高中数学函数的单调性与最值练习题
高一数学函数的单调性与最值试题答案及解析

高一数学函数的单调性与最值试题答案及解析1.下列函数中,既是奇函数又是增函数的为A.B.C.D.【答案】D【解析】为非奇非偶函数,为偶函数,是奇函数,但在定义域内不是增函数。
【考点】奇函数与增(减)函数的定义。
2.定义在上的偶函数满足:对任意的,有则()A.B.C.D.【答案】B【解析】由对任意的,有可知在为减函数,,又为偶函数,故,.故选B.【考点】函数的性质的应用.3.已知函数,则下列结论正确的是().A.是偶函数,递增区间是B.是偶函数,递减区间是C.是奇函数,递减区间是D.是奇函数,递增区间是【答案】C【解析】,其图像如图所示,由图像得是奇函数,递减区间是.【考点】分段函数的图像与性质.4.已知函数是定义在上的偶函数,且当时,.现已画出函数在轴左侧的图象,如图所示,并根据图象:(1)写出函数的增区间;(2)写出函数的解析式;(3)若函数,求函数的最小值.【答案】(1);(2);(3).【解析】解题思路:(1)利用偶函数的图像关于轴对称,得到在轴右侧的图像,再利用图像写出单调递增区间;(2)设,则,求,再利用偶函数求的解析式;(3)讨论对称轴与区间的关系,求出最小值.规律总结:1.奇函数的图像关系原点对称,偶函数的图像关系轴对称;2.二次函数的图像开口向上时,离对称轴越近的点对应的函数值越小,离对称轴越远的点对应的函数值越大.试题解析:(1)在区间,上单调递增.(2)设,则.函数是定义在上的偶函数,且当时,(3),对称轴方程为:,当时,为最小;当时,为最小当时,为最小.综上,有:的最小值为.【考点】1.函数的图像;2.函数的单调性;3.函数的解析式;4.函数的最值.5.函数,使是增函数的的区间是________.【答案】【解析】令在R上是减函数,又因为函数在(-,1]是减函数,由复合函数的单调性可知的增区间为: (-,1]【考点】复合函数的单调性.6.已知奇函数 f (x) 在 (-¥,0)∪(0,+¥) 上有意义,且在 (0,+¥) 上是增函数,f (1) = 0,又函数 g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.【答案】 .【解析】根据条件中是奇函数的这一条件可以求得使的的范围,再根据与的表达式,可以得到与的交集即是使恒成立的所有的全体,通过参变分离可以将问题转化为求使恒成立的的取值范围,通过求函数最大值,进而可以求出的范围.依题意,,又在上是增函数,∴在上也是增函数, 1分∴由得或 2分∴或 3分4分由得 5分即 6分∴ 7分设, 9分∵, 10分∴, 11分且 12分∴的最大值为 13分∴ 14分另解:本题也可用下面解法:1. 用单调性定义证明单调性∵对任意,,,∴,即在上为减函数,同理在上为增函数,得 5分∴.2. 二次函数最值讨论解:依题意,,又在上是增函数,∴在上也是增函数,∴由得或∴或,4分由得恒成立,5分设, 6分∵,的对称轴为 7分1°当,即时,在为减函数,∴ 9分2°当,即时,∴ 11分3°当,即时,在为增函数,∴无解 13分综上, 14分3. 二次方程根的分布解:依题意,,又在上是增函数,∴在上也是增函数,∴由得或∴或,,由得恒成立,,设,∵,的对称轴为,, 7分1°当,即时,恒成立。
函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分)1.函数2()log f x x =在区间[1,2]上的最小值是( )A .1-B .0C .1D .2 2.已知212()log (2)f x x x =-的单调递增区间是( )A.(1,)+∞B.(2,)+∞C.(,0)-∞D.(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()()0f a f b a b->-成立,则必有( )A.()f x 在R 上是增函数B.()f x 在R 上是减函数C.函数()f x 是先增加后减少D.函数()f x 是先减少后增加4.若在区间(-∞,1]上递减,则a 的取值范围为( )A. [1,2)B. [1,2]C. [1,+∞)D. [2,+∞)5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A .﹣1 B .0 C .1 D .26.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有2121()(()())0x x f x f x -->.则满足(21)f x -<x 取值范围是( )A. B. C.7.已知(x)=⎩⎨⎧≥<+-)1(log )1(4)13(x xx ax a a 是(-∞,+∞)上的减函数,那么a 的取值范围是( )A.(0,1)B.(0,31) C.[71,31) D.[71,1)8.函数22log (23)y x x =+-的单调递减区间为( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(-3,-1) 9.已知函数()f x 是定义在[0,)+∞的增函数,则满足(21)f x -<的x 取值范围是( )(A )(∞- (B ) (C )∞+) (D ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2xy = B .1y x= C .2y x = D .tan y x = 11.已知函数(a 为常数).若在区间[-1,+∞)上是增函数,则a 的取值范围是( ) A .B .C .D .12.如果函数()f x 对任意的实数x ,都有()()1f x f x =-,且当12x ≥时, ()()2log 31f x x =-,那么函数()f x 在[]2,0-的最大值与最小值之差为( )A. 4B. 3C. 2D. 1 二、填空题(每小题4分)13.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是14.设函数()f x =⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足()2f x ≤的x 的取值范围是 .15.2()24f x x x =-+的单调减区间是 . 16.已知函数)(x f 满足),()(x f x f =-当,(,0]a b ∈-∞时总有,若)2()1(m f m f >+,则实数m 的取值范围是_______________.17.函数2()(1)2f x x =--的递增区间是___________________ . 18.已知函数()[]5,1,4∈+=x xx x f ,则函数()x f 的值域为 . 19.函数2(),,.f x x ax b a b R =-+∈若()f x 在区间(,1)-∞上单调递减,则a 的取值范围 .20.已知函数2()48f x x kx =--在区间[]5,10上具有单调性,则实数k 的取值范围是 . 21.已知函数()()23log 5f x x ax a =+++,()f x 在区间(),1-∞上是递减函数,则实数a 的取值范围为_________.22.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则实数m 的取值范围为 .23.若函R 上的增函数,则实数a 的取值范围是 .24.已知函数f(x)=e x -1,g(x)=-x 2+4x -3,若有f(a)=g(b),则b 的取值范围为________. 25.已知函数f(x)(a≠1).若f(x)在区间(0,1]上是减函数,则实数a 的取值范围是________.参考答案1.B 【解析】试题分析:画出2()log f x x =在定义域}{0>x x 内的图像,如下图所示,由图像可知2()log f x x =在区间[1,2]上为增函数,所以当1=x 时2()log f x x =取得最小值,即最小值为2(1)log 10f ==。
