第三章_刚体力学基础讲解

合集下载

第三章刚体力学基础

第三章刚体力学基础
(1)轴通过棒的一端并与棒垂直轴。z
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。

第3章刚体力学基础

第3章刚体力学基础

描述质点系转动的动力学方程
z
取惯性坐标系
dt
oxyz
刚体所受的对
转轴的力矩
x
o
M r F
定义:在垂直于转轴的平 面轴内的,距外离力dF的与乘力积线到转
y z轴为固定转轴
z
M
F
F F
r
垂直转轴的外力分量产生沿
d
转轴方向的力矩, 平行于转
轴的外力分量产生的力矩被
轴承支承力的力矩所抵消
一 、作用于定轴刚体的合外力矩
相对于定轴的合外力矩
(力对转轴的力矩)
M z M iz ri Fi sin i
i
i
即作用在各质元的 力矩的 z 分量之和
二、刚体定轴转动定理
由于刚体只能绕 z 轴转动, 引起转动的力矩只有z方向,
因此转动动力学方程
Mz
dLz dt
dL M
dt
Li
Ri
m
i
v
i
oo ri
mi vi
解:
z
J z mi ri2
i
m i
x
2 i
y
2 i
i
Jy Jx
x
o
yi
ri
m
x
i
i
y
例 均质圆盘:m, R . 求以直径为轴的转动惯量 解:
J 1 mR2 4
例3-6(P181) 挂钟摆锤的转动惯量
解:
o
m1 l
J
1 3
m1l 2
1 2
m2 R2
m2 l
R2
m2 R
例 计算钟摆的转动惯量。(已知:摆锤质量为m,半 径为r,摆杆质量也为m,长度为2r)

第3章 刚体力学

第3章 刚体力学

说明 ( 1)
M J , 与 M 方向相同.
(2) 为瞬时关系. (3) 转动中 M J 与平动中 F ma 地位相同.
第三章 刚体力学
如果刚体所受合力为零,同时 合力矩为零, 好,现在我们可以问一个问题: Fi 0 , Mi 0 则刚体会做什么样的运动?
R
2
dm m R
R
r
dr
一质量为m、半径为R的均匀圆盘,求通过盘中心O并与 盘面垂直的轴的转动惯量。 解:设盘质量面密度为 ,在盘上取半径为r,宽为dr的圆环
m π R2
R 2 0
dm 2 π rdr
3
J r dm
R
0
1 2 π R mR 2πσr dr 2 2
v v0 at 2 x x0 v0t 1 at 2 2 2 v v0 2a( x x0 )
ω ω0 βt θ θ 0 ω 0 t 12 β t 2 ω 2 ω 02 2 β ( θ θ 0 )
第三章 刚体力学
z
重要
刚体定轴转动的特点 O
第三章 刚体力学
5. 角速度正负的判断
0
0
逆时钟转动
顺时钟转动
第三章 刚体力学 (2)角量和线量的关系
z

s r
v r
an r 2
O
at r

dv d(r ) at r dt dt
(3)角量与线量的公式比较
x
质点匀变速直线运动
刚体绕定轴作匀变速转动
平 动 刚体:外力作用下形状和大小都不发生变化的物体。 转 动 二、刚体的运动形式 [实例]

理论力学第三章刚体力学

理论力学第三章刚体力学
d dt
线量和角量的对应
dr
dr v dt
d
d dt
dv a dt
d dt
6.欧勒角
1).欧勒角 章动 角 自转 角 Z轴位置由 θ,φ角决 定 进动 角
节线ON
0 0 2 0 2
2).欧勒运动学方程
在直角坐标系
x i y j z k
理 论 力 学
第三章 刚体运动
概述
1.刚体是一个理想模型,它可以看作是一种特
殊的质点组,这个质点组中任何两个质点之间
的距离不变.这使得问题大为简化,使我们能 更详细地研究它的运动性质,得到的结果对实 际问题很有用。 2.一般刚体的自由度为6.如果刚体运动受到约束, 自由度相应减少.
3.刚体的两种基本运动
刚体上任一点p的坐标分别为
v r ra a ra 而在系 a xy z r r ( r b a a b ra ) rb ra (rb ra )

r ra ra
2
drci (rci mi Jc ) dt i 1 n (e) (rci Fi ) Mc
n
i 1
简表为:
d Mc Jc dt
(6个方程正好确定刚体的6个独立变量)
刚体的动量矩 (角动量) n n ) 简表为: J J c J ci (ri mi vi ) rc mvc (rci mi vci
三.刚体的平衡
刚体平衡条件

