高等数学(一)

合集下载

高等数学一(1)完整答案

高等数学一(1)完整答案
原式=
(6)令 ,则
原式=
(7)令 ,则
原式=
(8)令 ,则
原式=
(9)原式=
(10)原式=
(11)原式=
(12)原式=
(13)原式=
(14)令 ,则 ,
原式=
(15)令 ,则
原式=
(16)原式=
(17)原式=
(18)原式=
2、(1)原式=
(2)原式=0(因为 在 上为奇函数)
(3)原式=0(因为 在 上为奇函数)
原式= 发散
,而事实上 矛盾
方程 只有正根。
5.解: 为一元三次方程, 为一元二次方程,
故只有两个实根。

由罗尔定理知,两实根区间分别为 。
习题3-2
1.(1)原式
(2)原式
(3)原式
(4)原式
(5)原式
(6)原式
(7)原式
(8)原式
(9)原式
(10)原式
(11)原式
(12)原式
2.解:
3.解:
若用洛必达法则,则无限循环,即
(4)原式=
3、(1)证明:令 ,则
所以
(2)证明:令 ,则 ,
所以
(3)证明:令 ,则 ,
所以
6、(1)原式=
(4)原式=
(6)原式=
(8)令 ,则原式=
(9)原式=
(10)原式=
习题5—4
1、(1)
(3) ,发散
2、(1) 为函数 的无穷间断点,所以原式= 发散
(3) 为函数 的无穷间断点,所以
故 ,
,得唯一驻点: 。
当 , 时,圆柱体积最大。
15.解:设生产 台,利润最大。
则目标函数为

高数(一)第一章练习题

高数(一)第一章练习题

高等数学(一)(第一章练习题)一、 单项选择题1.设f (1-cos x )=sin 2x, 则f (x )=( A )A.x 2+2xB.x 2-2xC.-x 2+2xD.-x 2-2x2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D )A.2x 2B.x 2xC.x 2xD.22x3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)4.函数2x x y -=的定义域是( D )A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]5.设函数=-=)x 2(f 1x x )x 1(f ,则( A ) A.x 211- B.x 12- C.x 2)1x (2- D.x)1x (2- 6.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( )A.x+3B.x-3C.2xD.-2x7.设f(x+1)=x 2-3x+2,则f(x)=( B )A.x 2-6x+5B.x 2-5x+6C.x 2-5x+2D.x 2-x 8.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )A .[a,3a]B .[a,2a]C .[-a,4a]D .[0,2a]9.函数y=ln(22x 1x 1--+)的定义域是( C )A .|x|≤1B .|x|<1C .0<|x|≤1D .0<|x|<110.函数y=1-cosx 的值域是( C )A.[-1,1]B.[0,1]C.[0,2]D.(-∞,+∞) 11.设函数f(x-1)=x 2-x,则f(x)=( B )A .x(x-1)B .x(x+1)C .(x-1)2-(x-1)D .(x+1)(x-2)12.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D )A.[0,2]B.[0,16]C.[-16,16]D.[-2,2]13.设f(t)=t 2+1,则f(t 2+1)=( D )A.t 2+1B.t 4+2C.t 4+t 2+1D. t 4+2t 2+2 14.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x15.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞) 16.函数f(x)=arcsin(2x-1)的定义域是( D )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]17.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B ) A.(a a 2,1) B.(aa 1,2) C.(a ,2a) D.(a a ,2] 18.函数f (x )=2211⎪⎭⎫ ⎝⎛--x 的定义域为( B ) A .[]1,1- B .[]3,1- C .(-1,1)D .(-1,3) 19.函数f (x )=21sin 2x x++是( C )A.奇函数B.偶函数C.有界函数D.周期函数 20.函数f (x )=ln x - ln(x -1)的定义域是( C )A .(-1,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) 二、填空题1.已知f (x +1)=x 2,则f (x )=________.2.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________.3.函数y=x ln ln 的定义域是 .4.若f(x+1)=x+cosx 则f(1)=__________.5.函数y=1+ln(x+2)的反函数是______.6..函数y=arcsin(x-3)的定义域为___________。

