平行线证明题

合集下载

七年级下册数学平行线证明题

七年级下册数学平行线证明题

七年级下册数学平行线证明题一、平行线证明题相关知识点回顾1. 平行线的判定定理同位角相等,两直线平行。

内错角相等,两直线平行。

同旁内角互补,两直线平行。

2. 平行线的性质定理两直线平行,同位角相等。

两直线平行,内错角相等。

两直线平行,同旁内角互补。

二、典型例题及解析例1:如图,已知∠1 = ∠2,求证:AB∥CD。

![例题1图](此处可自行想象简单的相交直线图,∠1和∠2为同位角)解析:因为∠1 = ∠2,根据同位角相等,两直线平行的判定定理,所以AB∥CD。

例2:如图,已知AB∥CD,∠1 = 70°,求∠2的度数。

![例题2图](自行想象两平行线AB、CD被第三条直线所截,∠1与∠2为内错角)解析:因为AB∥CD,根据两直线平行,内错角相等的性质定理,∠1和∠2是内错角,所以∠2=∠1 = 70°。

例3:如图,已知直线a,b被直线c所截,∠1+∠2 = 180°,求证:a∥b。

![例题3图](想象两直线a、b被c所截,∠1与∠2为同旁内角)解析:因为∠1+∠2 = 180°,根据同旁内角互补,两直线平行的判定定理,所以a∥b。

例4:如图,AB∥CD,∠B = 40°,∠D = 45°,求∠BED的度数。

![例题4图](自行想象过E点作EF∥AB的辅助线图)解析:过点E作EF∥AB。

因为AB∥CD,EF∥AB,所以EF∥CD。

因为EF∥AB,∠B = 40°,根据两直线平行,内错角相等,所以∠BEF=∠B = 40°。

又因为EF∥CD,∠D = 45°,所以∠DEF = ∠D=45°。

所以∠BED=∠BEF + ∠DEF=40°+45° = 85°。

平行线的判定和性质证明题基础+提高(含答案)

平行线的判定和性质证明题基础+提高(含答案)
10.∵AB∥CD,PE∥AB∴PE∥AB∥CD∴∠A+∠APE=180°∠C+∠CPE=180°∵∠PAB=130°∠PCD=120°,∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=50°+60°=110°
(1) ;过点P作 ,
又因为 ,所以 ,
则 , ,
所以 ;
(2)情况1:如图所示,当点P在B、O两点之间时,
∵AB∥CD
∴PM∥CD
∴∠2+∠PFD=180°
∵∠PFD=130°
∴∠2=180°﹣130°=50°
∴∠1+∠2=40°+50°=90°
即∠EPF=90°
[探究]如图②AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,∠PEA的平分线和∠PFC的平分线交于点G,则∠G的度数是°
(3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
参考答案(基础)
1. ∠ABC;角平分线的定义; ∠BCD;∠ABC+∠BCD;180°;两直线平行,同旁内角互补.
2. ,同旁内角互补,两直线平行,∠1,两直线平行,内错角相等,∠CBG,同位角相等,两直线平行。
3.证明:∵∠E=∠F∴AE∥CF∴∠A=∠ABF∵∠A=∠C∴∠ABF=∠C∴AB∥CD.
∴∠EPF=∠MPF﹣∠MPE=120°﹣50°=70°
如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线
∴∠AEG= AEP=25°,∠GFC= PFC=60°
过点G作GM∥AB∴∠MGE=∠AEG=25°∵AB∥CD(已知)∴GM∥CD∴∠GFC=∠MGF=60°∴∠G=∠MGF﹣∠MGE=60°﹣25°=35°

(完整版)平行线及其判定(证明应用题)

(完整版)平行线及其判定(证明应用题)

