Z变换详细讲解.pdf
合集下载
2.7 Z变换

n =0
本书只讨论第一种Z变换
பைடு நூலகம்
二、z变换的收敛域与零极点
1.收敛域:对于任意给定序列x(n),使其z变换
X(z)收敛的所有z值的集合称为X(z)的收敛域。 用符号ROC(range of convergence)表示。 根据级数理论,级数收敛的充要条件是:
n =−∞
∑
∞
x ( n) z
−n
≤
n =−∞
其z变换:X ( z ) =
n =−∞
∑
0
x(n ) z − n + ∑ x(n) z − n
n =1
n2
前式Roc: 0 ≤ z < Rx + 后式Roc: < z ≤ ∞ 0
∴当n2 ≤ 0时,Roc : 0 ≤ z < Rx+ 当n2 > 0时,Roc : 0 < z ≤ ∞ 即左边序列的收敛域是某个圆的内部 z < Rx+
列,只有同时给出收敛域才能唯一确定。
2. X(z)在收敛域内不能有极点,故:
右边序列的z变换收敛域一定在模最大的有 大 右边序列 限极点所在圆之外 之外 左边序列的z变换收敛域一定在模最小的有 左边序列 小 限极点所在圆之内 之内
四、Z变换的基本性质与定理 变换的基本性质与定理 1、线性 、
若
则
Z [ x(n)] = X ( z ) Rx− < z < Rx+
例1 求x(n) = −a nu (−n − 1)的z变换及其收敛域 :
解:X(z)= ∑ x(n) z = ∑ −a u ( −n − 1) z
−n n n =−∞ n =−∞ ∞ ∞ −n
= ∑ −a z = ∑ −a z
本书只讨论第一种Z变换
பைடு நூலகம்
二、z变换的收敛域与零极点
1.收敛域:对于任意给定序列x(n),使其z变换
X(z)收敛的所有z值的集合称为X(z)的收敛域。 用符号ROC(range of convergence)表示。 根据级数理论,级数收敛的充要条件是:
n =−∞
∑
∞
x ( n) z
−n
≤
n =−∞
其z变换:X ( z ) =
n =−∞
∑
0
x(n ) z − n + ∑ x(n) z − n
n =1
n2
前式Roc: 0 ≤ z < Rx + 后式Roc: < z ≤ ∞ 0
∴当n2 ≤ 0时,Roc : 0 ≤ z < Rx+ 当n2 > 0时,Roc : 0 < z ≤ ∞ 即左边序列的收敛域是某个圆的内部 z < Rx+
列,只有同时给出收敛域才能唯一确定。
2. X(z)在收敛域内不能有极点,故:
右边序列的z变换收敛域一定在模最大的有 大 右边序列 限极点所在圆之外 之外 左边序列的z变换收敛域一定在模最小的有 左边序列 小 限极点所在圆之内 之内
四、Z变换的基本性质与定理 变换的基本性质与定理 1、线性 、
若
则
Z [ x(n)] = X ( z ) Rx− < z < Rx+
例1 求x(n) = −a nu (−n − 1)的z变换及其收敛域 :
解:X(z)= ∑ x(n) z = ∑ −a u ( −n − 1) z
−n n n =−∞ n =−∞ ∞ ∞ −n
= ∑ −a z = ∑ −a z
_2第二章z变换

| x(n) bnu(n 1 ) z || b |
Im[z] Rx+ 0 Re[z]
0 |z| ,
n1 0
n1 0, Rx | z |
0 |z| 序列实例: x(n)=RN(n) Im[z]
ROC
z || a | x(n) anu(n| )
Im[z]
Rx0 0 Re[z]
收敛域图示:
有限长序列的收敛域
右边序列
左边序列
2.5.4
Z 变换的性质和定理
(1) 线性
Z 若x(n) X ( z ) (R x1 < z <R x2 )
y(n) Y ( z)
Z
(R y1 < z <R y2 )
交集
Z 则ax(n) by (n) aX ( z ) bY ( z )
z
|Z|>1
(4)尺度变换性
x(n) ¾¾ ® X ( z)
Z
n Z
Rx < z < Rx
1
2
z z 则 a x(n) X , R x1 R x2 a a
x(n)乘以指数序列等效于z平面尺度伸缩。
z z 则 a x(n) X , R x1 R x2 a a
n2>0
0 z Rx 2
Rx 2
(2)n1=-∞ n2<0
z Rx 2
Rx 2
左边序列
【例】 求x(n)=-anu(-n-1)的Z变换及其收敛域。
解 这里x(n)是一个左序列,当n≥0时,x(n)=0,
X ( z)