(e) Fi 0
n i
n (e) Fi ) 0 (rci Mc i 1

第三章-刚体力学基础

第三章-刚体力学基础

薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O

刚体和流体

刚体和流体

y
角动量的方向: 位矢和动量的矢积方向. 特例: 如果质点绕参考点O作圆周运动
v p
O
L = r p = mv r
注意: 1.角动量与所取的惯性系有关. 2.角动量与参考点O的位置有关.
v r
第三章 刚体力学基础
质点对定轴的角动量
v v v v v L = r × p = r × mv
L = mvr = mr 2ω = Jω
(原点O在棒的左端点)
第三章 刚体力学基础
例题2: 一质量为m, 半径为R的均匀圆盘, 求通过盘中心并与 盘面垂直的轴的转动惯量. 解: dm = σdS = σ 2 π rdr
J = ∫ r dm = 2 πσ ∫ r dr
2
3
J = 2πσ ∫ r dr
3
R
R
r O
dr
πσ R 1 2 = = mR 2 2
v v v 加速度: 合外力矩: M z = ∑ ri × Fi v v v v v M z = ∑ ∆mi ri × aiτ + ∑ ∆mi ri × ain
v第三章v刚体力学基础 v ai = aiτ + ain
v 2 v v v v v 其中: ri × ain = 0 ri × aiτ = ri aiτ sin 90°k = ri β k v v 2 M z = ∑ ∆mi ri β 转动惯量 J v v 转动定律: M z = Jβ
θ ( rad) 角位移: ∆θ , dθ dθ −1 ( rad ⋅ s ) 方向右旋 ω= dt v
第三章 刚体力学基础
线速度与角速度之间的关系
r v v v dv d ω v v dr a= = ×r +ω× dt dt dt v 2 v = β reτ + ω ren

大学物理第三章刚体力学

大学物理第三章刚体力学

薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理

刚体力学基础第三章

刚体力学基础第三章

二、转动惯量J
对分立的质点系: J miri2
i
对刚体: 质量是连续分布
J r2dm
r 2dl 线分布,为线密度
J r 2ds 面分布,为面密度 r 2 dV 体分布,为体密度
z
dm
r
讨论
J r2dm
(1)转动惯量的物理意义:J表示刚体转动时惯性的大小
(2)转动惯量J的大小决定于
r 3dr
1 2
mR2
m
R 2
J
常 见 刚 体 的 转 动 惯 量
§3 刚体定轴转动定律
一、 力矩
使物体转动,必须给定一 个作用力,另外考虑转动与力 的作用点以及作用力的方向有 关,因此在研究物体转动中引
入力矩这一物理量。 (1)若刚体所受力 F在转动平面内
z
Od r
F
F
P
力臂:rsin = d 表示转轴到力作用线的垂直距离。
m
2(2
m
1
+
m
2
m 1+m 2
+
m
2
)g
T1
a m1 m1g T2 a m2 m2g
§4 力矩的功 动能定理
一、力矩的功
刚体在合外力矩作用下绕定轴转动而发生角位移时
d,A则力F矩 d对r刚体F作d了r功co。s F cos(900 )ds
F sin rd
Md
z
O d
dr
F
r P
元功:力矩对质点(或刚体)所作的 元功等于力矩和角位移的乘积
盘)。如A下降,B与水平桌面间的滑动摩擦系数为μ,
绳与滑轮之间无相对滑动,试求系统的加速度及绳中的
张力FT1和FT2。 受力分析 FT1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 刚体力学基础
§ 3.1 刚体 § 3.2 力矩 刚体定轴转动的描述 刚体定轴转动的转动定律
§ 3.3 刚体定轴转动的动能定理 § 3.4 刚体定轴转动的角动量定理和角动量守恒