授课教案学员姓名:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日(~);共_____课时(以上信息请老师用正楷字手写)平行线及其判定(证明应用题)一.解答题(共11小题)1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.2.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.3.如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?2015年03月05日752444625的初中数学组卷参考答案与试题解析一.解答题(共11小题)1.(2014•槐荫区二模)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.考点:平行线的判定.专题:证明题.分析:由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.解答:证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.点评:此题考查了平行线的判定与性质.注意内错角相等,两直线平行与同位角相等,两直线平行.2.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:证明题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.3.(2010•江宁区一模)如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.考点:平行线的判定.专题:证明题.分析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.要证明AM∥BC,只要转化为证明∠C=∠DAM即可.解答:证明:∵AB=AC,∴∠B=∠C,∵∠B=∠DAM,∴∠C=∠DAM,∴AM∥BC.点评:本题主要考查了平行线的判定,注意等量代换的应用.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.考点:平行线的判定.专题:探究型.分析:因为DF∥AC,由内错角相等证明∠C=∠FEC,又因为∠C=∠D,则∠D=∠FEC,故CE∥BD.解答:解:CE∥BD.理由:∵DF∥AC(已知),∴∠C=∠FEC(两直线平行,内错角相等),又∵∠C=∠D(已知),∴∠D=∠FEC(等量代换),∴CE∥BD(同位角相等,两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养“执果索图”的思维方式与能力.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.考点:平行线的判定.专题:探究型.分析:设AB与DE相交于H,若判断ED与FB的位置关系,首先要判断∠1和∠EHA的大小;由∠3=∠4可证得BD∥CF(内错角相等,两直线平行),可得到∠5=∠BAF;已知∠5=∠6,等量代换后发现AB∥CD,即∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断出BF、DE的位置关系.解答:解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.另解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∵△BFA、△DEC的内角和都是180°∴△BFA=∠1+∠BFA+BAF;△DEC=∠2+∠4+∠6∵∠1=∠2;∠BAF=∠6∴∠BFA=∠4,∴BF∥DE.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.考点:平行线的判定.专题:证明题.分析:先由已知证明AD∥EF,再证明1∠1=∠4,∠2=∠4,等量代换得出∠1=∠2.解答:证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(垂直于同一条直线的两直线平行),∴∠1=∠4(两直线平行,同位角相等),又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行),∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2(等量代换).点评:此题的关键是理解平行线的性质及判定.①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.考点:平行线的判定.专题:推理填空题.分析:由∠A=∠F,根据内错角相等,得两条直线平行,即AC∥DF;根据平行线的性质,得∠C=∠CEF,借助等量代换可以证明∠D=∠CEF,从而根据同位角相等,证明BD∥CE.解答:解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).点评:此题综合运用了平行线的判定及性质,比较简单.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.考点:平行线的判定.专题:证明题.分析:首先根据角平分线的性质可得∠BAC=2∠DAC,再根据三角形外角与内角的关系可得∠G+∠GFA=∠BAC,又∠AFG=∠G.进而得到∠BAC=2∠G,从而得到∠DAC=∠G,即可判定出GE∥AD.解答:证明:∵AD是△ABC的平分线,∴∠BAC=2∠DAC,∵∠G+∠GFA=∠BAC,∠AFG=∠G.∴∠BAC=2∠G,∴∠DAC=∠G,∴AD∥GE.点评:此题主要考查了平行线的判定,关键是掌握三角形内角与外角的关系,以及平行线的判定定理.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.考点:平行线的判定.专题:证明题.分析:利用直角三角形中两锐角互余得出∠D=40°,再利用内错角相等,两直线平行的判定证明即可.解答:证明:∵CA⊥AD,∴∠C+∠D=90°,∴∠C=50°,∴∠D=40°,∵∠BAD=40°,∴∠D=∠BAD,∴AB∥CD.点评:本题主要考查了平行线的判定和直角三角形中两锐角互余,比较简单.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.考点:平行线的判定;角平分线的定义.专题:证明题.分析:运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.解答:证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).点评:灵活运用角平分线的定义和角的和差的关系是解决本题的关键,注意正确识别“三线八角”中的同位角、内错角、同旁内角.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?考点:平行线的判定;平行公理及推论.专题:探究型.分析:根据内错角相等,两直线平行可知a∥b,由同旁内角互补,两直线平行可知b∥c,根据如果两条直线都与第三条直线平行那么这两条直线平行得出结论.解答:解:平行.理由如下:∵∠1=∠2,∴a∥b(内错角相等,两直线平行),∵∠3+∠4=180°,∴b∥c(同旁内角互补,两直线平行),∴a∥c(平行于同一直线的两直线平行).点评:本题很简单,考查的是平行线的判定定理和平行公理的推论.内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行那么这两条直线平行.。