n
a u(n 1) z
n
Im[z] Rx+ 0 Re[z]
0 |z| ,
n1 0
n1 0, Rx | z |
0 |z| 序列实例: x(n)=RN(n) Im[z]
ROC
z || a | x(n) anu(n| )
Im[z]
Rx0 0 Re[z]
收敛域图示:
有限长序列的收敛域
右边序列
左边序列
2.5.4
Z 变换的性质和定理
(1) 线性
Z 若x(n) X ( z ) (R x1 < z <R x2 )
y(n) Y ( z)
Z
(R y1 < z <R y2 )
交集
Z 则ax(n) by (n) aX ( z ) bY ( z )
z
|Z|>1
(4)尺度变换性
x(n) ¾¾ ® X ( z)
Z
n Z
Rx < z < Rx
1
2
z z 则 a x(n) X , R x1 R x2 a a
x(n)乘以指数序列等效于z平面尺度伸缩。
z z 则 a x(n) X , R x1 R x2 a a
n2>0
0 z Rx 2
Rx 2
(2)n1=-∞ n2<0
z Rx 2
Rx 2
左边序列
【例】 求x(n)=-anu(-n-1)的Z变换及其收敛域。
解 这里x(n)是一个左序列,当n≥0时,x(n)=0,
X ( z)
n
a u(n 1) z
n
Z变换详细讲解2

f (t)
j
F
(s)e
st
ds
由于z esT , dz Te sT
Tz
j
ds
f (t) f (nT ) f (n)
F (s) f (n)z n F (z) n
e sT e snT z n
ds 1 dz dz Tz z
j
j
c
10
f (n) 1 F (z)z n1dz 令z re j
n0
zm x(n m)z(nm) zm x(k)zk
n0
k m
zm
x(k ) z k
m1
x(k ) z k
k 0
k 0
zm
X
(z)
m1
x(k ) z k
k 0
15
(3)双边右移序列旳单边Z变换
X (z) x(n)u(n)zn n0
ZT[x(n m)u(n)] x(n m)zn
.画出下列系统函数所表示系统的建立级联和 并联形式的结构图。
H (z) 3z3 5z 2 10z z3 3z2 7z 5
解:
H
(
z
)=
(
z z
(3z 2 1)(
z2
5z 10) 2z 5)
1 1 z 1
3 5z 1 1 2z 1
10z 2 5z2
1
H (z)
1 1 z1
br z r
r 0
N
ak zk
k 0
请注意这里 与解差分有 何不同?
因果!
22
(2)定义二:系统单位样值响应h(n) 旳Z变换
• 鼓励与单位样值响应旳卷积为系统零状
态响应
y(n) x(n)*h(n)
第六章 Z变换

6.3 z变换的反变换
2π j , 柯西公式: ∫ z dz = C 0,
n
m = −1 m ≠ −1
6.3 z变换的Βιβλιοθήκη 变换6.3 z变换的反变换
6.3 (1)幂级数展开法
6.3 (1)幂级数展开法
6.3 (1)幂级数展开法
例2 、 x[ n] = u[ n]
X ( z) = ∑ z
n =0
+∞
−n
1 = , z >1 −1 1− z
+∞ 1 X (ω ) = + π ∑ δ (ω − 2kπ ) − jω 1− e k = −∞
例3、
x[n] = − a u[− n − 1]
n
−1 n −n
a z X ( z) = − ∑ a z = − ∑ a z = − −1 1− a z n = −∞ n =1 1 = ,z <a −1 1 − az
第6章 Z变换 章 变换
引言
x(n) = z
n
LTI
y(n) = H(z)z
n
h(n)
H (z) =
jω
n = −∞
∑
+∞
h(n ) z −n ,
H ( z ) 为 h ( n )的 z 变换 .
z = re , 当r=1时,即为h( n)的傅立叶变换。
z变换是离散时间傅里叶变换的推广,在连续时 变换是离散时间傅里叶变换的推广, 变换是离散时间傅里叶变换的推广 间域内与拉氏变换相对应。 间域内与拉氏变换相对应。
(3) ZT[δ (n +1)] = ∑δ (n +1)z + ∑δ (n +1)z
n=0
04第四讲 Z 变 换

这是一个环状区域.如果Rx->Rx+ ,则无公共收敛区域,X(z)无 收敛域,也即在Z平面的任何地方都没有有界的X(z)值,因此就不 存在Z变换的解析式, 这种Z变换就没有什么意义.