高中数学函数的单调性与最值练习题

函数的单调性与最值1.下列函数中,在区间(-1,1)为减函数的是( )A .xy -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( )A .)2,(--∞B .)1,(-∞C .),1(+∞D .),4(+∞3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( )A .-3B .-2C .-1D .14函数xx x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞5设函数)1()(,0,10,00,1)(2-=⎪⎩⎪⎨⎧<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( )A .]0,(-∞B .)1,0[C .),1[+∞D .]0,1[-6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[--B .]4,6[--C .]22,3[--D .]3,4[-- 7.函数],(,12n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[-8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数xx f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是10.已知函数f (x)的值域为]94,83[,则函数)(21)()(x f x f x g -+=的值域为1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( )A .]1,0(B .]2,1[C .+∞,1[)D .+∞,2[)2.已知函数⎪⎩⎪⎨⎧>-≤--=1,1log 1,41)(x x x x ax x f a 是R 上的单调函数,则实数a 的取值范围是( ) A .)21,41[ B .]21,41[ C .]21,0( D .)1,21[3.已知函数f (x)是定义在),0(+∞上的增函数,若)3()(2+>-a f a a f ,则实数a 的取值范围为4.已知减函数f (x)的定义域是R ,m,n 都是实数,如果不等式)()()()(n f m f n f m f --->-成立,那么下列不等式成立的是( )A .0<-n mB .0>-n mC .0<+n mD .0>+n m 5.设函数⎩⎨⎧<≥+=1,1,)(2x x x x m x f 的图像过点(1,1),函数g (x)是二次函数,若函数f (g (x))的值域是),0[+∞,则函数g (x)的值域是6.已知函数f (x)是R 上的增函数,A (0,-3)B (3,1)是其图像上的两点,那么不等式1)1(3<+<-x f 的的解集的补集是( )A .)2,1(-B .)4,1(C .),4[)1,(+∞⋃--∞D .),2[]1,(+∞⋃--∞7.已知函数)0,0(11)(>>-=x a xa x f (1)求证:f (x)在),0(+∞上是增函数 (2)若f (x)在]2,21[上的值域是]2,21[,求a 的值8.已知函数)2lg()(-+=xa x x f ,期中a 是大于0的常数 (1)求函数f (x)的定义域(2)当)4,1(∈a 时,求函数f (x)在),∞+2[上的最小值 (3)若对任意),2[+∞∈x 恒有0)(>x f ,试确定a 的取值范围。
高二数学函数的单调性与最值试题答案及解析

高二数学函数的单调性与最值试题答案及解析1.下列函数中,在区间为增函数的是()A.B.C.D.【答案】A【解析】由幂函数的性质得在区间上是增函数;由于对称轴为,因此在区间上是减函数;区间上是减函数;底数为0.5,区间上是减函数.【考点】函数的单调性.2.函数f(x)=2x﹣sinx在(﹣∞,+∞)上().A.有最小值B.是减函数C.有最大值D.是增函数【答案】D.【解析】,;因为恒成立,所以在上是增函数.【考点】利用导数判断函数的单调性.3.已知函数f(x)=ax3+bx2+cx+d的图象与x轴有三个不同交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2时取得极值,则x1•x2的值为.【答案】6.【解析】因为的图像过,所以,即;因为f(x)在x=1,x=2时取得极值,所以的两根为1,2,则,即;则,所以.【考点】函数的零点、函数的极值.4.奇函数在定义域上是减函数,且,则实数的取值范围是__________.【答案】【解析】因为为奇函数,所以由,得,又因为函数在定义域上是减函数,所以有,解得,故实数的取值范围是,注意不要忽略定义域.【考点】抽象函数的性质及解不等式.5.已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.(1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数;(3)求f(x)在[-3,6]上的最大值与最小值.【答案】(1)见解析;(2)见解析;(3)最大值为2,最小值为-4【解析】(1)欲证函数为奇函数,需寻找关系.由题中条件可知,需要从f(x)+f(y)=f(x+y)拼凑出与,令,便有,需求得,考虑到,令特殊值求;(2)同一样的思想,这里需要拼凑出与()不等于关系(需利用当x>0时,f(x)<0);(3)利用(1),(2)结论解(3).试题解析:令,可得从而.令,可得,即,故为奇函数. 4分证明:设,且,则,于是.从而.所以为减函数. 8分解:由(2)知,所求函数的最大值为,最小值为.,.于是在上的最大值为2,最小值为-4. 12分【考点】(1)函数奇偶性的证明(明确一般方法和过程);(2)函数单调性证明(紧扣证明过程);(3)求函数最值.6.已知函数是定义在上的减函数,函数的图象关于点对称. 若对任意的,不等式恒成立,的最小值是()A.3B.2C.1D.0【答案】C【解析】函数的图象关于点对称,函数的图象关于点对称,即函数是奇函数,不等式恒成立等价为;又是定义在上的减函数,,即;,即的最小值为2.故选C.【考点】函数单调性与对称性;不等式恒成立;函数值域.7.设函数.(1)用反证法证明:函数不可能为偶函数;(2)求证:函数在上单调递减的充要条件是.【答案】(1)祥见解析;(2) 祥见解析.【解析】(1)反证法证明的一般步骤是:先假设结论不正确,从而肯定结论的反面一定成立,在此基础上结合题目已知条件,经过正确的推理论证得到一个矛盾,从而得到假设不成立,所以结论正确;此题只需假设假设函数是偶函数,既然是偶函数,则对定义域内的一切x都有成立,那么我们为了说明假设不成立,即不可能成立,只需任取一个特殊值代入检验即可;(2)由于是证明函数在上单调递减的充要条件是:;应分充分性和必要性两个方面来加以证明,先证充分性:来证明一定成立;再证必要性:由函数在上单调递减在上恒成立,来证明即可,注意已知中的这一条件.试题解析:(1)假设函数是偶函数, 2分则,即,解得, 4分这与矛盾,所以函数不可能是偶函数. 6分(2)因为,所以. 8分①充分性:当时,,所以函数在单调递减; 10分②必要性:当函数在单调递减时,有,即,又,所以. 13分综合①②知,原命题成立. 14分(说明:用函数单调性的定义证明的,类似给分;用反比例函数图象说理的,适当扣分)【考点】1.反证法;2.函数的单调性;3.充要性的证明.8.设奇函数在上为增函数,且,则不等式的解集为()A.B.C.D.【答案】D【解析】因为奇函数在上为增函数,所以在上也是增函数,且,从而在定义域上的大致图象为:所以的解集为:,故选D.【考点】函数的奇偶性与单调性.9.已知命题p:函数在上单调递减.⑴求实数m的取值范围;⑵命题q:方程在内有一个零点.若p或q为真,p且q为假,求实数m 的取值范围.【答案】⑴ 1<m<3; ⑵.【解析】(1)由于u=6-mx中m>0,所以u在[1,2]上是减函数,由复合函数的单调性可知函数在上必是增函数且u=6-mx>0在[1,2]上恒成立;故有m>1且6-2m>0,所以1<m<3;(2)由q命题为真可知:函数与直线y=-m-1有且只有一交点,由图象得:-m-1=-1或-m-1-1,故有;再由p或q为真,p且q为假知p与q必然一真一假,从而求得m的取值范围.试题解析:.⑴,⑵由q命题为真可知:方程在内有一个零点等价于:函数与直线y=-m-1有且只有一交点,由图象得:-m-1=-1或-m-1-1,故有;又因为p或q为真,p且q为假知p与q必然一真一假,所以有,所以.【考点】1.复合函数的单调性,2.函数的零点,3.复合命题真假的判断.10.已知函数是上的增函数,(1)若,且,求证(2)判断(1)中命题的逆命题是否成立,并证明你的结论。
