第四章刚体力学测验题
(完整版)刚体的转动习题

17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。
今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。
4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。
大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
4_刚体力学习题详解

5. 对一绕固定水平轴O匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘的角速度应[ ]
(A) ;(B) ;(C) 不变;(D) ;(E)无法确定。
答案:B
解:
,
所以
6.光滑的桌面上有一长为 ,质量为 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为 ,开始静止。桌面上有质量为 的小球,在杆的一端垂直于杆以速率 与杆相碰,发生完全非弹性碰撞,与杆粘在一起转动,则碰后这一系统的角速度为
习题四
本章习题都是围绕(角)动量守恒以及能量守恒,把过程分析清楚,正确带入公式就可以解决。
一、选择题
1.一根长为 、质量为M的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m的子弹以水平速度v0射向棒的中心,并以v0/2的水平速度穿出棒,此后棒的最大偏转角恰为 ,则v0的大小为[ ]
(A) ;(B) ;(C) ;(D) 。
可先求出a,解得
, , ,
将 , 代入,得:
三.计算题
1一物体质量为m=20kg,沿一和水平面成30°角的斜面下滑,如图三1所示,滑动摩擦因数为 ,绳的一端系于物体上,另一端绕在匀质飞轮上,飞轮可绕中心轴转动,质量为M=10kg,半径为0.1m,求:
(1)物体的加速度。
(2) 绳中的张力。
解:对物体:
答案:(1) ;(2) 。
解:以启动前的位置为各势能的零点,启动前后应用机械能守恒定律
(1) 时,得 或
(2) 时
5.长 、质量 的匀质木棒,可绕水平轴O在竖直平面内转动,开始时棒自然竖直悬垂,现有图所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。
大学物理选择题大全

第一章 质点运动学 习题(1)1、下列各种说法中,正确的说法是: ( ) (A )速度等于位移对时间的一阶导数;(B )在任意运动过程中,平均速度2/)(0t V V V+=;(C )任何情况下,;v v ∆=∆r r ∆=∆ ;(D )瞬时速度等于位置矢量对时间的一阶导数。
2、一质点作直线运动,某时刻的瞬时速度m/s 2=v ,瞬时加速度2m/s 2-=a ,则一秒钟后质点的速度为:( )(A)等于0m/s ; (B)等于 -2m/s ; (C)等于2m/s ; (D)不能确定。
3、一物体从某一确定高度以 0V的速度水平抛出(不考虑空气阻力),落地时的速度为t V,那么它运动的时间是:( )(A) gV V t 0 -或g V V t 202- ; (B)gV V t 0-或g V V t 2202- ;(C ) g V V t 0- 或gV V t 202- ;(D) g V V t 0- 或gV V t 2202- 。
4、一质点在平面上作一般曲线运动,其瞬时速度为 V,瞬时速率为v ,某一段时间内的平均速度为V,平均速率为V ,它们之间的关系必定是 ( )(A) V V V V ==,;(B)V V V V =≠,;(C)V V V V ≠= ,;(D) V V V V ≠≠,。
5、下列说法正确的是:( )(A )轨迹为抛物线的运动加速度必为恒量; (B )加速度为恒量的运动轨迹可能是抛物线;(C )直线运动的加速度与速度的方向一致; (D )曲线运动的加速度必为变量。
第一章 质点运动学 习题(2)1、下列说法中,正确的叙述是: ( )a) 物体做曲线运动时,只要速度大小不变,物体就没有加速度;b) 做斜上抛运动的物体,到达最高点处时的速度最小,加速度最大;(C )物体做曲线运动时,有可能在某时刻法向加速度为0;(D )做圆周运动的物体,其加速度方向一定指向圆心。
2、质点沿半径为R 的圆周的运动,在自然坐标系中运动方程为 22t cbt s -=,其中b 、c 是常数且大于0,Rc b >。
刚体结构力学试题及答案