小学数学几何证明练习题

小学数学几何证明练习题

小学数学几何证明练习题题目一:平行线的证明题1. 请证明过直线l上的一点P,存在且唯一一条与直线l平行的直线。

2. 证明平行线具有传递性,即如果直线a // 直线b,直线b // 直线c,那么直线a // 直线c。

题目二:三角形和四边形的证明题1. 已知三角形ABC,通过顶点A作BC边的垂线,垂足为D。

请证明:∠ABD = ∠ACD。

2. 已知四边形ABCD,AB // CD,通过顶点A、D分别作BC、AD的垂线,垂足分别为E、F。

请证明∆ABE ≌ ∆CDF。

题目三:平行四边形的证明题1. 已知ABCD是平行四边形,E是AD边的中点,F是BC边的中点。

请证明:EF || AB。

2. 已知ABCD是平行四边形,对角线AC和BD交于点O。

请证明:AO ≌ CO。

题目四:圆的证明题1. 已知AB是圆的直径,C是圆上任意一点,AC交圆于点D。

请证明:∠ABC = 90°。

2. 已知O是ΔABC外接圆的圆心,交BC边于点D。

请证明:∠BAC = ∠BDO。

题目五:相似三角形的证明题1. 已知∆ABC和∆DEF相似,且∠A = ∠D,∠B = ∠E。

请证明:∠C = ∠F。

2. 已知∆ABC和∆EFD相似,且∠B = ∠E,∠F = ∠C。

请证明:∠A = ∠D。

题目六:角平分线的证明题1. 已知∠A和∠B是一个点P的相邻角,角APB的边PC是∠APB 的角平分线。

请证明∠APC = ∠BPC。

2. 已知∠A和∠B是一个点P的相邻角,角APB的边PC是∠APB 的角平分线。

请证明AP = BP。

注意:以上题目仅为示例题目,实际出题时可根据需要和学生水平进行调整。

平行线专项证明题

平行线专项证明题

1.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.2.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.3.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.4. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+∠BHC=180°.求证:.5如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.6.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.7.如图,DB ∥FG ∥EC ,∠ABD =60°,∠ACE =36°,AP 平分∠BAC.求∠PAG 的度数.8: 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .9.如图,直线AB 、CD 被直线EF 所截,∠AEF +∠CFE =180°,∠1=∠2,则图中的∠H 与∠G 相等吗?说明你的理由. (12分)10.如图(6),DE ⊥AB ,EF ∥AC ,∠A=35°,求∠DEF 的度数。

A 1 BC DEF G H 211.如图①是长方形纸带,将纸带沿EF 折叠成图②,再沿BF 折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE 的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE 的度数用α表示是多少?12、如图,已知l1∥l2,MN 分别和直线l1、l2交于点A 、B ,ME 分别和直线l1、l2交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合).(1)如果点P 在A 、B 两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P 在A 、B 两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).13、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?321n m b a。

平行线的证明训练题

平行线的证明训练题

4、如图所示,E在直线DF上,B在直线 AC上,若∠AGB=∠EHF,∠C=∠D,试
判断∠A与∠F的关系,并说明理由.
解:∠A=∠F. 理由:∵∠AGB=∠DGF, ∠AGB=∠EHF, ∴∠DGF=∠EHF, ∴BD∥CE; ∴∠C=∠ABD, 又∵∠C=∠D, ∴∠D=∠ABD, ∴DF∥AC; ∴∠A=∠F.
7、如图,BD是∠ABC的平分线,ED∥BC,
∠FED=∠BDE,则EF也是∠AED的平分
线.完成下列推理过程:
证明:∵BD是∠ABC的平分线( )
∴∠ABD=∠DBC( )
∵ED∥BC( )
∴∠BDE=∠DBC( )