高等数学 (一)

高等数学 (一)

高等数学= = = = = = = = = = = = 骨头= = = = = = = = = = = = 对象:函数方法:极限思想:以不变代替变消除误差取极限内容:微积分(1)一元函数微积分||空无穷级数|间他们的应用|解|析常微分方程|(2)多元函数微积分(一)一元函数微积分:(1)微分学:函数、极限、连续;导数、微分----中值定理(4个;证明题)----(导数与微分的应用)(2)积分学:不定积分;定积分;定积分的应用↓维数↓增加↓(二)多元函数微积分(1)微分学:函数、极限、连续;偏导、全微分;应用(极值)(2)积分学:****;重积分(二重积分;3重积分、线积分和面积分<数一>);应用注意:一元函数微积分与多元函数微积分之间的联系和差别肉一、函数1.概念X↔I→→f→→y↔Rf(x)注意:(1)定义域(3点:0不能做除数、负数不能开平方、0和负数不能有对数)(2)函数的表达式与自变量的表示符号无关:y=f(x)与y=f(t)相同(函数关系不变)(3)由实际问题所建立的函数(极限的定义域;导函数的定义域;幂级数的和函数的表达式与定义区间)需要自己建立函数关系确定函数的定义域,根据实际问题<后面加>2.函数的特性(1)奇偶性(从定义来理解和证明应用)f(-x)=f(x),偶图形关于y轴对称[(y,-x )>>(y,x);y1=y2时候x1+x2=0且x1+x2=0时候y1=y2]f(-x)=-f(x),奇图形关于原点对称 [(y,-x )>>(-y,x);y1+y2=0时x1+x2=0且x1+x2=0时y1+y2=0] 注意:①奇偶函数运算:两个偶函数的和、差、积为偶函数奇函数与偶函数的积为奇函数两个奇函数的积为偶函数任何一个函数都可以写成一个奇函数和偶函数的和f(x)=1/2[f(x)+f(-x)]+1/2[f(x)-f(-x)]奇偶性在求导积分中的应用(后讲)②周期性f(x+T)=f(x),f(x)以T为周期注意:周期性在求导、函数特性、积分中的应用(画图中的应用)周期性与奇偶性都只能通过定义证明③增减性若x1,x2↔I,x1<x2有f(x1)<f(x2)或者f(x1)>f(x2)则f(x)在I区间内严格单调增或者减注意:(1)在证明不等式的时候常遇到<=或>=,称为不减或者不增,考点也属于增减性(2)函数的增减性与讨论的区间有关(题型:确定函数的增减区间;例如y=x^2)增减区间的交换点,极值(导数值为零)(3)增减性由导数的符号判定(微分学的应用之一)(4)增减性是证明不等式的一个重要工具(后讲)④有界性假定y=f(x),x↔I,存在M>0,对所有|f(x)|<=M成立则称f(x)有界图形-有界:有上下界注意:(1)有上界(单调减 , f(x)<=M有下界(单调增 , f(x)>=-M(2)有界性与讨论的区间有关(3)有界的讨论与极值有关(后讲)3.函数的分类(1)反函数y=f(x)→x=f^-1(y)条件:单调注意:y=f(x),x=f^-1(y) 代表同一条曲线(图形相同)y=f(x)与y=f ^-1(x)关于一三象限对称(2)基本初等函数①幂函数②指数函数(双曲函数)③对数函数④三角函数⑤反三角函数要求:对这五类基本函数的定义域、值域、特性要非常清楚(1-2,28Min-32Min)(3)复合函数y=f(u),u=w(x)y=f[w(x)]u的值域↔y的定义域注意:①并非所有函数都可以复合②考研:一拆多(4)初等函数经过有限次的四则运算或复合得基本初等函数(5)参数方程{X=x(t)Y=y(t)}得到y=y(x)(6)隐函数F(x,y)=0(易于理解函数,或者难用x表现y或者y表示x<求解函数时使用>)实际上是复合函数(7)分段函数①y=f(x)={f(x),x<=0-f(x),x>0} ②y=|f(x)|③ y=max[f(x),g(x)] x ↔(a,b)真正讨论时需要转化为①类讨论(1-2,41Min-43Min ) ④y=[f(x)]取整函数(1-2,44Min-45Min )二、极限 1.