刚体结构力学试题及答案一、选择题(每题4分,共20分)1. 刚体的转动惯量与物体的质量和形状有关,以下说法正确的是()。
A. 质量越大,转动惯量越大B. 质量分布越集中,转动惯量越小C. 质量分布越分散,转动惯量越大D. 转动惯量与物体的质量无关答案:C2. 刚体在力的作用下发生旋转,下列说法正确的是()。
A. 力矩的大小与力的大小成正比B. 力矩的大小与力臂的长度成反比C. 力矩的大小与力的大小和力臂的长度都成正比D. 力矩的大小与力的大小和力臂的长度都无关答案:C3. 刚体的角速度与线速度之间的关系是()。
A. 角速度是线速度的两倍B. 线速度是角速度的两倍C. 角速度与线速度成正比D. 角速度与线速度成反比答案:C4. 在刚体的平移运动中,下列说法正确的是()。
A. 刚体上任意两点的位移相同B. 刚体上任意两点的速度相同C. 刚体上任意两点的加速度相同D. 以上说法都正确答案:D5. 刚体的转动惯量与物体的转动轴有关,以下说法正确的是()。
A. 转动轴越靠近物体的重心,转动惯量越小B. 转动轴越远离物体的重心,转动惯量越大C. 转动轴的位置不影响转动惯量D. 转动轴的位置与转动惯量无关答案:A二、填空题(每题4分,共20分)1. 刚体的转动惯量定义为物体的质量与其到转轴的____的乘积。
答案:距离平方2. 刚体在力矩作用下产生的角加速度的大小与力矩成正比,与物体的____成反比。
答案:转动惯量3. 根据牛顿第二定律,刚体的角加速度等于力矩除以物体的____。
答案:转动惯量4. 刚体的角速度和角位移的单位分别是____和____。
答案:弧度每秒,弧度5. 刚体在平面内的运动可以分解为____和____。
答案:平移,旋转三、简答题(每题10分,共30分)1. 请简述刚体的转动惯量与哪些因素有关,并举例说明。
答案:刚体的转动惯量与物体的质量分布和转轴的位置有关。
例如,一个均匀的圆盘绕通过其质心的轴旋转时,其转动惯量较小;而如果绕通过其边缘的轴旋转,其转动惯量则较大。
刚体习题和答案

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。
♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。
刚体考试题及答案

刚体考试题及答案一、选择题(每题2分,共20分)1. 刚体的转动惯量是关于旋转轴的()。
A. 常数B. 函数C. 随机变量D. 无规律变化答案:A2. 刚体绕固定轴的转动惯量I与质量M和半径r的关系是()。
A. I = Mr^2B. I = 2MrC. I = MrD. I = 1/2Mr^2答案:D3. 刚体的平移运动和转动运动的合成是()。
A. 平移运动B. 转动运动C. 螺旋运动D. 不确定答案:C4. 刚体的角速度和线速度的关系是()。
A. 线速度是角速度的两倍B. 线速度是角速度的一半C. 线速度与角速度成正比D. 线速度与角速度无关答案:C5. 刚体的角动量守恒的条件是()。
A. 外力矩为零B. 外力为零C. 外力矩和外力都为零D. 外力矩和外力都不为零答案:A6. 刚体的动能与()有关。
A. 质量B. 速度C. 转动惯量D. 所有以上因素答案:D7. 刚体的角加速度与()有关。
A. 外力矩B. 转动惯量C. 角速度D. 所有以上因素答案:A8. 刚体的进动角速度与()有关。
A. 外力矩B. 转动惯量C. 角速度D. 所有以上因素答案:D9. 刚体的章动周期与()有关。
A. 转动惯量B. 外力矩C. 角速度D. 所有以上因素答案:A10. 刚体的自由振动的周期与()有关。
A. 转动惯量B. 外力矩C. 角速度D. 所有以上因素答案:A二、填空题(每题2分,共20分)1. 刚体的转动惯量是关于旋转轴的________。
答案:常数2. 刚体绕固定轴的转动惯量I与质量M和半径r的关系是I = ________。
答案:1/2Mr^23. 刚体的平移运动和转动运动的合成是________。
答案:螺旋运动4. 刚体的角速度和线速度的关系是线速度与角速度________。
5. 刚体的角动量守恒的条件是外力矩________。
答案:为零6. 刚体的动能与________有关。
答案:所有以上因素7. 刚体的角加速度与________有关。
刚体习题及答案