第2章 Z变换 例1-9 x(n)=a|n|, a为实数,求其Z变换及收敛域. 解 这是一个双边序列,其Z变换为
X ( z) =
n
(1-54)
式中,z是一个复变量,它所在的复平面称为Z平面.我们常用Z [x(n)]表示对序列x(n)进行Z变换,也即
Z [ x(n)] = X ( z )
(1-55)
第2章 Z变换 这种变换也称为双边Z变换,与此相应的单边Z变换的定义如下:
X ( z ) = ∑ x ( n) z n
n =0
n
= ∑a z
n =0
∞
n n
1 = ∑ (az ) = 1 az 1 n =0
1 n
∞
|z|>|a| 这是一个无穷项的等比级数求和,只有在|az-1|<1即|z|>|a|处收敛 如图1-24所示.故得到以上闭合形式的表达式,由于 ,
故在z=a处有一极点(用"×"表示),在z=0处有一个零点(用"○" 表示),收敛域为极点所在圆|z|=|a|的外部.
∞
(1-56)
这种单边Z变换的求和限是从零到无穷,因此对于因果序列, 用两种Z变换定义计算出的结果是一样的.单边Z变换只有在少 数几种情况下与双边Z变换有所区别.比如,需要考虑序列的起 始条件,其他特性则都和双边Z变换相同.本书中如不另外说明, 均用双边Z变换对信号进行分析和变换.
第2章 Z变换 2. Z变换的收敛域 变换的收敛域 显然,只有当式(1-54)的幂级数收敛时,Z变换才有意义. 对任意给定序列x(n),使其Z变换收敛的所有z值的集合称为 X(z)的收敛域. 按照级数理论,式(1-54)的级数收敛的充分必要条件是满 足绝对可和的条件,即要求
第三章Z变换(数字信号处理)

n2
X (z) x(n)zn
n
第三章 序列的Z变换
当 n2≤0
n2
n2
n2
X (Z ) x(n)Z n x(n)Z n x(n) Rn
n
n
n
当 n2>0
n2
0
n2
x(n)Z n x(n)Z n x(n)Z n
n
n
n 1
第二项为有限长序列, 在整个Z平面收敛( z=∞点 不收敛)。 第一项根据前式的论述,当
第三章 序列的Z变换
n 0, x(n) Re s[F(z), a] Re s[F(z), a1]
a(
(1 a2 z a)(
)zn z
a
1
)
(
z
a)
za
a(
(1 a2 z a)(
)zn z
a
1
)
(
z
a1)
z a 1
an (an ) an an
最后将x(n)表示成
x(n)=(a-n-an)u(-n-1)
(1 a2 )zn (z a) (z a)(1 az)
za
a(
(1 a2 z a)(
)zn z
a
1
)
(
z
a
1 )
z a 1
an an
最后表示成: x(n)=(an-a-n)u(n)。
(2) 收敛域|z|<|a|
这种情况原序列是左序列, 无须计算n≥0情况, 当n≥0时, 围线积分c内没有极点, 因此x(n)=0。 n<0 时, c内只有一个极点z=0, 且是n阶极点, 改求c外极 点留数之和
Z R 时收敛 因此左序列的收敛域是半径为R+的圆内区域
第二章Z变换

收敛域为各个序列z变换的公共收敛域,如果这些 组合中某些零点和极点相互抵消,则收敛域可能扩 大。
20
❖ 例:已知x(n)=cos(ω0n)u(n),求它的z变换。 解:
Z
[cos(
0
n
)u
(
n
)]=
Z
e
j
0
n
e j0n 2
u(n)
1 2
e j0nu(n)
1 2
e j0nu(n)
因为已知
试利用部分分式法求Z反变换。
X (z)
z2
,
( z 2 )( z 0 .5 )
| z | 2
X (z)
z
z ( z 2 )( z 0 .5 )
X (z)
z
A1 A2
z ( z 2 )( z 0 .5 ) z 2 z 0 .5
A1
(
z
2)
X
(z) z z 2
z
z 0 . 5 z 2
1
2.1 2.2 2.3 2.4
2.5
Z变换的定义与收敛域 Z反变换 Z变换的基本性质和定理 序列的Z变换与连续信号的拉普拉斯 变换、傅立叶变换的关系 离散系统的系统函数、系统的频率响 应
2
2.1 Z变换的定义与收敛域
2.1.1 Z变换的定义
对于一个序列x(n),它的Z变换定义为
X(z) x(n)zn n
超前。
证:Z [ x ( n m ) ] x ( n m ) z n z m x ( k ) z k z m X ( z )
n
k
对双边序列,移位后收敛域不会发生变化;但是 单边序列在z=0或z=∞处收敛域可能有变化.
