第五章刚体力学参考答案
大学物理第五章刚体力学1

例:课本P182习题5.5
质量连续分布: J r2dm
dm为质量元,简称质元。其计算方法如下:
质量为线分布 dm dl 其中、、分
质量为面分布
dm ds
别为质量的线密 度、面密度和体
质量为体分布 dm dV 密度。
线分布
面分布
体分布
例1、求质量为m、半径为R的均匀圆环的转动 惯量。轴与圆环平面垂直并通过圆心。
a物对地=
g-a 3
0
a人对地=
2a
0 3
g
习题册 P12 典型例题4
典例4.一个质量为M半径为R的匀质球壳可 绕一光滑竖直中心轴转动。轻绳绕在球壳 的水平最大圆周上,又跨过一质量为m半径 为r的匀质圆盘,此圆盘具有光滑水平轴, 然后在下端系一质量也为m的物体,如图。 求当物体由静止下落h时的速度v。
B
已知滑轮对 o 轴的转动惯量
J=MR2/4 ,设人从静止开始以
相对绳匀速向上爬时,绳与滑
轮间无相对滑动,求 B 端重物
上升的加速度?
解:受力分析如图 由题意 a人=aB=a
由牛顿第二定律 由转动定律 :
人 : Mg T 2 Ma
B
:
T
1
1 4
Mg
1 Ma 4
① ②
对滑轮 :
(T2 -T1)R J
再利用 v 2ah 得
1
v
12mgh
2
4M 9m
练习1.一轻绳跨过两个质量为 m、半径为 r 的均匀圆盘状定滑轮, 绳的两端分别挂着质量为 2m 和 m 的重物,如图所示,绳与滑轮间 无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为 mr2/2, 将由 两个定滑轮以及质量为 2m 和 m 的重物组成的系统从静止释放,求 重物的加速度和两滑轮之间绳内的张力。
第五章_刚体力学_习题解答

5.1、一长为l 的棒AB ,靠在半径为r 的半圆形柱面上,如图所示。
今A 点以恒定速度0v沿水平线运动。
试求:(i)B 点的速度B v;(ii)画出棒的瞬时转动中心的位置。
解:如图,建立动直角系A xyz -,取A 点为原点。
B A AB v v r ω=+⨯ ,关键是求ω法1(基点法):取A 点为基点,sin C A AC A CO A A v v r v v v v ωθ=+⨯=+=+即sin AC A r v ωθ⨯=,AC r ω⊥ ,化成标量为ω在直角三角形OCA ∆中,AC r rctg θ=所以200sin sin sin cos A AC v v v r rctg r θθθωθθ===即20sin cos v k r θωθ=取A 点为基点,那么B 点的速度为:2002300sin [(cos )sin ]cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i jr rθωθθθθθθ=+⨯=+⨯-+=--法2(瞬心法):如图,因棒上C 点靠在半圆上,所以C 点的速度沿切线方向,故延长OC ,使其和垂直于A 点速度线交于P 点,那么P 点为瞬心。
在直角三角形OCA ∆中,sin OA r r θ=在直角三角形OPA ∆中,2cos sin AP OA r r r ctg θθθ==02cos ()sin A PA PA PA r v r k r j r i i v i θωωωωθ=⨯=⨯-===,即20sin cos v r θωθ= 取A 点为基点,那么B 点的速度为:2002300sin [(cos )sin ]cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i jr rθωθθθθθθ=+⨯=+⨯-+=--5.2、一轮的半径为r ,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度0v前进。
《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
第05章刚体力学基础学习知识补充

