简单的方程?举出一个例子,并说明每一步变形的依据.【参考答案】1. 等式两边加(或减)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c;2. 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;如果a=b,那么ac=bc;如果a=b(c≠0),那么a bc c =.1.(1)依据等式的性质1两边同时加5;(2)依据等式的性质1两边同时减3;(3)依据等式的性质2两边同时除以4或同乘14;(4)依据等式的性质2两边同时除以1100或同乘100.2. C;3. A.例:解:(1)方程两边同时减去7,x+7-7= 26-7于是x =19.(2)解: 方程两边同时除以-5,-5x÷(-5)=20÷(-5)化简,得x=-4.(3)解:方程两边同时加上5,得化简,得19 3x-=方程两边同时乘-3,得x =-27.1. B;2. A;3. B;4.(1)加3;1;(2)2;12;2;(3)减y;1;(4)除以x;2.5. 解:(1)两边同时减去6,得x=11. (2)两边同时除以-3,得x=-5. (3)两边同时加上1,得2x=-2.两边同时除以2,得x=-1.(4)两边同时加上-1,得13 3x-=-两边同时乘以-3,得x=9.1. a>b2. 解:方程3x-10 =5的解为x =5,将其代入方程176mx+=,得到57642m+=,解得m =2.1.【解答】解:A、若a bc c=,则a=b,故A符合题意;B、若ac=bc(c≠0),则a=b,故B不符合题意;C、若a2=b2,则a=±b,故C不符合题意;D、163x-=,则x=-18,故D不符合题意;故选:A.2.【解答】解:将等式UIR=,去分母得IR=U,实质上是在等式的两边同时乘R,用到的是等式的基本性质2.故选:B.3.【解答】解:∵4155b ac =+,∴5b=4a+c,在等式的两边同时减去5a,得到5(b-a)=c-a,在等式的两边同时乘-1,则5(a-b)=a-c.故选:D.。
3.1.2等式的性质(导学案)

等式的性质 导学案[学习目标] 1、知道等式的性质;2、会用等式的性质解简单的一元一次方程。
[学习过程][练习一]已知b a =,请用等于号“=”或不等号“≠”填空:①3+a 3+b ; ②3-a 3-b ; ③)6(-+a )6(-+b ;④x a + x b +; ⑤y a - y b -; ⑥3+a 5+b ;⑦3-a 7-b ; ⑧x a + y b +。
⑨)32(++x a )32(++x b ;⑩)32(++x a )32(++x b 。
[等式的性质1]等式两边加(或减)同一个数(或式子)结果仍相等。
[练习二]已知b a =,请用等于号“=”或不等号“≠”填空:①a 3 b 3; ②4a 4b ;③a 5- b 5-; ④2-a 2-b 。
[等式的性质2]等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
[练习三]利用等式的性质解下列方程:(1)267=+x ; (2)205=-x ;(3)451=--x ;(4)10)1(2=+-x 。
解:(1)方程两边同时减7,得72677-=-+x∴=x (3)方程两边同时 ,得 方程两边同时 ,得 ∴=x 。
请检验上面四小题中解出的x 是否为原方程的解。
[练习四] 利用等式的性质解下列方程并检验:(1)69=-x ; (2)102.0=-x ;(3)2313=-x ; (4)012=+-x ;[小结] 1、等式有哪些性质?2、在用等式的性质解方程时要注意什么?[练习五] 自主探究 巩固提高1.利用等式的性质解下列方程,并检验结果是否正确(1)85=+x ; (2)01=--x ; (3)026=-x ;2、下列结论正确的是A )x +3=1的解是x= 4B )3-x = 5的解是x=2C )35=x 的解是35=xD )2323=-x 的解是x = -1 2、方程12-=-x a x 的解是2=x ,那么a 等于( )A) -1 B) 1 C) 0 D) 23、已知04-2=x ,则=-13x 。
七年级上册(人教版)集体备课导学案:3.1.2 等式的性质2

第四课时 3.1.2 等式的性质(2)
班级 姓名__ 小组__评价__
学习目标
1. 会用等式的性质解简单的一元一次方程。
2. 培养学生观察、分析、概括及逻辑思维能力。
重点:运用等式的性质。
难点:用等式的性质解简单的方程。
使用要求:独立完成学案,然后小组讨论交流。
一、 自主学习
1 、等式的基本性质有哪两条?