(word完整版)高中数学函数的单调性和最值习题和详解

高中数学高考总复习函数的单调性与最值习题及详解一、选择题1 •已知f(x)=—X—X3, x€ [a, b],且f(a)f(b)<0,则f(x) = 0 在[a, b]内()A•至少有一实数根B.至多有一实数根C •没有实数根D.有唯一实数根[答案]D[解析]•••函数f(x)在[a, b]上是单调减函数,又f(a), f(b)异号•••• f(x)在[a, b]内有且仅有一个零点,故选 D.2 • (2010北京文)给定函数①y= x1,②y= log2(x+ 1),③y=x —11,④y= 2x+1,其中在区间(0,1)上单调递减的函数的序号是()A .①②B.②③C .③④D.①④[答案]B1 1 1[解析]易知y = X2在(0,1)递增,故排除A、D选项;又y= logq(x+ 1)的图象是由y= logqx的图象向左平移一个1单位得到的,其单调性与y= log^x相同为递减的,所以②符合题意,故选 B.1 1 13 • (2010 济南市模拟)设y1 = 0.43, y2= 0.53,y3= 0.54,则( )A • y3<y2<y1 B. y1<y2<y3C. y2<y3<y1D. y1<y3<y2[答案]B1 1[解析]•/ y= 0.5x为减函数,• 0.53<0.54,1•/ y= x3在第一象限内是增函数,1 1二0.43<0.53,二y1<y2<y3,故选 B.a _ 2 x ___ 1 x W14. (2010 •州市)已知函数,若f(x)在(—a, + a上单调递增,贝U实数a的取值范围为()log a x x>1A • (1,2) B. (2,3)C. (2,3]D. (2,+a)[答案]C[解析]••• f(x)在R上单调增,a>1a —2>0 , a —2 X1 —1 w log1••• 2<a W3,故选 C. 5.(文)(2010山东济宁)若函数f (x )= x 2+ 2x + alnx 在(0,1)上单调递减,则实数 a 的取值范围是()A . a > 0B . a <0 D . a <— 4[答案]Da 2x 2 + 2x + a[解析]•••函数 f(x)= x 2 + 2x + alnx 在(0,1)上单调递减,•••当 x € (0,1)时,f'x) = 2x + 2+- = ------- g(x)x — =2x 2 + 2x + a <0在 x € (0,1)时恒成立,• g(0) <p g(1) <p 即 a <— 4.n n(理)已知函数y = tan^x 在—2, 2内是减函数,贝卩3的取值范围是()A . 0< 1B . — 1 <o <0C . 3 》1D . 3<— 1[答案]Bn n[解析]•/ tansx 在—2,2上是减函数, • 3<0.当—n <x<2时,有n _冗3< c < 3X —7t3<0 6. (2010 天津文)设 a = log 54, b = (log 53)2, c = log 45,则( )A . a v c v bD . b v a v c[答案]D[解析] T 1>log 54>log 53>0,「. Iog 53>(log 53)2>0,而 Iog 45>1,「. c>a>b. 7 .若f(x)= x 3— 6ax 的单调递减区间是(一2,2),则a 的取值范围是( )A . (—s, 0]B . [ — 2,2]C . {2}D . [2,+ s)[答案]C[解析]f 'x) = 3x 2— 6a ,,…一1 <3<0.B . b v c v a 2 兀 n若a<0则f'x) >0 • f(x)单调增,排除A ;若a>0,则由f'x)= 0 得x= ± 2a,当x< —.2a 和x> ,2a 时,f'x)>0, f(x)单调增,当一.2a<x<,2a 时,f(x)单调减,••• f(x)的单调减区间为(—.2a, 2a),从而J2a = 2,a= 2.[点评]f(x)的单调递减区间是(一2,2)和f(x)在(—2, 2)上单调递减是不同的,应加以区分.1 18. (文)定义在R上的偶函数f(x)在[0,+ ^上是增函数,若f(?)= 0,则适合不等式f(log^7x)>0的x的取值范围是()1A . (3, + s) B. (0,刁1C . (0, + ) D. (0, 3) U (3 ,+s)[答案]D1 1[解析]•••定义在R上的偶函数f(x)在[0,+s上是增函数,且f( ) = 0,则由f(log丄x)>0,得|log丄x|>,即log!3 27 27 3 271 1 x>孑或log—x< —百.选D.327 3(理)(2010南充市)已知函数f(x)图象的两条对称轴x= 0和x= 1,且在x€ [—1,0]上f(x)单调递增,设a= f(3), b =f( 2), c= f(2),贝U a、b、c的大小关系是()A. a>b>cB. a>c>bC. b>c>aD. c>b>a[答案]D[解析]••• f(x)在[—1,0]上单调增,f(x)的图象关于直线x= 0对称,• f(x)在[0,1]上单调减;又f(x)的图象关于直线x= 1对称,• f(x)在[1,2]上单调增,在[2,3]上单调减.由对称性f(3) = f( —1)= f(1)<f( _2)<f(2),即a<b<c.x2+ 4x, x>09. (2009天津高考)已知函数f(x) = 2n若f(2 —a2)> f(a),则实数a的取值范围是()4x—x , x v 0.A . (— s,—1) U (2,+ s)B . ( —1,2)C . ( —2,1)D . (— s,—2) U (1 ,+ s)[答案]C[解析]■/ 时,f(x) = x2+ 4x= (x+ 2)2—4 单调递增,且f(x)当x<0 时,f(x)= 4x—x2=—(x —2)2+ 4 单调递增,且f(x)<0 ,• f(x)在R 上单调递增,由f(2 —a2)>f(a)得2—a2>a,•—2<a<1.10 . (2010泉州模拟)定义在R上的函数f(x)满足f(x + y) = f(x) + f(y),当x<0时,f(x)>0,则函数f(x)在[a, b]上有( )A .最小值f(a)B .最大值f(b)C .最小值f(b)D .最大值a +b f 2[答案]C[解析]令x = y= 0 得,f(0)= 0,令y=—x得,f(0) = f(x)+ f(—x),二f(—x)=—f(x)-对任意x i , X2 € R 且x i <X2,,f(x i) —f(X2)= f(x i) + f( —x2)=f(x i —X2)>0 ,.•• f(X l)>f(X2),••• f(x)在R上是减函数,••• f(x)在[a,b]上最小值为f(b).二、填空题b i11. (2010 重庆中学)已知函数f(x)= ax+ x—4(a, b 为常数),f(lg2) = 0,则f(lg^)= _____________[答案]—8[解析]令(Kx)= ax+ b,贝V H x)为奇函数,f(x) = $(x) —4,入•- f(lg2) = H lg2) —4 = 0 ,• H lg2)= 4,“ 1•-饥刁=f(—lg2) = H( —lg2) —4=—y ig2) —4=—8.12 .