1 首 页 上 页 下 页退 出
3.1 刚体
一、刚体的引入
刚体定轴转动的描述
刚体(rigid body) :即形状和大小完全不变的 物体。是一理想模型。 通常把刚体分成许多部分,每一部分都小到可 看作质点,叫作刚体的质元。 由于刚体不变形,各质元间距离不变。
2 首 页 上 页 下 页退 出
二、刚体的基本运动 刚体最基本的运动方式是平动和转动 。 1、刚体的平动 在运动过程中,若刚体内部任意两质元间的 连线在各个时刻的位置都和初始时刻的位置 保持平行,这样的运动称为刚体的平动.
3 首 页 上 页 下 页退 出
2、刚体的转动 若刚体上各个质元都绕同一直线作 圆周运动,这样的运动称作刚体的 转动(rotation),这条直线称为转 轴(这根轴可在刚体之内,也可在 刚体之外)。 非定轴转动:在刚体转动过程中,转轴的方 向或位置随时间变化。该转轴称为转动瞬 轴.如陀螺的旋进、车轮的滚动等。 定轴转动:转轴固定不动,即既不改变方向 又不发生平移。该转轴称为固定轴。
d t dt
6 首 页 上 页 下 页退 出
刚体定轴转动的特点: 所有质点的角量都相同 ; 质点的线量与该质点的轴矢径大小成正比 。
vi ri
ai ri
ani ri
2
7 首 页 上 页 下 页退 出
3.2 力矩
一、力矩
刚体定轴转动的转动定律
1、力对固定点的力矩 1)定义:作用于质点的 力对惯性系中某参考点的 力矩,等于力的作用点对 该点的位矢与力的矢积, 即
*:请注意与教材P27之例题2.4比较,其有两处不同。 其一 此处滑轮质量不可忽略,大小不可忽略,所以 要用到转动定律; 其二 绳与滑轮间无相对滑动,所以,滑轮两边之张 力不相等。 24
回首页 回上页 首 页 上 页 下 下一页 页退 出
例3-6N 如图2.37(a)所示,质量均为m的两物体A,B. A放在倾角 为α的光滑斜面上,通过定滑轮由不可伸长的轻绳与B相连.定滑轮是半 径为R的圆盘,其质量也为m.物体运动时,绳与滑轮无相对滑动.求绳中 张力 T1 和 T2 及物体的加速度a(轮轴光滑).
略轴的摩擦。求:(1) m1 、
m2的加速度;(2)滑轮轻且不可伸长)
22 首 页 上 页 下 页退 出
M
T1
/
N
R
解 对m1 、m2,滑轮作受力 分析, m1 、m2作平动,滑轮 作转动,
T2
/
(T1 T1 ,T2 T2)
T1
m1
m1g
a1
解 物体A,B,定滑轮受力图见图2.37(b).对于作平动的物体A,B,分 别由牛顿定律得
T1 mg sin maA ①
mg T2 maB
又 T1 T1 , T2 T2 .


对定滑轮,由转动定律得
T2 R T1R=J ④
25 首 页 上 页 下 页退 出
由于绳不可伸长,所以
J mi ri
对于单个质点
质点系
2
单位:千克· 米2(kg· m2)
J mr
n i 1
2
J mi ri 2
若物体质量连续分布,
J r dm
2 m
14 首 页 上 页 下 页退 出
注意: (1)刚体的转动惯量
与刚体的质量有关, 与刚体的质量分布有关, 与轴的位置有关。 (2)质量元的选取: 线分布 dm dx(或dl) 面分布 dm ds 体分布 dm dv
作定轴转动的刚体,其转动角加速度与外力对转轴 的力矩之和成正比,与刚体对转轴的转动惯量成反比。
其在定轴转动中的地位与牛顿定律在质 点运动中地位相当。
20 首 页 上 页 下 页退 出
转动定律说明了J是物体转动惯性大小的量度。因为:
M一定时,J增大则减小
说明:J越大的物体,保持原来转动状态的性质就越 强,转动状态越难改变,即转动惯性越大。
式中为力F到轴的距离 力对固定点的力矩为零的情况: 力F等于零, 力F的作用线与矢径r共线(力F的作用线穿过0点, 即,有心力对力心的力矩恒为零)。
10 首 页 上 页 下 页退 出
力对固定轴的力矩为零的情况: 若力的作用线与轴平行
若力的作用线与轴相交
则力对该轴无力矩作用
任一对作用力和反作用力(内力)对同点(同轴)的 力矩之和为零:
dm
0
x
dx
l
x
解:与上例做法相同,只是坐标原点由中点移至端点, 积分限改变。
1 3 1 2 J A x dx l Ml 0 3 3