()
又∵∠FED=∠BDE( )
∴∥
()
∴∠AEF=∠ABD( )
∴∠AEF=∠DEF( )
5、如图,CD∥AB,∠DCB=70°, ∠CBF=20°,∠EFB=130°,问直线EF 与AB有怎样的位置关系?为什么?
解:平行.理由如下: ∵CD∥AB, ∴∠ABC=∠DCB=70°; 又∵∠CBF=20°, ∴∠ABF=∠ABC-∠CBF=70°-20°=50°; ∴∠ABF+∠EFB=50°+130°=180°; ∴EF∥AB(同旁内角互补,两直线平行).
证:∠1=∠2.
• 证明:∵EF⊥AB,CD⊥AB, ∴EF∥CD, ∴∠2=∠3; ∵∠AGD=∠ACB, ∴DG∥BC, ∴∠1=∠3; ∴∠1=∠2.
3、已知,如图,∠1=∠ACB, ∠2=∠3,FH⊥AB于H.问CD与AB 有什么关系?
解:CD⊥AB;理由如下: ∵∠1=∠ACB, ∴DE∥BC,∠2=∠DCB, 又∵∠2=∠3, ∴∠3=∠DCB, 故CD∥FH, ∵FH⊥AB ∴CD⊥AB.

初中数学:平行线的证明测试题

初中数学:平行线的证明测试题

初中数学:平行线的证明测试题一、选择题(共14小题)1.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°2.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°3.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2=()A.60°B.50°C.40°D.30°4.如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°5.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形6.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.7.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°8.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B.60°C.70°D.75°9.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°10.如图,∠1=∠2,∠3=30°,则∠4等于()A.120°B.130°C.145°D.150°11.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°12.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°13.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.15°B.25°C.35°D.45°14.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个二、填空题(共16小题)15.如图,∠1=∠2,∠A=60°,则∠ADC= 度.16.如图,∠1=∠2=40°,MN平分∠EMB,则∠3= °.17.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= .18.如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2= 度.19.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= 度.20.如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A= .21.如图,已知∠1=∠2,∠3=73°,则∠4的度数为度.22.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.23.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= .24.如图,一束平行太阳光线照射到正五边形上,则∠1= .25.如图,a∥b,∠1=70°,∠2=50°,∠3= °.26.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= °.27.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为°.28.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD= 度.29.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN ∥DC,则∠B= °.30.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .平行线的证明参考答案与试题解析一、选择题(共14小题)1.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.【点评】此题主要考查了平行线的性质与判定,关键是掌握同位角相等,两直线平行;两直线平行,同位角相等.2.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°【考点】平行线的判定与性质.【分析】首先根据∠1=∠2,可根据同位角相等,两直线平行判断出a∥b,可得∠3=∠5,再根据邻补角互补可以计算出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=70°,∴∠5=70°,∴∠4=180°﹣70°=110°,故选:D.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系3.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2=()A.60°B.50°C.40°D.30°【考点】平行线的判定与性质.【分析】先根据对顶角相等得出∠3,然后判断a∥b,再由平行线的性质,可得出∠2的度数.【解答】解:∵∠1和∠3是对顶角,∴∠1=∠3=50°,∵c⊥a,c⊥b,∴a∥b,∵∠2=∠3=50°.故选:B.【点评】本题考查了平行线的判定与性质,解答本题的关键是掌握两直线平行内错角相等,对顶角相等.4.如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°【考点】平行线的判定与性质.【分析】首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【解答】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,∴a∥b,∴∠3=∠6=100°,∴∠4=100°.