偶函数f(x)在(—s,0]上单调递减,且f(x)在[—2,k]上的最大值点与最小值点横坐标之差为3,则k= __________[答案]3[解析]•••偶函数f(x)在(—R, 0]上单调递减,• f(x)在[0,+ ^上单调递增.因此,若k WQ贝U k—(—2) = k + 2<3,若k>0,v f(x)在[—2,0]上单调减在[0,—k]上单调增,.••最小值为f(0), 又在[—2, k]上最大值点与最小值点横坐标之差为3,• k—0= 3,即k= 3.13 .函数f(x)= aX 1在(—m, —3)上是减函数,则a的取值范围是________________x+ 3[答案]1 ——OO ——_,314 . (2010 •苏无锡市调研)设a(0<a<1)是给定的常数,f(x)是R上的奇函数,且在(0,+^上是增函数,若f:=0 , f(log a t)>0,贝y t的取值范围是 _______ .[答(1,扫u (0,诵)案]1[解析]f(log a t)>0,即 f(log a t)>f 2, 1••• f(x)在(0,+ ^上 为增函数,二 log a t>2, 0<a<1 ,.°. 0<t<“Ja.1 i又 f(x)为奇函数,••• f — - =- f- = 0,r 1…f(log a t)>0 又可化为 f(log a t)>f — 2 , •••奇函数f(x)在(0 ,+8上是增函数,1• f(x)在(—8, 0)上为增函数,• 0>log a t> — 2,综上知,0<t< a 或1<t< a , 三、解答题15. (2010 北京市东城区)已知函数 f(x) = log a (x + 1) — log a (1 — x), a>0 且 a * 1. (1) 求f(x)的定义域;⑵判断f(x)的奇偶性并予以证明;⑶当a>1时,求使f(x)>0的x 的取值集合.[解析](1)要使 f(x) = log a (x + 1) — log a (1 — x)有意义,则 x + 1>0,解得—1<x<1.1 — x>0故所求定义域为{x — 1<x<1}.⑵由(1)知f(x)的定义域为{X — 1<x<1},且 f( — x) = log a ( — x +1)— log a (1 + x) = — [log a (x + 1) — log a (1 — x)] = — f(x),故 f(x)为奇函数. ⑶因为当a>1时,f(x)在定义域{x|— 1<x<1}内是增函数, x + 1所以 f(x)>0?产->1.1 — x 解得0<x<1.所以使f(x)>0的x 的取值集合是{x|0<x<1}.1 — mx 口 亠 p16. (2010北京东城区)已知函数f(x)= log a 是奇函数(a>0,a * 1) x — 1(1) 求m 的值;(2) 求函数f(x)的单调区间;(3) 若当x € (1,a — 2)时,f(x)的值域为(1,+8),求实数a 的值. “八卄亠1 — mx . 1+ mx 小•/ 0<a<1 ,1<t<1a ,[解析](1)依题意,f(—x)=—f(x),l卩f(x) + f(—x)= 0,即log a x—1 + log a—x—1 = 0,1 —mx 1 + mx•••—1,二(1 —m2)x2= 0 恒成立,x—1 —X—1 '•1 — m2= 0,「. m=—1或m= 1(不合题意,舍去)1 + x当m=—1时,由一>0得,x € (—汽一1) U (1,+s),此即函数f(x)的定义域,x —1又有f( —x) = —f(x),• m=—1是符合题意的解.1 + x⑵•/ f(x) = log a x z7,x—1 1 +X ,•- f x) = logx+ 1 x—1 &_ x—1 x—1 —x+1 2log a ex+1 x —1 2log a e—1—x2①若a>1,则log a e>0当x€ (1 ,+s 时,1 —x2<0 f'x)<0, f(x)在(1, +s上单调递减,即(1,+ s是f(x)的单调递减区间;由奇函数的性质知,(一s,—1)是f(x)的单调递减区间.②若0<a<1,则log a e<0当x€ (1 ,+s 时,1 —x2<0, • f'x(0,• (1 ,+s是f(X)的单调递增区间;由奇函数的性质知,(一s,—1)是f(x)的单调递增区间.1 + x 2(3)令t —------ —1 + -- ,贝U t为x的减函数x—1 x—1•- x€ (1, a —2),2 2• t€ 1+ ■,+ s且a>3,要使f(x)的值域为(1,+ s)需log a 1+ —1,解得a—2+ 3.a—3 a —31 —a _17 . (2010 山东文)已知函数f(x)—lnx—ax+ ——1(a€ R).入(1)当a ——1时,求曲线y—f(x)在点(2, f(2))处的切线方程;⑵当a g时,讨论f(x)的单调性.2[解析](1)a ——1 时,f(x) —lnx+ x+- —1, x€ (0,+s).xx2+ x—2f—2—, x € (0,+ s)y x因此f' (—1,即曲线y—f(x)在点(2 , f(2))处的切线斜率为1.又f(2) —ln2 + 2,所以y—f(x)在(2, f(2))处的切线方程为y—(In2 + 2) —x—2,即x—y+ ln2 —0.WORD 格式.可编辑__ 1 — a ⑵因为 f(x)= lnx — ax + — - 1, 入1 a — 1 ax2 — x +1 — a所以 f ,x) = — a + -- =— — 2x € (0,+g). x x x令 g(x) = ax 2— x + 1 — a ,① 当 a = 0 时,g(x) = 1— x , x € (0, + g), 当 x € (0,1)时,g(x)>0 , f'x (O , f(x)单调递减; 当 x € (1 ,+g 时,g(x)<0,此时 f 'x)>0, f(x)单调递增; 1② 当 a 工0时 f'x)= a(x — 1)[x — ( — 1)],a(i )当a = 2■时,g(x)亘成立,f'x) WQ f(x)在(0,+ g 上单调递减;1 1(ii )当 0<a<2时,彳—1>1>0, x € (0,1)时,g(x)>0,此时 f'x)<0, f(x)单调递减;1x € (1 , -— 1)时,g(x)<0,此时 f 'x)>0, f(x)单调递增; a g(x)>0,此时 f 'x)<0, f(x)单调递减;③当 a<0 时,1— 1<0,ax € (0,1)时,g(x)>0,有 f'x (O , f(x)单调递减 x € (1,+g)时,g(x)<0,有 f 'x)>0, f(x)单调递增. 综上所述:当a W0时函数f(x)在(0,1)上单调递减,(1,+g 上单调递增; 1当a = $时,f(x)在(0 ,+g 上单调递减;11 1当Ovav :时,f(x)在(0,1)上单调递减,在(1, — 1)上单调递增,在(-—1 ,+g 上单调递减.2 a a 注:分类讨论时要做到不重不漏,层次清楚.1x € Q — 1 ,+ g)寸,。
函数的单调性与最值(习题及答案)

1. 下列说法:
①若 x1,x2∈I,当 x1<x2 时,f (x1)<f (x2),则 y=f (x)在 I 上是增
函数;
②函数 y=x2 在 R 上是增函数;
③函数 y 1 在定义域上是增函数; x
④ y 1 的单调区间是(∞,∪(0,+∞). x
其中正确的有( )
C.f (a2+a)< f (a)
D.f (a2+1)< f (a)
6. 函数 f (x) x2 2x 的单调增区间是( A. ( ,1] B.[1, ) C.R
) D.不存在
7. 设 f (x)是定义在区间(0,+∞)上的单调递减函数,若
f (x)> f (2-x),则 x 的取值范围是( )
11. 函数 f (x) x2 2x 3 的单调递增区间为______________.