例如,Z[δ(n)=1]=1,在z平面处处收敛,但是
20
❖ 例:已知x(n)=cos(ω0n)u(n),求它的z变换。 解:
Z
[cos(
0
n
)u
(
n
)]=
Z
e
j
0
n
e j0n 2
u(n)
1 2
e j0nu(n)
1 2
e j0nu(n)
因为已知
试利用部分分式法求Z反变换。
X (z)
z2
,
( z 2 )( z 0 .5 )
| z | 2
X (z)
z
z ( z 2 )( z 0 .5 )
X (z)
z
A1 A2
z ( z 2 )( z 0 .5 ) z 2 z 0 .5
A1
(
z
2)
X
(z) z z 2
z
z 0 . 5 z 2
1
2.1 2.2 2.3 2.4
2.5
Z变换的定义与收敛域 Z反变换 Z变换的基本性质和定理 序列的Z变换与连续信号的拉普拉斯 变换、傅立叶变换的关系 离散系统的系统函数、系统的频率响 应
2
2.1 Z变换的定义与收敛域
2.1.1 Z变换的定义
对于一个序列x(n),它的Z变换定义为
X(z) x(n)zn n
超前。
证:Z [ x ( n m ) ] x ( n m ) z n z m x ( k ) z k z m X ( z )
n
k
对双边序列,移位后收敛域不会发生变化;但是 单边序列在z=0或z=∞处收敛域可能有变化.
例如,Z[δ(n)=1]=1,在z平面处处收敛,但是
第2章--Z变换及Z传递函数

sin t cost
F(z)
z za
z z eaT
z sin T z2 2z cosT 1
z(z cosT ) z2 2z cosT 1
第2章 Z变换及Z传递函数
2.2 Z变换的性质和定理
1.线性定理 设a,a1,a2为任意常数,连续时间函数f(t),f1(t),f2(t) 的Z 变换分别为F(z),F1(z),F2(z)、及,则有
则:
fi (kT )
1
ai z z zi
i 1, 2, , n
n
f * (t) fi (kT) (t kT) k 0 i1
第2章 Z变换及Z传递函数
3.留数法
设已知Z变换函数F(z),则可证明,F(z)的Z反变换 f(kT)值,可由下式计算
f (kT ) 1 F (z)
1
i0
则
G(z)
F(z) 1 z 1
7.初值定理 设连续时间函数f(t)的Z变换为F(z),则有
f (0) lim F(z) z
第2章 Z变换及Z传递函数
8.位移定理 设a为任意常数,连续时间函数f(t)的Z变换为F(z),则有
f (t)eat F(z eaT )
9.微分定理 设连续时间函数f(t)的Z变换为F(z),则有
G1 (z) G2 (z)
第2章 Z变换及Z传递函数
由上式可知,两个串联环节之间有同步采样开关隔开的 Z传递函数,等于每个环节Z传递函数的乘积。
在一般情况下,很容易证明:
G1G2 (z) G1 (z) G2 (z)
在进行计算时,应引起注意。
第2章 Z变换及Z传递函数
pi )F (z)zk1
n
f
(kT )
F(z)
z za
z z eaT
z sin T z2 2z cosT 1
z(z cosT ) z2 2z cosT 1
第2章 Z变换及Z传递函数
2.2 Z变换的性质和定理
1.线性定理 设a,a1,a2为任意常数,连续时间函数f(t),f1(t),f2(t) 的Z 变换分别为F(z),F1(z),F2(z)、及,则有
则:
fi (kT )
1
ai z z zi
i 1, 2, , n
n
f * (t) fi (kT) (t kT) k 0 i1
第2章 Z变换及Z传递函数
3.留数法
设已知Z变换函数F(z),则可证明,F(z)的Z反变换 f(kT)值,可由下式计算
f (kT ) 1 F (z)
1
i0
则
G(z)
F(z) 1 z 1
7.初值定理 设连续时间函数f(t)的Z变换为F(z),则有
f (0) lim F(z) z
第2章 Z变换及Z传递函数
8.位移定理 设a为任意常数,连续时间函数f(t)的Z变换为F(z),则有
f (t)eat F(z eaT )
9.微分定理 设连续时间函数f(t)的Z变换为F(z),则有