定义:数列的极限(ε-N 语言)0X Xon lim ()()U Xo ()lim ()()123lim(....)1/2*(1)/^21/2^2^2^2^2lim ()lim ()11sin lim ()()x x f x A f x f x f x f xo n n n n n n n n f x g x x xf xg x →→→∞=∃∞++++=+=⇒若存在,则()使其内,有界与无关函数的极限(ε-δ语言)lim 00,|f(X)-A|<X XoXn A εδδε→=⇔∀>∃>使0<|X-Xo|<时注意:ε是任给的,N 、δ是存在的但不唯一 δ=δ(a ),N= N (ε)lim 00,n>N |Xn-A|>=x Xn A N εε→∞≠⇔∃>∀>使时(1)极限的结构极限{变化过程,对自变量来讲(自变量的变化过程,δ、N ); 变化趋势,对函数而言,ε}(1-3,13Min-19Min ) (2)单边极限(分段函数;函数极限) 左极限0(0)lim ()X Xof f x x -→-=右极限0(0)lim ()X Xof f x x+→+=000lim ()(0)(0)X X f x A f f A x x →=⇔-=+=lim ()()lim ()()lim ()()()()()X X X f x f f x f f x f f A f f A→-∞→+∞→∞=-∞=+∞=∞∞=⇔+∞=-∞=2.极限的性质(1)唯一性(2)局部保号性(极限大于零则函数大于零<局部内>;1-3,30Min-35Min ) 注意:0X Xo()()0(0),lim ()A>=0f x f x f x A x x →><=若在=及其附近有定义,且存在,则(3)局部有界性(有极限的函数必有界<局部内>)lim ()U Xo ()x x f x A f x →=∃若存在,则()使其内,有界注意:上述性质对x →∞也成立,U (Xo )→|X|充分大3.极限的判别准则(1)单调有界数列必有极限(1-4,8-10MIN ) 注意:单调增有上界 ⇒ 极限存在 单调减油下界 ⇒ 极限存在数列的极限与前有限项无关 X Xolim ()()f x f xo →与无关4.极限的四则运算和差积商的极限与极限的和差积商相等 注意:(1)参加运算的极限只有有限次,且每一项的极限都存在n 123lim(....)1/2*(1)/^21/2^2^2^2^2n n n n n n n n →∞++++=+= (2)极限的和差①lim ()f x 存在,lim ()g x 不存在⇒lim(()())f x g x ±不存在 ②lim ()f x 不存在,lim ()g x 不存在⇒lim(()())f x g x ±有可能存在 ③lim ()f x 存在,lim(()())f x g x ±也存在⇒lim ()g x 存在注意:上述三条在反常积分、无穷级数中的应用 (2)极限的乘积若lim ()f x 存在,lim ()g x 不存在(其中一个极限为0)或lim ()f x 不存在,lim ()g x 也不存在( 101010101…与010*******…) 但lim ()()f x g x 都有可能存在5.无穷大,无穷小lim ()f x =0 ,()f x 无穷小 lim ()g x =∞,()g x 无穷大注意:① 无穷大于无穷小与过程有关② 同一过程下,无穷大与无穷互为倒数,0除外③ 无穷大属于极限不存在的情况下(也就是说极限的四则运算不适用于无穷大)④ 无穷大一定是无界的,无界不一定是无穷大(如y=11sin x x)(1-4,31-36Min ) 6.