12. 已知 f (x)是定义在(-1,1)上的减函数,且 f (2 a) f (a 3) 0 .则实数 a 的取值范围是__________.
13.
函数
f (x)
x x2
在区间[2,4]上的最大值为_________,最小
A.(,+∞) B.(∞, C.(,2)
D.(,1)
1
8.
函数
f
(
x)
1
1 x(1
x)
的最大值是(
)
A. 4 5
B. 5 4
C. 3 4
D. 4 3
9. 若函数 f (x)=x22axa21 在区间(∞,1)上是减函数,则实数 a 的取值范围是__________________.
高一数学函数的单调性与最值试题

高一数学函数的单调性与最值试题1.下列函数中,既是奇函数又是增函数的为A.B.C.D.【答案】D【解析】为非奇非偶函数,为偶函数,是奇函数,但在定义域内不是增函数。
【考点】奇函数与增(减)函数的定义。
2.设函数是定义在R上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式的的取值范围是.【答案】.【解析】∵是定义在上的偶函数,且在区间上单调递增,∴在上单调递减,故不等式等价于或,∴的取值范围是.【考点】1.偶函数的性质;2.对数的性质.3.已知函数f(x)满足f(x)=f(π-x),且当时,f(x)=x+sinx,则( )A.f(1)<f(2)<f(3)B.f(2)<f(3)<f(1)C.f(3)<f(2)<f(1)D.f(3)<f(1)<f(2)【答案】D【解析】由已知得函数关于对称,当时,是单调递增函数,当时函数是单调递减函数,比较1,2,3距离对称轴的远近得出,故选D.【考点】1.函数的对称性;2.函数的单调性.4.若是奇函数,且在内是增函数,又,则的解集是()A.;B.C.;D.【答案】D【解析】由题意知当时,函数,当时,函数,所以不等式的解为.故正确答案为D.【考点】1.函数的单调性、奇偶性;2.不等式的解5.对于定义在上的函数,有如下四个命题:①若,则函数是奇函数;②若则函数不是偶函数;③若则函数是上的增函数;④若则函数不是上的减函数.其中正确的命题有______________.(写出你认为正确的所有命题的序号).【答案】②④【解析】①例如满足,但函数不是奇函数;故①错误②若则函数不是偶函数;正确③例如,,但函数在R上不是增函数;故③错误④若,则函数不是R上的减函数,正确所以填②④【考点】函数奇偶性的判断;函数单调性的判断与证明.6.设函数。
(Ⅰ)若且对任意实数均有成立,求的表达式;(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围.【答案】(Ⅰ),(Ⅱ)或【解析】(Ⅰ)根据得出a,b关系,再在定义域上恒成立,可得a,b的值,从而得出表达式.(Ⅱ)由(Ⅰ)可推出表达式,又为单调函数,利用二次函数性质求得实数的取值范围.试题解析:(Ⅰ)恒成立,知从而 .(6分)(Ⅱ)由(1)可知,由于是单调函数,知 .(12分)【考点】二次函数求解析式,单调区间求参量.7.若函数,在上单调递减,则a的取值范围是 .【答案】【解析】因为函数,在上单调递减,令,则在区间上是单调递减函数,且恒成立,所以,解得.【考点】函数的单调性8.已知函数的定义域为,且为奇函数,当时,,那么当时,的递减区间是()A.B.C.D.【答案】B【解析】令,则由已知得的定义域为,且为奇函数,当时,,所以当时,有,此时其单调递减区间为,而对于函数来说,其单调递减区间为.【考点】1.函数的奇偶性;2.函数的单调性;3.函数图像的平移.9.设,则的大小关系是 ( )A.B.C.D.【答案】A【解析】因指数相同,可由幂函数在上为增函数知;因底数相同,可由指数函数在上为减函数知,再由不等式的传递性知故选A.【考点】初等函数单调性及应用,不等式基本性质.10.若函数在上是减函数,则实数的取值范围是 .【答案】【解析】因为函数开口向上,对称轴为,且函数在为减函数,所以,解得.故答案为.【考点】二次函数的单调性11.若那么下列各式中正确的是()A.B.C.D.【答案】C【解析】;结合函数的单调性可知,结合的单调性可知成立【考点】比较大小点评:题目中比较大小借助于函数单调性将要比较的函数值关系转化为自变量关系12.已知函数在区间内恒有,则函数的单调递减区间是 .【答案】【解析】根据题意,由于函数在区间内恒有,即可知,因此可知外层的对数函数得到递增,那么内层是二次函数,定义域为,因此可知内层的减区间即为所求,开口向上,对称轴x=1,可知就是减区间,故答案为【考点】对数函数单调性点评:解决的关键是对于对数函数的值域的理解和运用,以及复合函数单调性的判定,属于基础题。
高三数学函数的单调性与最值试题答案及解析

高三数学函数的单调性与最值试题答案及解析1.已知函数对一切、都有:,并且当时,.(1)判定并证明函数在上的单调性;(2)若,求不等式的解集.【答案】(1)f(x)在上是增函数;(2)【解析】(1)将m、n赋值,并注意x>0时f(x)>2条件的使用;(2)根据(1)的结论,首先找出f(1)=3,然后利用单调性去掉抽象函数,解二次不等式即可.试题解析:(1)设、且,则∵当时,∴即而函数对一切、都有:∴即∴函数在上是增函数(2)由题:∵∴∵∴即∴不等式的解集是【考点】抽象函数,函数的单调性,一元二次不等式的解法2.已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.【答案】(-2,)【解析】∵函数f(x)=x3+3x是奇函数,且在定义域f(x)=x3+3x上单调递增,∴由f(mx-2)+f(x)<0得f(mx-2)<-f(x)=f(-x),即mx-2<-x,令g(m)=xm+(x-2),由题意知g(2)<0,g(-2)<0,令g(m)=xm+(x-2),g(2)<0,g(-2)<0,∴,解得-2<x<.3. [2014·大庆质检]下列函数中,满足“对任意的x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是()A.f(x)=B.f(x)=(x-1)2C.f(x)=e x D.f(x)=ln(x+1)【答案】A【解析】由题意知,f(x)在(0,+∞)上是减函数,故选A.4. [2013·吉林调研]已知定义在R上的函数f(x)满足f(x)+f(-x)=0,且在(-∞,0)上单调递增,如果x1+x2<0且x1x2<0,则f(x1)+f(x2)的值()A.可能为0B.恒大于0 C.恒小于0D.可正可负【答案】C【解析】由x1x2<0不妨设x1<0,x2>0.∵x1+x2<0,∴x1<-x2<0.由f(x)+f(-x)=0知f(x)为奇函数.又由f(x)在(-∞,0)上单调递增得,f(x1)<f(-x2)=-f(x2),所以f(x 1)+f(x 2)<0.故选C.5. (3分)(2011•重庆)下列区间中,函数f (x )=|lg (2﹣x )|在其上为增函数的是( ) A .