G1 (z) G2 (z)
第2章 Z变换及Z传递函数
由上式可知,两个串联环节之间有同步采样开关隔开的 Z传递函数,等于每个环节Z传递函数的乘积。
在一般情况下,很容易证明:
G1G2 (z) G1 (z) G2 (z)
在进行计算时,应引起注意。
第2章 Z变换及Z传递函数
pi )F (z)zk1
n
f
(kT )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•掌握Z变换的主要性质,特别是位移性和卷积定 理
•由连续信号的拉氏变换求离散(抽样) 信号的Z变换;S平面与Z平面的映象关 系
•离散系统的系统函数,单位样值(冲激) 响应及频率响应(意义,特点及求法)
•离散系统的构成
§8.1引言
*借助抽样信号的拉氏变换引出Z变换
抽样信号的拉氏变换:
xs (t) x(t).T (t) x(nT ) (t nT ) n0
n2
X (z) x(n)zn n
n n2
mn
nm
X (z) x(m)zm x(n)zn
圆内为收敛域,
若 n2 0
则不包括z=0点
m n2
nn2
j Im[z]
lim n x(n)zn 1
Rx2
n
lim n x(n) z 1
n
Re[ z]
z
1
lim n x(n)
Rx2
n
收敛半径
(1)双边序列:只在 n 区间内,
有非零的有限值的序列 x(n)
X (z) x(n)zn
n
n
1
X (z) x(n)zn x(n)zn
rm
(m 0 z 0, )
(m 0, z 0)
1
(3) ZT[ (n 1)] (n 1)zn (n 1)zn
n
n0
z1 0 z
(0 z )
ZT[u(n)]
u(n) z n
n0
n0
zn
1
1 z
1
z
z 1
(z
1)
将上式两边分别对z1求导后,两边各乘z-1得
ZT[nu(n)]
z.ir z.sr
本章要点(1) • Z变换的基本概念和基本性质 • 利用Z变换解差分方程 • 离散系统的系统函数 • 离散系统的频率响应 • 数字滤波器初步
本章要点(2)
•求序列的Z变换-利用Z变换的定义,借助Z变换 的性质,或采用幂级数展开法
•逆Z变换的确定-围线积分法(留数法)
部分分式法,幂级数展开法(长除法)。注意在 不同形式收敛域下逆变换的求法。
x(n) Aa n 称x(n)为指数阶函数。
几类序列的收敛域
(1)有限序列:在有限区间内,有非零的有限值的序列 x(n)
n2
X (z) x(n)zn
n1 n n2
nn1
n1 0时,z 和n2 0时z 0外,所有z值都收敛
z 收敛域为除了0和 的整个 平面 j Im[z]
Re[ z]
.y(n) y(n 1) u(n) y(0) 1 求z.i.r和z.s.r. 解:=1;齐次解yz.i.r (n) c 1n y (0) 1
求z.s.r y (0) y (0) 1 y (0) u(0) y (1) 1 求特解:y(n) an n
z.s.r yz.s.r (n) [c1(1n n)]u(n) 而而yy1((00))11 c11 yz.s.r (n) (1 n)u(n) 完全响应:y(n)=1+(n+1)u(n)
nu(n) z n
n0
1 (1 z1)2
z (z 1)2
ZT[anu(n)]
an z n
n0
1 1 az1
z
z a
( z a)
由此可以看出Z
变换的基本形式: z z-zm
正弦序列的 Z 变换:
ZT[e j0n ]
z z e j0
ZT[e j0n ]
z z e j0
ZT[sin 0n] ZT[(e j0n e ) j0n / 2 j]
1,级数收敛。 1,级数发散。 1,不能肯定。
如果序列x(n)在每个有限的间隔内是有限的 且当n 时是指数阶的,则它的Z变换存在 于 z R之范围,这里R是收敛半径。 指数阶函数和指数阶序列之间存在着对应关系,
定义:如有一序列x(n)当n 时存在正数A, a和N 使所有的n N时都有
对上式取拉氏变换:
xs (t)
0
xs
(t)estdt
0
n0
x(nT
)
(t
nT
)est
dt