无穷小的比较不同的函数趋向于0的速度不一样 (1)假设lim α(x )=0;lim β(x )=0 若lim α(x )/ β(x )=∂∂≠0的常数,则α(x )与β(x )同介 ∂=1,则α(x )与β(x )等价表示为则α(x )~β(x ) (2)反身性;传递性① α(x )~α(x )② α(x )~β(x )⇔β(x )~α(x )③ α(x )~β(x ),β(x )~λ(x )⇔α(x )~λ(x ) (3)若limf (x )/g (x )=a a=0,f (x )比g (x )高阶 表示为f (x )=0(g (x ))(4)∂=∞,f (x )比g (x )低阶注意:①若lim f (x )/ g (x )=a ≠0 则称f (x )是 g (x )的K 阶无穷小 ②limf (x )=A ⇔f (x )=A+α 其中lim α(x )=0③常利用无穷小的等价函数求极限7.两个重要的极限(1)0sin lim 1x x x →=(通过图形证明)002(sin )^21cos 12lim lim .1/2^24()^22x x x x x x →→-==2222111cos 112.lim cos 12000n lim(lim lim ()()lim ()lim ()()lim 0y lim lim (0)!lim n cos )(1cos 1)x x x x x x x x x x nn n n x xx f x f f x Xo Xo Xo f x f XnYn a n x x x x a y αβλ→----→→→→→→∞→∞→∞→∞∂℘∈∃∀====⇔====>+- (1)f(Xo)有定义(2)存在(3)求222111( (12)n n n +++++推广型-(第一种重要极限的求极限法:配分母): lim (*)=0则lim[sin (*)/(*)]=1如002(sin )^21cos 12lim lim .1/2^24()^22x x x x x x →→-==(2-1,18-19Min ) 注意:x →0时,sinx ~x 1-cox ~1/2x^2 tanx ~x (2)10limlim 1(1)(1)xxx x x x→→∞==++推广型-(第二种重要极限的求极限法:拆底数-配指数):lim (*)=0lim (1+*)^1/*=0 例:2222111cos 112.lim cos 120lim(lim cos )(1cos 1)x x x x x x x x x x x →----→→===+- (2-1,24-25Min)极限的计算方法:四则运算,等价无穷小代换,求极限的两个方法三、连续1.定义 等价定义定义1:设f (x )在Xo 及其附近有定义△X →y 的增量△y=f (Xo+△X )- f (Xo )若00lim ,f x x x x y o ∆→∆=则称()在=点连续定义2:0lim ()(),()x x x x f x f f x x →=若则称在=点连续(极限值等于函数值)注意:①0lim ()(),()x x x f x f f x Xox -→=若则称在=点左连续若f (Xo+0)=f (Xo )0()x x f x 则称在=点右连续② 若f (x )在(a ,b )内点点都连续,则称f (x )在(a ,b )内连续③ 若f (x )在(a ,b )内连续,在x=a 点右连续,在x=b 左连续,则称f (x )在[a ,b]上连续2.连续函数的运算(连续是由极限定义的,因此极限的运算法则可以用在连续上)(2-1,38Min )注意:基本初等函数在定义域内连续 初等函数在定义区间内连续例:y=arcsin (x^2+1)在x=0点不连续但有定义,因为x=0点附件没有定义 3.间断点00lim ()()lim ()lim ()()x x x f x f f x f x f Xo Xo Xox x →→→=⇔=(1)f(Xo)有定义(2)存在(3)存在定义:若f (x )在Xo 点,上述三条至少有一条不成立,则称x=Xo 为f (x )的间断点 注意:间断点的分类 (1)若f (Xo-0),f (Xo+0)都存在则称Xo 为第一类间断点 特例:f (Xo-0)=f (Xo+0)则称Xo 为可去间断点 f (Xo-0)≠f (Xo+0)则称Xo 为跳跃间断点 例1:y=f (x )={sinx/x,x ≠0;2,x=0} 则x=0为可去间断点(若x=0时y=1,则函数连续) 例2:y=f (x )={x+1,x<0;x-1,x>0}(x=0处无定义,函数不连续)则x=0为跳跃间断点(2)若f (Xo-0),f (Xo+0)至少有一类不存在则称Xo 为第二类间断点 例1:y=1/x 在x=0处为第二类间断点(无穷间断点)例2:y=sin (1/x )在x=0点为第二类间断点(震荡型,图形) 注意:无穷间断点与求渐近线;反常积分中的应用例:y =1个,x=-1)(2-2,9-11Min )4.