(﹣∞,1]B .C .D .(1,2)【答案】D【解析】根据零点分段法,我们易将函数f (x )=|lg (2﹣x )|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论. 解:∵f (x )=|lg (2﹣x )|, ∴f (x )=根据复合函数的单调性我们易得 在区间(﹣∞,1]上单调递减 在区间(1,2)上单调递增 故选D点评:本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键.6. 定义在R 上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )A .y =x 2+1 B .y =|x|+1C .y =D .y =【答案】C【解析】利用偶函数的对称性知f(x)在(-2,0)上为减函数,又y =,在(-2,0)上为增函数,故选C. 7. 设,则( )A .﹣2<x <﹣1B .﹣3<x <﹣2C .﹣1<x <0D .0<x <1【答案】A【解析】因为y=3x 在R 上单调递增,又,故﹣2<x <﹣1故选A8. 若对任意x ∈R ,不等式|x|≥ax 恒成立,则实数a 的取值范围是( ) A .a <﹣1 B .|a|≤1 C .|a|<1 D .a≥1【答案】B【解析】当x>0时,x≥ax恒成立,即a≤1当x=0时,0≥a×0恒成立,即a∈R当x<0时,﹣x≥ax恒成立,即a≥﹣1,若对任意x∈R,不等式|x|≥ax恒成立,所以﹣1≤a≤1,故选B.9.函数y=x2+b x+c(x∈[0,+∞))是单调函数的充要条件是()A.b≥0B.b≤0C.b>0D.b<0【答案】A【解析】∵函数y=x2+bx+c在[0,+∞)上为单调函数∴x=﹣≤0,即b≥0.故选A10.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是()A.B.C.D.【答案】A【解析】由即.所以函数在上递增.所以即成立.故选A.【考点】1.函数的导数.2.函数的单调性.3.函数的构造的思想.11.已知函数在点处的切线方程为.(1)求、的值;(2)当时,恒成立,求实数的取值范围;(3)证明:当,且时,.【答案】(1),;(2);(3)详见解析.【解析】(1)利用已知条件得到两个条件:一是切线的斜率等于函数在处的导数值,二是切点在切线上也在函数的图象上,通过切点在切线上求出的值,然后再通过和的值列有关、的二元一次方程组,求出、的值;(2)解法1是利用参数分离法将不等式在区间上恒成立问题转化为不等式在区间上恒成立,并构造函数,从而转化为,并利用导数求出函数的最小值,从而求出的取值范围;解法2是构造新函数,将不等式在区间上恒成立问题转化为不等式在区间上恒成立问题,等价于利用导数研究函数的单调性,对的取值进行分类讨论,通过在不同取值条件下确定函数的单调性求出,围绕列不等式求解,从而求出的取值范围;(3)在(2)的条件下得到,在不等式两边为正数的条件下两边取倒数得到,然后分别令、、、、,利用累加法以及同向不等式的相加性来证明问题中涉及的不等式.试题解析:(1),.直线的斜率为,且过点,,即解得,;(2)解法1:由(1)得.当时,恒成立,即,等价于.令,则.令,则.当时,,函数在上单调递增,故.从而,当时,,即函数在上单调递增,故.因此,当时,恒成立,则.所求的取值范围是;解法2:由(1)得.当时,恒成立,即恒成立.令,则.方程(*)的判别式.(ⅰ)当,即时,则时,,得,故函数在上单调递减.由于,则当时,,即,与题设矛盾;(ⅱ)当,即时,则时,.故函数在上单调递减,则,符合题意;(ⅲ)当,即时,方程(*)的两根为,,则时,,时,.故函数在上单调递增,在上单调递减,从而,函数在上的最大值为.而,由(ⅱ)知,当时,,得,从而.故当时,,符合题意.综上所述,的取值范围是.(3)由(2)得,当时,,可化为,又,从而,.把、、、、分别代入上面不等式,并相加得,.【考点】1.导数的几何意义;2.不等式恒成立;3.参数分离法;4.分类讨论;5.数列不等式的证明12.函数的单调递增区间是.【答案】【解析】当时,,增区间为,当时,,增区间为.填.【考点】分段函数的单调区间.13.已知函数f(x)=ax2-|x|+2a-1(a为实常数).(1)若a=1,作函数f(x)的图象;(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;(3)设h(x)=,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.【答案】(1)(2)g(a)=(3)【解析】(1)当a=1时,f(x)=x2-|x|+1=作图如下.(2)当x∈[1,2]时,f(x)=ax2-x+2a-1.若a=0,则f(x)=-x-1在区间[1,2]上是减函数,g(a)=f(2)=-3.若a≠0,则f(x)=a+2a--1,f(x)图象的对称轴是直线x=.当a<0时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.当0<<1,即a>时,f(x)在区间[1,2]上是增函数,g(a)=f(1)=3a-2. 当1≤≤2,即≤a≤时,g(a)=f=2a--1.当>2,即0<a<时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3. 综上可得g(a)=(3)当x∈[1,2]时,h(x)=ax+-1,在区间[1,2]上任取x1、x2,且x1<x2,则h(x2)-h(x1)==(x2-x1)=(x2-x1).因为h(x)在区间[1,2]上是增函数,所以h(x2)-h(x1)>0.因为x2-x1>0,x1x2>0,所以ax1x2-(2a-1)>0,即ax1x2>2a-1.当a=0时,上面的不等式变为0>-1,即a=0时结论成立.当a>0时,x1x2>,由1<x1x2<4,得≤1,解得0<a≤1.当a<0时,x1x2<,由1<x1x2<4,得≥4,解得-≤a<0.所以实数a的取值范围为14.已知a∈R且a≠1,求函数f(x)=在[1,4]上的最值.【答案】,【解析】由f(x)==a+.若1-a>0,即a<1时,f(x)在[1,4]上为减函数,∴fmax (x)=f(1)=,fmin(x)=f(4)=;若1-a<0,即a>1时,f(x)在[1,4]上为增函数,∴fmax (x)=f(4)=,fmin(x)=f(1)=.15.已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x>0,都有f(f(x)-lnx)=1+e,则f(1)=________.【答案】e【解析】f(x)-lnx必为常数函数,否则存在两个不同数,其对应值均为1+e,与单调函数矛盾.