故选:D.【点评】此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等.5.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形【考点】三角形内角和定理.【分析】根据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,、∴△ABC是直角三角形.故选:C.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.(2013•扬州)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.7.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°【考点】平行线的判定与性质.【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠1=∠2=58°,∴a∥b,∴∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,∴∠4=∠5=110°,故选C.【点评】本题主要考查了平行线的判定和性质,对顶角相等,熟记定理是解题的关键.8.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B.60°C.70°D.75°【考点】平行线的判定与性质.【分析】利用平行线的性质定理和判定定理,即可解答.【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故选:A.【点评】此题考查了平行线的性质和判定定理.此题难度不大,注意掌握数形结合思想的应用.9.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°【考点】平行线的判定与性质.【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠3=∠5=110°,∵∠1=∠2=58°,∴a∥b,∴∠4+∠5=180°,∴∠4=70°,故选A.【点评】本题主要考查了平行线的判定和性质,对顶角相等,熟记定理是解题的关键.10.如图,∠1=∠2,∠3=30°,则∠4等于()A.120°B.130°C.145°D.150°【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1=∠2,利用同位角相等两直线平行得到a与b平行,再由两直线平行同位角相等得到∠3=∠5,求出∠5的度数,即可求出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠5=∠3=30°,∴∠4=180°﹣∠5,=150°,故选D【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.11.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°【考点】三角形内角和定理.【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.12.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.13.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.15°B.25°C.35°D.45°【考点】平行线的性质.【专题】压轴题.【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.【解答】解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°﹣∠3=60°﹣25°=35°.故选C.【点评】本题考查了平行线的性质,三角板的知识,比较简单,熟记性质是解题的关键.14.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个【考点】平行线的性质;余角和补角;对顶角、邻补角.【分析】两角互余,则两角之和为90°,此题的目的在于找出与∠CAB的和为90°的角,根据平行线的性质及对顶角相等作答.【解答】解:∵AB∥CD,∴∠ABC=∠BCD,设∠ABC的对顶角为∠1,则∠ABC=∠1,又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.【点评】此题考查的知识点为:平行线的性质,两角互余和为90°,对顶角相等.二、填空题(共16小题)15.如图,∠1=∠2,∠A=60°,则∠ADC= 120 度.【考点】平行线的判定与性质.【分析】由已知一对内错角相等,利用内错角相等两直线平行得到AB与DC平行,再利用两直线平行同旁内角互补,由∠A的度数即可求出∠ADC的度数.【解答】解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=60°,∴∠ADC=120°.故答案为:120°【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.16.如图,∠1=∠2=40°,MN平分∠EMB,则∠3= 110 °.【考点】平行线的判定与性质.【分析】根据对顶角相等得出∠2=∠MEN,利用同位角相等,两直线平行得出AB∥CD,再利用平行线的性质解答即可.【解答】解:∵∠2=∠MEN,∠1=∠2=40°,∴∠1=∠MEN,∴AB∥CD,∴∠3+∠BMN=180°,∵MN平分∠EMB,∴∠BMN=,∴∠3=180°﹣70°=110°.故答案为:110.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.17.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= 63°30′.【考点】平行线的判定与性质.【分析】根据∠1=∠2可以判定a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得答案.【解答】解:∵∠1=40°,∠2=40°,∴a∥b,∴∠3=∠5=116°30′,∴∠4=180°﹣116°30′=63°30′,故答案为:63°30′.【点评】此题主要考查了平行线的判定与性质,关键是掌握同位角相等,两直线平行.18.如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2= 30 度.【考点】平行线的性质;角平分线的定义.【分析】根据平行线的性质得到∠EFD=∠1,再由FG平分∠EFD即可得到.【解答】解:∵AB∥CD∴∠EFD=∠1=60°又∵FG平分∠EFD.