闭区间上连续函数的性质设y=f (x )在[a,b]上连续,则(1)y=f (x )在[a,b]上必有最大值与最小值,即∃X1,X2∈ [a,b],∀x ∈ [a,b]有 f (x )<=f (X2)(区间上的最大值)f (x )>=f (X1)(去见上的最小值) 最大值最小值是唯一一个数,但是取得最大值最小值的点可以不止一个;最大值与最小值可以是同一个值,此时函数为常数 (2)介值定理f (x )必取得最大值和最小值之间的一切值 注意:①闭区间上的连续函数一定是有界的②f (x )在[a ,b]上连续,f (a )f (b )<0,则至少∃℘∈(a ,b )使得f (℘)=0 例1:设Xn ,Yn 满足lim 0x XnYn →∞=则成立的是A 若Xn 发散,则Yn 必发散 Xn (010203…) Yn(000000…)B 若Xn 无界,则Yn 必有界 Xn (010203…) Yn(102030…)C 若Xn 有界,则Yn 必为无穷小 Yn (010203…) Xn (000000…)D 若1/ Xn 无穷小,则Yn 必为无穷小乘积的极限等于极限的乘积(2-2,31-34Min ) 例2:证明:limlim (0)!nn n n a n a y→∞→∞=>存在(2-2,36-41Min )证明极限存在:单调有界(有递推关系的首先想到),加别定理(放大一下缩小一下,但是放大缩小后的极限要相同)例3:222n 111lim n(...)12nnnn→∞+++++求(2-2,43-44Min )例4: 求极限 (1)limx (2-2,47-48Min )注意:四则运算要求参与运算的极限都存在,因此本题的原型不能使用积商的极限等于极限的积商方法:遇到根号通常进行有理化 (2)3113lim()11x x x →---(2-2, 48-50Min ) 方法:无穷大减无穷大通常进行通分,然后再进行补充(化简) (3)练习x →例5:等价无穷小(2-3,5-7Min)A 1-()ln(1()10B C D +→-当x ()常用的三个等价无穷小1,,ln(1)(1)xx x x x x eαα-++答案:B 例6:已知极限求表达式里的一个常数(2-3,9-12Min )011lim[()]1a A B C D xx a x xe →--=已知则为()0()1()2()3答案:C 例7:Xlim 8ax 2a x-ax →∞=+已知求()现象-分析-方法:1的无穷次大,拆底数配指数 答案:a=ln2 注意:10011111 (i)...a a a a nn n n mm x n nxxx xb x b x b x b x ---→∞-++++++++要看其最高次={00a b,n=m ;∞,n>m;0,n<m} 例8:(2-3,18-23Min )x sin 0(,0)a+ba xb a b --=>证明方程至少有一正根,且不大于现象-分析-方法:作左方看做函数→函数有零值→介值定理→零值定理 初等函数→连续不大于→≦→分类讨论 例9:(2-3,26-30Min )()()lim ()()()x f x f x f x →∞-∞+∞-∞+∞设在,连续,且存在,证明在,有界闭区间上连续必有界,有极限的函数必有界(局部有界)导数与微分一、导数1、定义两个实际问题:一曲线在一点的切线,方法----利用割线逼近一点的切线,二是物理上的瞬时速度,先求平均速度然后用时间间隔趋向于零近似的得到瞬时速度 但是他们都有误差,因此要取极限(哲学上讲:是质变),由割线上升到导数,由平均数上升到瞬时速。