交换积分与求和次序:
xs (s)
n0
x(nT )esnT ;令z
令:T
esT或s
1
1 T
ln
z
x(z) x(n)zn z esT z es
n0
定义:一个离散时间序列 x(n)的Z变换为Z 1的一个幂 级数(洛朗级数的特例),Z 一般为复变数,每一项的系 数为x(n)相应的值数值。 (x(n)的生成函数 z n)
一.Z变换的收敛域
x(n)zn
n0
1.根据级数理论
2.借助于S平面与Z平面的映射
有限长序列
3.几类序列Z变换的收敛域 右边序列
左边序列
4.例子:
双边序列
lim *比项法:设
an1
1,级数收敛n。 an
1,级数发散。
1,不能肯定。
* 捡根法(柯西准则)
设:lim n an n
例
ZT[ ne j0n ]
ቤተ መጻሕፍቲ ባይዱ
z
z e j0
ZT[ ne j0n ]
z
z e j0
ZT[ n cos 0n] ZT[ n (e j0n e ) j0n / 2]
z
z
( z e j0 z e j0 ) / 2
z2
z(z cos 0 ) 2z cos 0 2
(z )
§8.3 Z变换的收敛域(p49)
§8.2.Z变换定义,典型序列的Z变换
*. 典型序列的Z变换(p375附录5)
• 单位样值序列 • 单位阶跃序列 • 斜变序列 • 指数序列 • 正弦余弦序列
(1) ZT[ (n)] (n)zn 1 (z 0)
n0
(2) ZT[ (n m)] (n m)zn
n0
(r) z(rm) zm ( p63 : 位移性)
(
z
z e
j0
z z e j0
)/2j
z2
z sin 0 2z cos0
1
余弦序列的 Z 变换:
ZT[e j0n ]
z z e j0
ZT[e j0n ]
z z e j0
ZT[cos 0n] ZT[(e j0n e ) j0n / 2]
(
z
z e
j 0
z z e j0
)/2
z(z cos0 ) z 2 2z cos0 1
(1)右边序列:只在n n1 区间内,有非零的有限值的序列 x(n)
X (z) x(n)zn nn1
n1 n
圆外为
收敛域
lim n x(n)zn 1
n
j Im[z]
lim n
n
x(n)
Rx1
z
Rx1
z Rx1
Re[ z]
收敛半径
(1)左边序列:只在n n2区间内,有非零的有限值的序列 x(n)
•由连续信号的拉氏变换求离散(抽样) 信号的Z变换;S平面与Z平面的映象关 系
•离散系统的系统函数,单位样值(冲激) 响应及频率响应(意义,特点及求法)
•离散系统的构成
§8.1引言
*借助抽样信号的拉氏变换引出Z变换
抽样信号的拉氏变换:
xs (t) x(t).T (t) x(nT ) (t nT ) n0
n2
X (z) x(n)zn n
n n2
mn
nm
X (z) x(m)zm x(n)zn
圆内为收敛域,
若 n2 0
则不包括z=0点
m n2
nn2
j Im[z]
lim n x(n)zn 1
Rx2
n
lim n x(n) z 1
n
Re[ z]
z
1
lim n x(n)
Rx2
n
收敛半径
(1)双边序列:只在 n 区间内,
有非零的有限值的序列 x(n)
X (z) x(n)zn
n
n
1
X (z) x(n)zn x(n)zn
rm
(m 0 z 0, )
(m 0, z 0)
1
(3) ZT[ (n 1)] (n 1)zn (n 1)zn
n
n0
z1 0 z
(0 z )
ZT[u(n)]
u(n) z n
n0
n0
zn
1
1 z
1
z
z 1
(z
1)
将上式两边分别对z1求导后,两边各乘z-1得
ZT[nu(n)]
z.ir z.sr
本章要点(1) • Z变换的基本概念和基本性质 • 利用Z变换解差分方程 • 离散系统的系统函数 • 离散系统的频率响应 • 数字滤波器初步
本章要点(2)
•求序列的Z变换-利用Z变换的定义,借助Z变换 的性质,或采用幂级数展开法
•逆Z变换的确定-围线积分法(留数法)
部分分式法,幂级数展开法(长除法)。注意在 不同形式收敛域下逆变换的求法。
x(n) Aa n 称x(n)为指数阶函数。