所以可设f(x)-lnx=c,则f(x)=lnx+c.将c代入,得f(c)=1+e,即lnc+c=1+e.∵y=lnx+x是单调增函数,当c=e时,lnc+c=1+e成立,∴f(x)=lnx+e.则f(1)=e16.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围是________.【答案】【解析】f′(x)=3x2+1>0,∴f(x)在R上为增函数.又f(x)为奇函数,由f(mx-2)+f(x)<0知,f(mx-2)<f(-x).∴mx-2<-x,即mx+x-2<0,令g(m)=mx+x-2,由m∈[-2,2]知g(m)<0恒成立,可得,∴-2<x< .17.已知定义在R上的函数y=f(x)满足条件f=-f(x),且函数y=f为奇函数,给出以下四个命题:(1)函数f(x)是周期函数;(2)函数f(x)的图象关于点对称;(3)函数f(x)为R上的偶函数;(4)函数f(x)为R上的单调函数.其中真命题的序号为________.(写出所有真命题的序号)【答案】(1)(2)(3)【解析】由f(x)=f(x+3)⇒f(x)为周期函数,且T=3,(1)为真命题;又y=f关于(0,0)对称,y=f向左平移个单位得y=f(x)的图象,则y=f(x)的图象关于点对称,(2)为真命题;又y=f为奇函数,所以f=-f,f=-f=-f(-x),∴f=-f(-x),f(x)=f(x-3)=-f=f(-x),∴f(x)为偶函数,不可能为R上的单调函数,(3)为真命题;(4)为假命题,故真命题为(1)(2)(3).18.能够把圆的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是( )A.B.C.D.【答案】A【解析】由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.A中,,所以的图象不过原点,故不为“和谐函数”; B中,,且,所以为奇函数,所以为“和谐函数”; C中,,且,为奇函数,故为“和谐函数”;D中,,且为奇函数,故为“和谐函数”;故选A.【考点】奇偶性与单调性的综合.19.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.20.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.21.已知函数,设,若,则的取值范围是 ___ .【答案】[,2)【解析】函数的图像如图所示.因为,若要使成立,有图像可得.且.由于b的变化是递增的,的变化也是递增的所以.即填[,2).本小题主要考查分段函数的问题.【考点】1.分段函数的知识.2.函数的单调性.22.已知是上的奇函数,对都有成立,若,则等于A.B.C.D.【答案】C.【解析】令x=-2,则f(-2+4)=f(-2)+f(2),又因为f(x)在R上是奇函数.,所以f(-2)+f(2)=0,即f(2)=0.所以得到f(x+4)=f(x).所以函数是以4为周期的周期函数.所以f(2014)=f(2)=0.本题的关键是把奇函数与所给的式子结合起来得到周期为四的结果.注这个条件多余.【考点】1.奇函数.2.周期函数.3.递推的思想.23.已知函数⑴判断函数的单调性,并证明;⑵求函数的最大值和最小值.【答案】(1)增函数,证明见解析;(2),【解析】(1)利用函数单调的定义证明,可得函数在[3,5]上为单调增函数;(2)根据函数的单调递增,可得函数的最值为,.试题解析:⑴设且,所以 4分即,在[3,5]上为增函数. 6分⑵在[3,5]上为增函数,则, 10分【考点】1.函数单调的判断;2.利用函数单调性求最值24.函数有最小值,则实数的取值范围是()A.B.C.D.【答案】B.【解析】若在定义域内有最小值,则满足,且恒成立,所以,故选B.【考点】1.复合函数的单调性与最值.25.关于函数,给出下列四个命题:①,时,只有一个实数根;②时,是奇函数;③的图象关于点,对称;④函数至多有两个零点.其中正确的命题序号为______________.【答案】①②③【解析】①,时,,显然只有一个实数根;②时,显然,,所以是奇函数;③设是函数的图象上的一点,点关于点,对称点,因为,所以点也在函数的图象上,故的图象关于点,对称;④,取,可得有三个零点.【考点】函数的基本性质.26.如果函数上单调递减,则实数满足的条件是()A.B.C.D.【答案】A【解析】函数在区间上单调递减,所以上,,即,故选A.【考点】导数、函数的单调性与最值27.给出下列四个命题:①函数有最小值是;②函数的图象关于点对称;③若“且”为假命题,则、为假命题;④已知定义在上的可导函数满足:对,都有成立,若当时,,则当时,.其中正确命题的序号是 .【答案】①②④.【解析】对于命题①,,,当且仅当,即当时,上式取等号,即函数有最小值,故命题①正确;对于命题②,由于,故函数的图象关于点对称,故命题②正确;对于命题③,若“且”为假命题,则、中至少有一个是假命题,故命题③错误;对于命题④,由于函数是奇函数,当时,,即函数在区间上单调递增,由奇函数的性质知,函数在上也是单调递增的,即当时,仍有,故命题④正确,综上所述,正确命题的序号是①②④.【考点】1.基本不等式;2.三角函数的对称性;3.复合命题;4.函数的奇偶性与单调性28.已知函数是上的单调递增函数,若是其图像上的两点,则不等式的解集是.【答案】.【解析】由已知得.【考点】函数的单调性质.29.已知定义在R上的函数满足,,且在区间上是减函数.若方程在区间上有两个不同的根,则这两根之和为()A.±8B.±4C.±6D.±2【答案】B【解析】由知,为奇函数,所以.由得,所以的周期为8.又由及得:,所以的图象关于直线对称.又在区间上是减函数,由此可得在一个周期上的大致图象:向左右扩展得:由于方程在区间上有两个不同的根,所以这两个根必为-6、2或-2、6,所以这两个根之和为-4或4.选B.【考点】1、抽象函数的奇偶性和周期性单调性及图象;2、方程的根.30.已知函数,下列结论中错误的是()A.R,B.函数的图像是中心对称图形C.若是的极小值点,则在区间上单调递减D.若是的极值点,则【答案】C【解析】由于,,由于是函数的极小值点,且函数的图象开口向上,故函数存在极大值点,即存在使得,从而函数在上单调递增,在上单调递减,即函数在不是单调递减的.【考点】函数的单调性与极值、函数的对称性31.已知函数,,其中R.(1)讨论的单调性;(2)若在其定义域内为增函数,求正实数的取值范围;(3)设函数,当时,若,,总有成立,求实数的取值范围.【答案】(1)在上单调递减,在上单调递增;(2);(3).【解析】(1)先对求导,由于的正负与参数有关,故要对分类讨论来研究单调性; (2)先由在其定义域内为增函数转化为在不等式中求参数范围的问题,利用分离参数法和基本不等式的知识求出参数的取值范围;(3)先通过导数研究在的最值,然后根据命题“若,,总有成立”分析得到在上的最大值不小于在上的最大值,从而列出不等式组求出参数的取值范围.