高等数学(一)(高起专).pdf

高等数学(一)(高起专).pdf

单选题1.A.AB.BC.CD.D答案:A2.A.AB.BC.CD.D答案:B3.A.AB.BC.CD.D答案:B4.A.AB.BC.CD.D答案:C5.A.AB.BC.CD.D答案:A6.A.AB.BC.CD.D答案:D7.A.AB.BC.CD.D答案:B8.A.AB.BC.CD.D答案:B9.A.AB.BC.CD.D答案:B10.A.AB.BC.CD.D答案:C11.A.AB.BC.CD.D答案:B12.A.AB.BC.CD.D答案:C13.A.AB.BC.CD.D答案:C14.A.AB.BC.CD.D答案:B15.A.AB.BC.CD.D答案:A16.A.AB.BC.CD.D答案:A17.A.AB.BC.CD.D答案:A18.A.AB.BC.CD.D答案:C计算题1.求。

答案:2.设,求。

答案:因为所以。

3.求。

答案:利用洛必达法则,有.4.设,求常数。

答案:因为时分子趋于零,而极限存在,故必有分母的极限也趋于零,即有,于是,代回原极限,得.最后两式左边的极限可以算出为,它应该等于,便解得,代入前一表达式,知.5.设函数在点处连续,试确定常数的值。

答案:因为函数在点处连续,故有。

由于上述极限存在,而分母的极限为零,必有,代回原极限式,有,从而得到。

6.设函数,求。

答案:因为,故得。

7.求曲线在点(1,)处切线方程.答案:因为,所以曲线在点(1,)处的切线方程为.8.求极限答案:. 9.若当时,与是等价无穷小,求。

答案:因为当时,与是等价无穷小,则有,因此有。

但是无穷小,故知。

高等数学第一章.

高等数学第一章.
并集(Union) :设A和B是两个集合, 由属于集合A或属 于集合B的元素组成的集合,称为集合A和集合B的并集,
记作A
B,即A
B
x
xA或xB.
交集(Intersection): 设A和B是两个集合,由既属
于集合A又属于集合B的元素组成的集合,称为集合A
和集合B的交集, 空集:如果A和B没有公共元素,则称集合A和集合B
集合的表示方法:列举法和描述法。
1.列举法:就是把所有元素都列出来,用大括号括
起来。
s 例如:如果令 表示由2、3、4三个数组成的集合,
用列举法将其写成:s ={2,3,4}
2. 描述法:用语言描述出所有元素的共有特征。
若令 I 表示所有正整数集合,列举便很困难,则我们
可以简单地描述其元素,
写成:
称A是有限集,否则称为无限集(Infinite Set). 我们用N表示全体自然数的集合,即N{1,2,3,L }, 如果存在从A到自然数集合N的双射,则称A是可数无 限集(Countable Infinite Set). 1.2 实数 用Z表示全体整数的集合, 用Q表示全体有理数的集合。
有理数和无理数统称为实数, 用R表示. 把数轴叫做实直线。 上界(Upper Bound):令X是R的一个子集。若存在一 个实数u(不一定属于X), 满足对X中的任意x都有xu, 则称u是X的上界(Upper Bound). 这时称X是有上界的(Bounded Above).类似地,可以
定义下界(Lower Bound).
上确界(Supremum): 令X是R 的一个有上界的子集,
若s是X的一个上界,且对于任意的 y s 都存在一个 xX ,使得x y,则称s是X的上确界。 记为s=sup X; 类似地,可以定义X的下确界(Infimum)。 上确界是最小上界,下确界是最大下界 若X是R的一个有上界(下界)的子集,则X有上确界