解法二:
用角动量定理求解
0-10s: 0-90s:
(M M r )t1 J 1 0
(M r t2 ) 0 J1
联立得: Mt1t2 J1 (t1 t2 )
J Mt1t2 / 1 (t1 t2 ) 54kg m2
例4.一圆盘绕过盘心且与盘面垂直的轴 o 以角速度 按图示方 向转动,若射来两颗完全相同的子弹,方向相反并在同一条直 线上,子弹射入圆盘并留在其中,则子弹射入后的瞬间,盘的 角速度 (A)增大;(B)减小; (C)不变;(D)不能确定。
解: (1)dM dm g r
m M dM 2 rdr 1 mgl 0 l 4 (2)由角动量定理:
1 2
m m dr g r rdr l l
Mt J J 0 J 0
J 0 0 l t 3mg M
人: Mg T 2 Ma
1 1 物 : T1 - Mg = Ma 2 2
B
T2
o
T1
2 a g 7
A
Mg
B
a
轮: (T2 T1 ) R J
1 Mg 2
a R
例2.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个 组合轮。小圆盘的半径为r,质量为m;大圆盘的半径r’=2r, 质量为m’=2m。组合轮可绕通过其中心且垂直于盘面的光滑水 平固定轴O转动,对O轴的转动惯量J=9mr2/2。两圆盘边缘上 分别绕有轻质细绳,细绳下端各悬挂质量为m的物体A和B,如 图所示。这一系统从静止开始运动,绳与盘无相对滑动,绳的 长度不变。已知r = 10 cm.求: (1) 组合轮的角加速度; (2) 当物体A上升h=40 cm时,组合轮的角速度ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章刚体力学测验题
和,它们到转轴的距离分别为和,
1.一飞轮绕轴作变速转动,飞轮上有两点
则在任意时刻,
和两点的加速度大小之比为
A.;
B.;
C.要由该时刻的角速度决定;
D.要由该时刻的角加速度决定。
2.如下图、、、是附于刚性轻细杆上的4个质点,
质量分别为,,和,系统对轴的转动惯量为
A.
;
B.;
C.;
D.。
3.一质点从静止出发绕半径为的圆周作匀变速圆周运动,角加速度为,当质点走完一圈回到出发点时,所经历的时间是
A.;B.;C.;D.不能确定。
4.一人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的
A.转速加大,转动动能不变;
B.角动量和转动动能都不变;
C.转速和角动量都加大;
D.角动量保持不变,转动动能加大。
5.有一半径为的匀质水平圆转台,绕通过其中心且垂
直圆台的轴转动,转动惯量为,开始时有一质量为的
人站在转台中心,转台以匀角速度转动,随后人沿
着半径向外跑去,当人到达转台边缘时,转台的角速度为
A.;B.;C.;D.。
6.质量长的细棒对通过距一端、与棒垂直的轴的转动惯量为
A.;
B.;
C.;
D.。
7.原来张开双臂以角速度旋转的冰上芭蕾舞演员其转动动能为,将手臂收回使转动惯量减少到原来的1/3 ,则其转速和动能分别变为
A.;;
B.;;
C.;;
8.三个完全相同的转轮绕一公共轴旋转。
它们的角速度大小相同,但其中一轮的转动方向与另外两个相反。
今沿轴的方向把三者紧靠在一起,它们获得相同的角速度。
此时系统的动能与原来三轮的总动能相比,正确答案是
A.减少到 1/3 ;
B.减少到1/9 ;
C.增大到3 倍;
D.增大到 9 倍。
9.质量为、长为的细棒,可绕通过其上端的水平轴在竖直平面内无摩擦地转动,静
止在竖直位置。
被一粒石子击中后细棒获得角速度。
则棒转到水平位置时的角速度和角
加速度大小分别为
A.,;
B.,;
C.,;
D.,。
10.如图,质量为、半径为的圆盘,可无摩擦地绕水平轴转动,轻绳的一端系在圆
盘的边缘,另一端悬挂一质量为的物体。
则当物体由静止下落高度时,其速度为
A.;
B.;
C.;
D.。