2、(1)从3x+2=3y-2中,能不能得到x=y,为什么?
(2)从ax=aby 中,能不能得到x=by,为什么?
3、利用等式的性质解下列方程:
(1)x-2=5 (2)x 3
2-=6
(3)3x=x+6 (4)3
1-x-5=4
二、 合作探究
1、 利用等式的性质解下列方程并检验:
2、 某班有男生25人,比女生的2倍少15人,这个班有女生多少人?
3、把1200克洗衣粉分别装入5个大小相同的瓶子中,除一瓶还差75克外,其余
4瓶都装满了。
每个瓶子可以装多少洗衣粉?
4、甲乙二人同时由A地步行去B地.甲每小时走5千米,乙每小时走3千米.当甲
到达B地时,乙距B地还有6千米.甲走了几小时?A、B两地的距离是多少?
三、能力提升
已知2x2+3x=5,求代数式-4x2-6x+6的值
【提示】灵活运用等式的性质并将 2x2+3x整体变成-4x2-6x是解决问题的方法四、小组小结。
七年级数学上册 3.1.2 等式的性质导学案2(新版)新人教版(2)

等式的性质【学习重点】:理解和应用等式的性质。
【学习难点】:应用等式的性质把简单的一元一次方程化成“x=a ”的形式。
一、【自主学习】自学课本P81-83,完成以下问题:问题1、等式的性质1是什么?可以怎样用式子的形式来表示?问题2、等式的性质2是什么?可以怎样用式子的形式来表示?3、另外,还有:(1)如果a=b ,那么b= (等式的对称性)(2)如果a=b ,b=c ;那么 (等式的传递性)。
4、判断:已知等式a=b ,下列等式成立的是 (填番号) ①a +2=b ;②a +2=b -2 ;③a +2=b +3 ;④-2a=-2b .5、①从x=y 得到x +5=y +5根据 ;在等式两边都 ,结果仍相等。
②从x=y 得到99x y =根据 ;在等式两边都 ,结果仍相等。
③从a +2=b +2得到a=b 根据 ;在等式两边都 ,结果仍相等。
④从-3a=-3b 得到a=b 根据 ;在等式两边都 ,结果仍相等。
二、【合作探究】1.探索等式性质.(1)观察课本82页图3.1-2,由它你能发现什么规律?从左往右看,发现如果在平衡的天平的两边都加上同样的量,天平还_________; 从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是___________; 等式就像平衡的天平,它具有与上面的事实同样的性质.等的性质1:等式两边都加(或减)同一个数(或式子),结果________; 怎样用式子的形式表示这个性质?注: 运用性质1时,•应注意等号两边都加上(或减去)同一个数或同一个整式才能保持所得结果仍是等式,否则就会破坏相等关系;(2)观察课本图3.1-3,由它你能发现什么规律?可以发现,如果把平衡的天平两边的量都乘以(或除以)同一个量,天平还________; 等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍_________; 怎样用式子的形式表示这个性质?注:运用性质2时,应注意等式两边都乘以(或除以)同一个数,•才能保持所得结果仍是等式,但不能除以0,因为0不能作除数。
七年级数学上册 3.1.2《等式的性质》教案 (新版)新人教版

七年级数学上册 3.1.2《等式的性质》教案(新版)新人教版七年级数学上册-3.1.2《等式的性质》教案-(新版)新人教版3.1.2方程性质教学计划教学内容教科书第82至84页。
教学目标1.知识与技能能够利用方程的两个性质来解方程。
2.过程和方法利用天平,通过观察、分析得出等式的两条性质.3.情感态度与价值观培养学生在参与数学活动中的自信心和合作交流意识。
重点、难点和关键1.重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程.2.难点:由具体实例抽象出等式的性质.3.关键:理解和掌握方程的两个性质是掌握一元方程解的关键。