试题解析:解:(1)的定义域为,且, 1分①当时,,在上单调递增; 2分②当时,由,得;由,得;故在上单调递减,在上单调递增. 4分(2),的定义域为5分因为在其定义域内为增函数,所以,而,当且仅当时取等号,所以 8分(3)当时,,由得或当时,;当时,.所以在上, 10分而“,,总有成立”等价于“在上的最大值不小于在上的最大值”而在上的最大值为所以有 12分所以实数的取值范围是 14分【考点】1、利用导数研究单调性和最值,2、参数的取值范围问题,3、基本不等式.32.对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.(Ⅰ)当函数f(x)=m lnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,试比较g(a)与g(1)的大小;求证:对于任意大于1的实数x1,x2,x3,,xn,均有g(ln(x1+x2++xn))>g(lnx1)+g(lnx2)++g(lnxn).【答案】(Ⅰ);(Ⅱ)①,②先征得,取不同的值得到的式子累加即可得证.【解析】(Ⅰ)先求得,再由>得,解得;(Ⅱ)①构造函数,证明为上的增函数,再讨论就可得到,②先证得,即得,整理得,同理可得类似的的等式,累加即可得证.试题解析:(Ⅰ)由,可得,因为函数是函数,所以,即,因为,所以,即的取值范围为. (3分)(Ⅱ)①构造函数,则,可得为上的增函数,当时,,即,得;当时,,即,得;当时,,即,得. (6分)②因为,所以,由①可知,所以,整理得,同理可得,,.把上面个不等式同向累加可得[. (12分)【考点】1.恒成立问题;2.导数在求函数单调性、最值的应用;3.不等式.33.已知函数的定义域是,是的导函数,且在内恒成立.求函数的单调区间;若,求的取值范围;(3) 设是的零点,,求证:.【答案】(1);(2) ;(3)详见解析.【解析】(1)利用求导的思路求解函数的单调区间,从分借助;(2)首先对求导,然后借助已知的不等式恒成立进行转化为在内恒成立,进而采用构造函数的技巧,,通过求导研究其最大值,从而得到的取值范围;(3)借助第一问结论,得到,然后通过变形和构造的思路去证明不等式成立.试题解析:(1),∵在内恒成立∴在内恒成立,∴的单调区间为 4分(2),∵在内恒成立∴在内恒成立,即在内恒成立,设,,,,,故函数在内单调递增,在内单调递减,∴,∴ 8分(3)∵是的零点,∴由(1),在内单调递增,∴当时,,即,∴时,∵,∴,且即∴,∴ 14分【考点】1.函数的单调性;(2)导数的应用;(3)不等式的证明.34.已知函数的定义域是,若对于任意的正数,函数都是其定义域上的减函数,则函数的图象可能是A. B. C. D.【答案】B【解析】直接利用g(x)是减函数⇒导数小于0⇒f(x)的导数是减函数⇒f(x)是凸函数即可得到答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性与最值
1.下列函数中,在区间(-1,1)为减函数的是( )
A .x
y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( )
A .)2,(--∞
B .)1,(-∞
C .),1(+∞
D .),4(+∞
3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( )
A .-3
B .-2
C .-1
D .1
4函数x
x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞
5设函数)1()(,0,10,00,1)(2-=⎪⎩
⎪⎨⎧<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( )
A .]0,(-∞
B .)1,0[
C .),1[+∞
D .]0,1[-
6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[--
B .]4,6[--
C .]22,3[--
D .]3,4[-- 7.函数],(,1
2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[-
8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x
x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数
9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是
10.已知函数f (x)的值域为]9
4,83[,则函数)(21)()(x f x f x g -+=的值域为
1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( )
A .]1,0(
B .]2,1[
C .+∞,1[)
D .+∞,2[)
2.已知函数⎪⎩⎪⎨⎧>-≤--=1
,1log 1,41)(x x x x ax x f a 是R 上的单调函数,则实数a 的取值范围是( ) A .)21,41[ B .]21,41[ C .]21,0( D .)1,2
1[
3.已知函数f (x)是定义在),0(+∞上的增函数,若)3()(2+>-a f a a f ,则实数a 的取值范围为
4.已知减函数f (x)的定义域是R ,m,n 都是实数,如果不等式)()()()(n f m f n f m f --->-成立,那么下列不等式成立的是( )
A .0<-n m
B .0>-n m
C .0<+n m
D .0>+n m 5.设函数⎩⎨⎧<≥+=1
,1,)(2x x x x m x f 的图像过点(1,1),函数g (x)是二次函数,若函数f (g (x))
的值域是),0[+∞,则函数g (x)的值域是
6.已知函数f (x)是R 上的增函数,A (0,-3)B (3,1)是其图像上的两点,那么不等式1)1(3<+<-x f 的的解集的补集是( )
A .)2,1(-
B .)4,1(
C .),4[)1,(+∞⋃--∞
D .),2[]1,(+∞⋃--∞
7.已知函数)0,0(11)(>>-=
x a x
a x f (1)求证:f (x)在),0(+∞上是增函数 (2)若f (x)在]2,21[上的值域是]2,21[,求a 的值
8.已知函数)2lg()(-+=x
a x x f ,期中a 是大于0的常数 (1)求函数f (x)的定义域
(2)当)4,1(∈a 时,求函数f (x)在)
,∞+2[上的最小值 (3)若对任意),2[+∞∈x 恒有0)(>x f ,试确定a 的取值范围。