(完整word版)《高等数学(1)》练习题库

(完整word版)《高等数学(1)》练习题库

华中师范大学网络教育 《高等数学(1)》练习测试题库一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2x )=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 2 3.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim21x x x ( ) A.1 B.0 C.2 D.1/2 7.设=+∞→x x xk)1(lim e 6 则k=( )A.1B.2C.6D.1/6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x2-1B. x3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logx相切,则()aA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、-8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是()A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x xx 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 xx x x sin 1sin lim20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( ) A 、0 B 、1/2 C 、1 D 、2 43、若函数f(x)在(a,b )内存在原函数,则原函数有( )A 、一个B 、两个C 、无穷多个D 、都不对44、若∫f(x)dx=2e x/2+C=( )A 、2e x/2B 、4 e x/2C 、e x/2 +CD 、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、B、2 C、31/2D、21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56、设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111A.1-──B.1+ ──C. ────D.xxx1-x157、x→0 时,xsin──+1是()xA.无穷大量B.无穷小量C.有界变量D.无界变量58、方程2x+3y=1在空间表示的图形是()A.平行于xoy面的平面B.平行于oz轴的平面C.过oz轴的平面D.直线59、下列函数中为偶函数的是()A.y=e^xB.y=x^3+1C.y=x^3cosxD.y=ln│x│60、设f(x)在(a,b)可导,a〈x_1〈x_2〈b,则至少有一点ζ∈(a,b)使()A.f(b)-f(a)=f'(ζ)(b-a)B.f(b)-f(a)=f'(ζ)(x2-x1)C.f(x2)-f(x1)=f'(ζ)(b-a)D.f(x2)-f(x1)=f'(ζ)(x2-x1)61、设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( ) A.充分必要的条件 B.必要非充分的条件 C.必要且充分的条件 D 既非必要又非充分的条件二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( ) 13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( ) 26、∫49 x 1/2(1+x 1/2)dx=( ) 27、∫49 x 1/2(1+x 1/2)dx=( ) 28、∫49 x 1/2(1+x 1/2)dx=( ) 29、∫49 x 1/2(1+x 1/2)dx=( ) 30、∫49 x 1/2(1+x 1/2)dx=( ) 31、∫49 x 1/2(1+x 1/2)dx=( ) 32、∫49 x 1/2(1+x 1/2)dx=( )33、满足不等式|x-2|<1的X 所在区间为 ( ) 34、设f(x) = [x] +1,则f (л+10)=( ) 35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( ) 37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46、函数y=arcsin√1-x^2 +──────的定义域为_________√1-x^2_______________。

高等数学《一》

高等数学《一》
y=lg(sinx –2). 因定义域为空集, 所以它们 不能构成复合函数.
定义2.若y=f (u)的定义域U. 而u=(x)的定义域 为X, 值域为U*.且U U* . 则 y 通过 中间变量u成为x的函数, 称它为由f (u)和
(x)构成的复合函数. 记作y=f [(x)].
注1:复合函数f [(x)]的定义域X包含在u=(x)

f
而函数式则可通过代入运算而得到: 将u=(x)代入到y =f (u)中. 得到y=f [(x)].
称它为由f (u)和(x)构成的复合函数.
例1.设y=f (u)=lgu, 而u=(x)=sinx. 则它们构成的复合函数为 y=f [(x)] = lgsinx.
例2.设y=f (u)=lg(u–2), 而u=(x)=sinx. 代入后
2. 称由基本初等函数经有限次加, 减, 乘, 除运算 和有限次复合运算而构成的函数为初等函数.
如 y ln cos x
2
,y
sin
2
( x 1 )都是初等函数
.
但也有很多不是初等函数的函数.
例3. 符号函数
1 y sgn x 0 1
| x | x 0 x 0 x 0
称x为y在 f 下的原像, 称X为函数f 的定义域. 记作D(f ). X在f 下的像集f (X)={f (x)| xX}称为f 的值域. 记作R(f ). 显然有R(f )Y.
注1.定义1可改写为“若f 是从实数集X到
实数集Y的一个映射. 则称f 是一个一
元实值函数”.
注2. 在定义1中,f 是函数, 它是一个映射, 是一 个对应规则.而f (x)则是函数值, 是x在f下的 像.但在习惯上, 我们把f (x)也称作x的函数. 另外, 习惯上, 称x为自变量, y为因变量. 注3.本教材中用符号“”表示子集, 而不是用