教具、投影仪准备和教学过程一、引入新课我们可以估计某些方程的解,但仅凭估计很难求解复杂方程。
我们在上节课上意识到了这一点。
因此,我们需要讨论如何求解这些方程。
因为方程中含有未知数,为了讨论解的过程,让我们先研究方程的性质?2、新补助金1.什么是等式?用等号表示等式关系的等式称为等式例如:m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式,?我们可以用a=b表示一般的等式.2.探索等式性质.请看教科书中的图3.1-2。
你能从中找到什么规则?从左往右看,发现如果在平衡的天平的两边都加上同样的量,天平还保持平衡.从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是保持平衡.等式就像平衡的天平,它具有与上面的事实同样的性质.等的性质1:等式两边都加(或减)同一个数(或式子),结果相等.例如,等式:1+3=4,在等式两边加5,结果仍然是一个等式,即1+3+5=4+5。
从等式两边减去5,结果仍然是一个等式,即1+3-5=4-5。
如何以公式的形式表达这个性质?如果a=B,则a±C=B±C运用性质1时,?应注意等号两边都加上(或减去)同一个数或同一个整式才能保持一所得结果仍是等式,否则就会破坏相等关系,例如,对于等式3+4=7,?如果左边加上5,右边加上6,那么3+4+5≠7+6.请看教科书中的图3.1-3。
3.1.2等式的性质导学案

3.1.2 等式的性质学习目标:掌握等式的两条性质,并能运用这两条性质解方程 学习重、难点:运用等式的两条性质解方程学法指导一、复习引入1、什么是方程?什么是一元一次方程?2、什么是方程的解?3、思考:1000=x 和2000-=x 中哪一个是方程()8052.0152.0=--x x 的解?二、新知探究1、运用小学知识逐步引出等式的性质(1)计算并填空:13- 2()313+- 32+()313-- 32-()313⨯- 32⨯()313÷- 32÷(2)观察上述结果,你有什么发现?问题:根据你的结论填空:如果b a =,那么c b c a ±± ; c b ⨯⨯c a ; cb c a (0≠c ) 2、阅读课本82页“例2”,然后利用等式的性质解下列方程并检验:(1)65=-x (2)65=+x(3)453.0=x (4)521=x 3、例题讲解:(1)045=+x (2)3241=-x 三、随堂检测1、下列变形错误的是( )A 、由b a =得55+=+b aB 、由b a =得33-=-b a C 、由22+=+y x 得y x = D 、由y x 33-=-得y x -=2、根据等式的性质,下列变形正确的是( )A 、由x x 332=-得3=xB 、由753=-x 得573-=xC 、由2223+=-x x 得4=xD 、由y x 323=-得y x 2= 3、利用等式的性质解下列方程:(1)x x 655-=-; (2)930-=x ; (3)253+=-y四、小结通过本课的学习你有哪些收获?你对同伴有何建议?五、作业布置A 、课本83页 习题3.1 第4题B 、课本83页 习题3.1 第4、6题。
2019-2020学年七年级数学上册 3.1.2 等式的性质导学案2(新版)新人教版.doc

2019-2020学年七年级数学上册 3.1.2 等式的性质导学案2(新版)
新人教版
学习目标
1. 会用等式的性质解简单的一元一次方程。
2. 培养学生观察、分析、概括及逻辑思维能力。
重点:运用等式的性质。
难点:用等式的性质解简单的方程。
使用要求:独立完成学案,然后小组讨论交流。
一、 自主学习
1 、等式的基本性质有哪两条?
2、(1)从3x+2=3y-2中,能不能得到x=y,为什么?