l
2
17 首 页 上 页 下 页退 出
例3-3 求质量为M,半径为R的细圆环绕过圆心并 与环面垂直的轴的转动惯量 解:在细圆环上任取一质 元dm, dm到轴的距离为R,故
5 首 页 上 页 下 页退 出
在时刻t到t+Δt时间内的角位移Δθ与Δt之比称为 刚体的平均角速度

t
当Δt→0时,平均角速度的极限称为瞬时角速度,简 称角速度,用ω表示:
d lim dt t 0 t
平均角加速度
t
t 0
瞬时角加速度,简称角加速度 lim
dm dV 2 rdr h 2 dJ r dm
3
r
h
dr
h2 r dr
J
R 0
( M R 2 h )
1 1 4 2 3 h2 r dr h R MR 2 2
19 首 页 上 页 下 页退 出
四、刚体定轴转动的转动定律的应用
M J
9 首 页 上 页 下 页退 出
2、力对轴的矩: 力矩在x,y,z轴的分量式,或称力对 轴的矩。例如上面所列Mx,My,,Mz,即 为力对X轴、Y轴、Z轴的矩。
Mz
F r //

·
F
F
若设力F的作用点到Z轴的位矢为r,则力对Z轴的 力矩为
r sin F F M z rF sin rF sin rF
dl
R
dJ R dm
2
因所有质元到轴心的距离均为R,
J R dm MR
2 M
2
18 首 页 上 页 下 页退 出
例3 -4 求质量为M,半径为R的均质圆盘(或圆柱 )对过质心且与盘面垂直的转轴的转动惯量。 解:设圆盘厚为 h,则整个圆盘可看成是由无穷多个 半径为r,宽为dr的圆环所组成, 设体密度为
M 如一个外径和质量相同的实心圆柱与空心圆 = 筒,若 受力和力矩一样,谁转动得快些呢? J
M
M
21 首 页 上 页 下 页退 出
例 3- 5
质量为m1, R m3
m2 ( m1 > m2)的两物体,
通过一定滑轮用绳相连, 已知绳与滑轮间无相对滑 动,且定滑轮是半径为R、 质量为 m3的均质圆盘,忽
12 首 页 上 页 下 页退 出
切向方程: Fi sin i fi sin i mi ai mi ri
将切向方程的两边各乘以ri,可得
Fi ri sin i fi ri sin i mi ri
2
把上式对刚体所有质元求和,并考虑到各质元角加 速度相同,有
F r sin f r sin 因为 f r sin 0
M
o
r
F

M r F
m
力矩是矢量,M的方向垂直于r和 F所决定的平面 ,其指向用右手螺旋法则确定。
2)力矩的单位:
牛· 米(N· m)
8 首 页 上 页 下 页退 出
3)力矩的计算: M的大小、方向均与参考点的选择有关
M Fr sin ※在直角坐标系中,其表示式为 M r F ( xi yj zk ) ( Fx i Fy j Fz k )
M i 0 M j 0 ri f ij rj f ji
M i 0 M j 0 (rj ri ) f ji rji f ji 0
f ij f ji
f ji
rj
r i
f ij
11 首 页 上 页 下 页退 出
dm
l 2
x
M l
dx
l 2
x
解:在棒上任取一质量元
dm dx
线密度
于是
dJ x dm
2
l 3 2
J0
l 2 l 2
1 x dx x 3
2
l 2
1 3 1 2 l Ml 12 12
16 首 页 上 页 下 页退 出
例3 -2 求上述细棒对过棒之一端并与棒垂直的轴的 转动惯量.
m3 g
T2
m1 g T1 m1a T2 m2 g m2 a
m2 a2
T1R T2 R J
a R
1 2 J m3 R 2
23 首 页 上 页 下 页退 出
m2 g
解得
2( m1 m2 ) a g 2( m1 m2 ) m3 2( m1 m2 ) g [ 2( m1 m2 ) m3 ]R 4m1m2 m1m3 T1 g 2( m1 m2 ) m3 4m1m2 m2 m3 T2 g 2( m1 m2 ) m3
aA aB R
又 J 1 mR 2 2
相关文档
最新文档