∴∠2=∠EFD=30°.【点评】本题主要考查了两直线平行,同位角相等.19.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= 36 度.【考点】平行线的性质;三角形内角和定理.【分析】根据两直线平行,同位角相等可得∠DCE=∠B,∠DEC=∠F,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AB∥DC,DE∥GF,∠B=∠F=72°,∴∠DCE=∠B=72°,∠DEC=∠F=72°,在△CDE中,∠D=180°﹣∠DCE﹣∠DEC=180°﹣72°﹣72°=36°.故答案为:36.【点评】本题考查了两直线平行,同位角相等的性质,三角形的内角和定理,是基础题,熟记性质与定理是解题的关键.20.如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A= 55°.【考点】平行线的性质.【专题】计算题.【分析】由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数.【解答】解:∵∠EFD为△ECF的外角,∴∠EFD=∠C+∠E=55°,∵CD∥AB,∴∠A=∠EFD=55°.故答案为:55°【点评】此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键.21.如图,已知∠1=∠2,∠3=73°,则∠4的度数为107 度.【考点】平行线的判定与性质.【专题】计算题.【分析】根据已知一对同位角相等,利用同位角相等两直线平行得到a与b平行,利用两直线平行同旁内角互补得到一对角互补,再利用对顶角相等即可确定出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠5+∠3=180°,∵∠4=∠5,∠3=73°,∴∠4+∠3=180°,则∠4=107°.故答案为:107【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(2013•南昌)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.【考点】平行线的性质;直角三角形的性质.【专题】探究型.【分析】先根据平角的定义求出∠EDC的度数,再由平行线的性质得出∠C的度数,根据三角形内角和定理即可求出∠B的度数.【解答】解:∵∠1=155°,∴∠EDC=180°﹣155°=25°,∵DE∥BC,∴∠C=∠EDC=25°,∵△ABC中,∠A=90°,∠C=25°,∴∠B=180°﹣90°﹣25°=65°.故答案为:65°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.23.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= 115°.【考点】平行线的性质.【分析】将各顶点标上字母,根据平行线的性质可得∠2=∠DEG=∠1+∠FEG,从而可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEG=∠1+∠FEG=115°.故答案为:115°.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行内错角相等.24.如图,一束平行太阳光线照射到正五边形上,则∠1= 30°.【考点】平行线的性质;多边形内角与外角.【分析】作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.【解答】解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.【点评】本题考查了平行线的性质,注意掌握两直线平行:内错角相等、同位角相等.25.如图,a∥b,∠1=70°,∠2=50°,∠3= 60 °.【考点】平行线的性质.【专题】探究型.【分析】先根据平行线的性质求出∠4的度数,再由平角的性质求出∠3的度数即可.【解答】解:∵a∥b,∠1=70°,∴∠4=∠1=70°,∴∠3=180°﹣∠4﹣∠2=180°﹣70°﹣50°=60°.故答案为:60.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.26.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= 50 °.【考点】平行线的性质.【分析】由∠BAC=80°,可得出∠EAC的度数,由AD平分∠EAC,可得出∠EAD的度数,再由AD∥BC,可得出∠B的度数.【解答】解:∵∠BAC=80°,∴∠EAC=100°,∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°,∵AD∥BC,∴∠B=∠EAD=50°.故答案为:50.【点评】本题考查了平行线的性质,解答本题的关键是掌握角平分线的性质及平行线的性质:两直线平行内错角、同位角相等,同旁内角互补.27.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为65 °.【考点】平行线的性质.【分析】先根据平角的定义求出∠BAC的度数,再根据平行线的性质即可得出结论.【解答】解:∵∠BAF=115°,∴∠BAC=180°﹣115°=65°,∵AB∥CD,∴∠ECF=∠BAC=65°.故答案为:65.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.28.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD= 60 度.【考点】平行线的性质.【专题】压轴题.【分析】根据AB∥CD,可得∠BCD=∠B=30°,然后根据CB平分∠ACD,可得∠ACD=2∠BCD=60°.【解答】解:∵AB∥CD,∠B=30°,∴∠BCD=∠B=30°,∵CB平分∠ACD,∴∠ACD=2∠BCD=60°.故答案为:60.【点评】本题考查了平行线的性质和角平分线的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.29.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN ∥DC,则∠B= 95 °.【考点】平行线的性质;三角形内角和定理;翻折变换(折叠问题).【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.30.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= 70°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.。