(2)从ax=aby 中,能不能得到x=by,为什么?
3、利用等式的性质解下列方程:
(1)x-2=5 (2)x 32-
=6
(3)3x=x+6 (4)31-x-5=4
二、
合作探究 1、
练习P84 利用等式的性质解下列方程并检验:
2、
某班有男生25人,比女生的2倍少15人,这个班有女生多少人?
3、
把1200克洗衣粉分别装入5个大小相同的瓶子中,除一瓶还差75克外,其余4瓶都装满了。
每个瓶子可以装多少洗衣粉?
4、甲乙二人同时由A地步行去B地.甲每小时走5千米,乙每小时走3千米.当甲到达B地
时,乙距B地还有6千米.甲走了几小时?A、B两地的距离是多少?
三、能力提升
已知2x2+3x=5,求代数式-4x2-6x+6的值
【提示】灵活运用等式的性质并将 2x2+3x整体变成-4x2-6x是解决问题的方法
四、作业:习题3.1第4、10、11题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年七年级数学上册 3.1.2 等式的性质导学案(新版)新人教版-2
【学习目标】了解等式的两条性质,会用等式的性质解简单的方程;培养学生观察、分析、概括及逻辑思维能力.
【学习重点】理解和应用等式的性质. 【学习难点】应用等式的性质把简单的一元一次方程化为“x=a ”的形式.
【学习内容】教材第81~82页
学 习 过 程
【活动一】(观察并归纳,5分钟)
1、 像m n n m +=+、x x x 32=+、3×3+1=5×
2、y x 513=+这样的式子,都是________式.
可以用___________来表示一般的等式.
2、 观察下面试验结果,你能发现什么规律?如何用式子来表示这个规律?
※归纳:等式的性质1 : 等式两边加(或减)同一个数(或式子),结果仍相等.
如果a=b ,那么a ±c=__________. 等式的性质2 : 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.
如果a=b ,那么ac=_____________;
如果 a=b(c ≠0),那么c
a =____________. 【活动二】(独立尝试完成,5分钟)
3、填空:
(1)由等式x -3=2,可得等式x -3+3=2______,根据等式性质___.
(2)由等式x +3=2,可得等式x +3-3=2______,根据等式性质___.
(3)由等式3x =6,可得等式(___)
633x =,根据等式性质___. (4)由等式
31y =2,可得等式3
1y ×3=2______,根据等式性质___. 4、填空:
【活动三】(认真阅读,独立思考,尝试完成,10分钟)
5、利用等式性质解下列方程:
(1) 267=+x
解:两边__________,得 _______26______7=+x (依据_______________)
于是 ________=x
(2) 205=-x
解:两边_________,得 )
(20) (5=-x (依据等式的性质______) 于是 _____=x
(3) 453
1=--x
6、利用等式的性质解下列方程:
(1)65=-x (2)453.0=x (3)
231-=y
(4)045=+x (5)6.0=-y (6)3412=-x
学后反思:________________________________________________________________________.
等式的性质课堂检测
(总分100分 时间10分钟)
一、选择题: (10分×4=40分)
1、下列变形正确的是( )
A.由5=x -2,得x =-5-2
B.由5y =0,得y =
51 C.由3x =-2,得x =-2
3 D.由2x =3x +5,得-5=3x -2x 2、根据等式性质235-=x 可变形为( )
A.523-=-x
B.523+-=-x
C.x 325=-
D.x 325=+
3、从44-=-y x 得到y x =,是因为( )
A.等式两边都加上4-
B.等式两边都加上4
C.等式两边都乘4
D.等式两边都乘4-
4、下列变形中用到等式性质....1.
的是( ) A.由b a =,得 22b a = B.由x =y ,得y x =
C.由x -3=2,得x =5
D.由3x =3,则x =1
二、利用等式的性质解下列方程(10分×6=60分)
(1)294=-x (2)6221=+x
(3)413=+x
(4)224=-x
(5)4.35.0=-x
(6)4531=--x。