《高等数学》(一)第一章同步辅导

《高等数学》(一)第一章同步辅导
本章重点:函数概念和基本初等函数。
难点:函数的复合。
典型例题分析与详解
一、单项选择题 1 下列集合中为空集的「」 A { }B {0 } C 0D {x |x2+1=0,x ∈R } 「答案」选D 「解析」因为A 、B 分别是由空集和数零组成的集合,因此是非空集合;0 是一个数,不是集合,故C 也不是空集。在 实数集合内,方程x2+1=0无解,所以D 是空集 2 设A={x |x2-x-6>0 },B={x |x-1 ≤1 }, 则A ∩B=「」 A {x |x >3 }B {x |x C {x |-2 「答案」选B 「解析」由x2-x-6>0 得x >3 或 x3 或x 3 设A 、B 是集合{1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9}的子集,且A ∩B={1,3 ,7 ,9},则A ∪B 是「」 A {2,4 ,5 ,6 ,8}B {1,3 ,7 ,9} C {1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9}D {2,4 ,6 ,8} 「答案」选A 「解析」由A ∪B=A ∩B={1,3 ,7 ,9},得A ∪B={2,4 ,5 ,6 ,8} 4 设M={0,1 ,2},N={1,3 ,5},R={2,4 ,6},则下列式子中正确的是「」 A M ∪N={0,1} B M ∩N={0,1} C M ∪N ∪R={1,2 ,3 ,4 ,5 ,6} D M ∩N ∩R= (空集) 「答案」选D 「解析」由条件得M ∪N={0,1 ,2 ,3 ,5},M ∩N={1} ,M ∪N ∪R={0,1 ,2 ,3 ,4 ,5 ,6},M ∩N ∩R= . 5 设A 、B 为非空集合,那么A ∩B=A 是A=B 的「」 A 充分但不是必要条件 B 必要但不是充分条件 C 充分必要条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.单选题(共14题)
1
• A

• B

• C

• D

正确答案:B 我的答案:B 2
• A

• B

• C

• D

正确答案:D 我的答案:A 3
• A
单调增加

• B
单调减少

• C
图形上凹

• D
图形上凸

正确答案:A 我的答案:4
• A
4

• B
3

• C
2

• D
1

正确答案:D 我的答案:5
• A

• B
1

• C
2

• D
3

正确答案:C 我的答案:6
• A

• B

• C

• D

正确答案:B 我的答案:7
• A

• B

• C

• D

正确答案:D 我的答案:
8
• A

• B

• C

• D

正确答案:A 我的答案:9
• A

• B

• C

• D

正确答案:A 我的答案:10
• A
充分必要条件

• B
充分条件

• C
必要条件

• D
无关条件

正确答案:C 我的答案:11
• A

• B

• C

• D

正确答案:B 我的答案:12
• A
3

• B
2

• C
1

• D

正确答案:A 我的答案:13
• A

• B

• C

• D

正确答案:D 我的答案:14
• A
连续且可导

• B
不连续但可导

• C
连续但不可导

• D
不连续也不可导

正确答案:C 我的答案:
二.填空题(共15题)
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
2
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
4
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
5
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
6
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
7
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
8
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
9
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
10
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
11
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
12
手写答题卡,拍照上传第一空:
我的答案:
第一空:
第一空:
13
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
14
手写答题卡,拍照上传第一空:
我的答案:
正确答案:
第一空:
15
手写答题卡,拍照上传第一空:
我的答案:
第一空:
正确答案:
第一空:
三.证明题(共3题)
1
手写答题卡,拍照上传
•填写答案

正确答案:
2
手写答题卡,拍照上传•填写答案

正确答案:
3
手写答题卡,拍照上传•填写答案

正确答案:
四.计算题(共15题)
手写答题卡,拍照上传•填写答案

正确答案:
2
手写答题卡,拍照上传•填写答案

正确答案:
手写答题卡,拍照上传•填写答案

正确答案:
4
手写答题卡,拍照上传•填写答案

正确答案:
5
手写答题卡,拍照上传•填写答案

正确答案:
6
手写答题卡,拍照上传•填写答案

正确答案:
7
手写答题卡,拍照上传•填写答案

正确答案:
8
手写答题卡,拍照上传

正确答案:
9
•填写答案

正确答案:
10
手写答题卡,拍照上传

正确答案:
11
手写答题卡,拍照上传•填写答案

正确答案:
12
手写答题卡,拍照上传•填写答案

正确答案:
13
手写答题卡,拍照上传•填写答案

正确答案:
14
手写答题卡,拍照上传•填写答案

正确答案:
15
手写答题卡,拍照上传•填写答案

正确答案:
五.应用题(共4题)
1
手写答题卡,拍照上传•填写答案

正确答案:
2
手写答题卡,拍照上传•填写答案

正确答案:
3
手写答题卡,拍照上传•填写答案

正确答案:
4
手写答题卡,拍照上传•填写答案

正确答案:。

相关文档
最新文档