几类序列的收敛域
(1)有限序列:在有限区间内,有非零的有限值的序列 x(n)
n2
X (z) x(n)zn
n1 n n2
nn1
n1 0时,z 和n2 0时z 0外,所有z值都收敛
z 收敛域为除了0和 的整个 平面 j Im[z]
Re[ z]
.y(n) y(n 1) u(n) y(0) 1 求z.i.r和z.s.r. 解:=1;齐次解yz.i.r (n) c 1n y (0) 1
求z.s.r y (0) y (0) 1 y (0) u(0) y (1) 1 求特解:y(n) an n
z.s.r yz.s.r (n) [c1(1n n)]u(n) 而而yy1((00))11 c11 yz.s.r (n) (1 n)u(n) 完全响应:y(n)=1+(n+1)u(n)
nu(n) z n
n0
1 (1 z1)2
z (z 1)2
ZT[anu(n)]
an z n
n0
1 1 az1
z
z a
( z a)
由此可以看出Z
变换的基本形式: z z-zm
正弦序列的 Z 变换:
ZT[e j0n ]
z z e j0
ZT[e j0n ]
z z e j0
ZT[sin 0n] ZT[(e j0n e ) j0n / 2 j]
1,级数收敛。 1,级数发散。 1,不能肯定。
如果序列x(n)在每个有限的间隔内是有限的 且当n 时是指数阶的,则它的Z变换存在 于 z R之范围,这里R是收敛半径。 指数阶函数和指数阶序列之间存在着对应关系,
定义:如有一序列x(n)当n 时存在正数A, a和N 使所有的n N时都有
对上式取拉氏变换:
xs (t)
0
xs
(t)estdt
0
n0
x(nT
)
(t
nT
)est
dt
交换积分与求和次序:
xs (s)
n0
x(nT )esnT ;令z
令:T
esT或s
1
1 T
ln
z
x(z) x(n)zn z esT z es
n0
定义:一个离散时间序列 x(n)的Z变换为Z 1的一个幂 级数(洛朗级数的特例),Z 一般为复变数,每一项的系 数为x(n)相应的值数值。 (x(n)的生成函数 z n)
一.Z变换的收敛域
x(n)zn
n0
1.根据级数理论
2.借助于S平面与Z平面的映射
有限长序列
3.几类序列Z变换的收敛域 右边序列
左边序列
4.例子:
双边序列
lim *比项法:设
an1
1,级数收敛n。 an
1,级数发散。
1,不能肯定。
* 捡根法(柯西准则)
设:lim n an n
例
ZT[ ne j0n ]
ቤተ መጻሕፍቲ ባይዱ
z
z e j0
ZT[ ne j0n ]
z
z e j0
ZT[ n cos 0n] ZT[ n (e j0n e ) j0n / 2]
z
z
( z e j0 z e j0 ) / 2
z2
z(z cos 0 ) 2z cos 0 2
(z )
§8.3 Z变换的收敛域(p49)
§8.2.Z变换定义,典型序列的Z变换
*. 典型序列的Z变换(p375附录5)
• 单位样值序列 • 单位阶跃序列 • 斜变序列 • 指数序列 • 正弦余弦序列
(1) ZT[ (n)] (n)zn 1 (z 0)
n0
(2) ZT[ (n m)] (n m)zn
n0
(r) z(rm) zm ( p63 : 位移性)
(
z
z e
j0
z z e j0
)/2j
z2
z sin 0 2z cos0
1
余弦序列的 Z 变换:
ZT[e j0n ]
z z e j0
ZT[e j0n ]
z z e j0
ZT[cos 0n] ZT[(e j0n e ) j0n / 2]
(
z
z e
j 0
z z e j0
)/2
z(z cos0 ) z 2 2z cos0 1
(1)右边序列:只在n n1 区间内,有非零的有限值的序列 x(n)
X (z) x(n)zn nn1
n1 n
圆外为
收敛域
lim n x(n)zn 1
n
j Im[z]
lim n
n
x(n)
Rx1
z
Rx1
z Rx1
Re[ z]
收敛半径
(1)左边序列:只在n n2区间内,有非零的有限值的序列 x(n)