平行线的判定》证明题

平行线的判定》证明题

平行线的判定》证明题1.当∠1=∠2时,直线a、b平行。

因为这时∠1+∠2=180°,根据平行线的性质可知a、b平行。

2.已知∠XXX∠BCD,且∠ABC+∠CDG=180°,因此∠BCD=∠XXX根据三角形内角和定理可知∠XXX∠BCD+∠XXX∠ABC+∠BCD=180°,所以BC∥GD。

3.已知∠1=15°,∠2=15°,因此∠ACE=∠BDF=75°。

但AE与BF不平行,因为它们交于点F。

4.BE平分∠ABD,DE平分∠XXX,且∠DQP=∠1=∠2,因此∠XXX∠XXX∠BCQ。

根据同位角和内错角性质可知AB∥CD,DE∥BE,因此AD∥BC。

5.已知∠2=∠3,且∠1+∠2=90°,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。

6.已知∠1=30°,∠B=60°,因此∠C=90°。

根据三角形内角和定理可知∠ABC=∠ACB=60°,因此AB=AC。

又因为∠BAC=90°,所以AD∥BC。

7.已知∠BAD=∠DCB,∠BAC=∠DCA,因此三角形ABD与三角形CBD相似。

根据相似三角形的性质可知AB∥CD。

8.直线EF分别与直线AB、CD相交于点P和点Q,PG 平分∠APQ,QH平分∠DPQ。

根据角平分线的性质可知∠XXX∠GPQ+∠HPQ=1/2(∠APQ+∠DPQ)=1/2(180°)=90°,因此GH∥AB∥CD。

9.已知XXX,XXX,∠1=∠2,因此∠XXX∠BCD。

根据同位角和内错角性质可知BE∥CF。

10.已知AB⊥DF,∠2=90°,∠2=∠3,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.平行线的几何证明一、平行线的判定1.知识回顾:【例1】已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)【例2】已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)2变式训练:1.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)2.已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,( )∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,( )从而∠CDA-∠1=______-______,(等式的性质)即∠3=___.∴DF___AE.(____,____)3.已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.且∠1=∠3.求证:AB∥DC.证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )4.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)二、平行线的性质1、知识回顾【例3】已知:如图,DE ∥AB .请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE ∥AB ,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)2.变式训练1、如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 2、已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)3.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.4.已知:如图,AB ∥CD ,∠1=∠2.求证:BE ∥CF .证明思路分析:欲证BE ∥CF ,只要证______=______. 证明:∵AB ∥CD ,( )∴∠ABC =______.(____________,____________) ∵∠1=∠2,( )∴∠ABC -∠1=______-______,( ) 即______=______.∴BE ∥CF .(__________,__________)能力提升 一、填空1.如图① 因为∠1=∠2,所以_______∥_______( )。

因为∠2=∠3,所以_______∥_______( )。

2.如图② 因为∠1=∠2,所以_______∥_______( )。

因为∠3=∠4,所以_____∥_______( )。

3.如图③填空:(1)∵∠2=∠B (已知)∴ AB______( ) (2)∵∠1=∠A (已知)∴ ________ ( ) (3)∵∠1=∠D (已知)∴ _______ ( ) (4)∵______=∠F (已知)∴ AC ∥DF ( )4.如图,已知AB ⊥BC ,BC ⊥CD ,⊥1=⊥2.试判断BE 与CF 的关系,并说明你的理由. 解:BE ⊥CF .理由:⊥AB ⊥BC ,BC ⊥CD (已知)⊥ _________ = _________ =90° _________ ⊥⊥1=⊥2 _________① ①①⊥⊥ABC﹣⊥1=⊥BCD﹣⊥2,即⊥EBC=⊥BCF⊥_________⊥_________.5.完成下列推理过程①⊥⊥3=⊥4(已知)⊥⊥()②⊥⊥5=⊥DAB(已知)⊥⊥()③⊥⊥CDA+⊥C=180°(已知)⊥AD⊥BC()5.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.∴∠D+∠A=______.(_____________,_____________)即∠D=______-______=______°-______°=______°.6.填空,完成下列说理过程如图,AB、CD被CE所截,点A在CE上,如果AF平分⊥CAB交CD于F,并且⊥1=⊥3,那么AB与CD平行吗?请说明理由.解:因为AF平分⊥CAB(已知),所以⊥1=⊥().又因为⊥1=⊥3(已知),所以(等量代换).所以AB⊥CD().7.几何推理,看图填空:(1)⊥⊥3=⊥4(已知)⊥⊥()(2)⊥⊥DBE=⊥CAB(已知)⊥⊥()(3)⊥⊥ADF+=180°(已知)⊥AD⊥BF(_________)二、证明题1.已知:如图 ,CE 平分∠ACD ,∠1=∠B , AB 与CE 平行吗,为什么?2.如图,已知:∠A =∠1,∠C =∠2。

AB 与CD 平行吗,说明理由。

3.如图:∠1=︒53,∠2=︒127,∠3=︒53,试说明直线AB 与CD ,BC 与DE的位置关系。

1 32 A E CD BF4. 如图∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.5、已知:如图,⊥A=⊥F ,⊥C=⊥D .求证:BD ⊥CE .6、如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.F2A B C D Q E1PM N 图11。

相关文档
最新文档