第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
大学物理第五章习题答案

大学物理第五章习题答案大学物理第五章习题答案第一题:题目:一个质量为m的物体以速度v水平运动,撞到一个质量为M的静止物体,两物体发生完全弹性碰撞,求碰撞后两物体的速度。
解答:根据动量守恒定律,碰撞前后动量的总和保持不变。
设碰撞后物体m的速度为v1,物体M的速度为V1,则有mv = mv1 + MV1。
由于碰撞是完全弹性碰撞,动能守恒定律也成立,即(mv^2)/2 = (mv1^2)/2 + (MV1^2)/2。
将第一个方程代入第二个方程,可得到关于v1和V1的方程组。
解方程组即可得到碰撞后两物体的速度。
第二题:题目:一个质量为m的物体以速度v1撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求物体M的速度。
解答:同样利用动量守恒定律和动能守恒定律,设碰撞后物体m的速度为v2,物体M的速度为V2,则有mv1 = mv2 + MV2,以及(mv1^2)/2 = (mv2^2)/2 + (MV2^2)/2。
将第一个方程代入第二个方程,解方程组即可得到物体M的速度V2。
第三题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后两物体粘在一起,求粘在一起后的速度。
解答:根据动量守恒定律,碰撞前后动量的总和保持不变。
设碰撞后两物体的速度为V,则有mv = (m+M)V。
解方程即可得到粘在一起后的速度V。
第四题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求物体M的速度。
解答:同样利用动量守恒定律和动能守恒定律,设碰撞后物体m的速度为v2,物体M的速度为V,则有mv = mv2 + MV,以及(mv^2)/2 = (mv2^2)/2 +(MV^2)/2。
将第一个方程代入第二个方程,解方程组即可得到物体M的速度V。
第五题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求碰撞后两物体的动能变化。
解答:碰撞前物体m的动能为(mv^2)/2,碰撞后物体m的动能为(mv2^2)/2,两者之差即为动能变化。
刚体力学参考答案

mg —sin f A l sin三个独立方程有四个未知数,不能唯一确定。
【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。
设L 为每一子弹相对与 O 点的角动量大小,3为子弹射入前圆盘的角速度,3为子弹射入第五章刚体力学参考答案(2014)—、选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为 m 和m 的物体(m v m ),如图5-7所示•绳与轮之间无相对滑动•若某时刻滑轮 沿逆时针方向转动,则绳中的张力 (A)处处相等. (B) 左边大于右边. (C)右边大于左边. (D) 哪边大无法判断. 【提示】:逆时针转动时角速度方向垂直于纸面向外 ,由于m v m ,实际上滑轮在作减 速转动,角加速度方向垂直纸面向内 ,设滑轮半径为 R,受右端绳子向下拉 力为T 2,左端绳子向下拉力为 T i ,对滑轮由转动定律得:(T 2-T I )R=J [D ]2、【基础训练3】如图5-8所示,一质量为 m 的匀质细杆AB 壁上,B 端置于粗糙水平地面上而静止•杆身与竖直方向成 角,则 1 1(A)为 mg pos . (B) 为 mg g4 2 (C) 为 m®n m2m 1图5-7 A 端靠在粗糙的竖直墙 A 端对墙壁的压力大 .(D) 不能唯一确定 图5-8■:::;SKB 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则有:NAfBAN B mgN A lcon[C]3、基础训练(7) 一圆盘正绕垂直于盘面的水平光滑固定轴 两个质量相同,速度大小相同,方向相反并在一条直线上的子弹, 内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (C)减小. (B) (D)不变. 不能确定. O 转动,如图5-11射来子弹射入圆盘并且留在盘m<J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒[C ]4、【自测提高4】光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆,可绕过其 中点且垂直于杆的竖直光滑固定轴 0自由转动,其转动惯量为 [mL ,起初杆静止•桌面上3有两个质量均为 m 的小球,各自在垂直于杆的方向上, 正对着杆的一端, 以相同速率v 相向运动,如图5-19所示•当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在 一起转动,则这一系统碰撞后的转动角速度应为…、 2v4v 6v 8v 12v (A)(B)• (C)• (D)(E)•3L5L7L9L7Lv y$ vO俯视图图 5-19【提示】:视两小球与细杆为一系统, 碰撞过程中系统所受合外力矩为零, 满足角动量守恒条件, 所以2 21 2lmv lmv [ml ml m(2l)]12可得答案(C )[A ] 5、【自测提高7】质量为m 的小孩站在半径为 R 的水平平台边缘上•平台可以绕通过 其中心的竖直光滑固定轴自由转动,转动惯量为 J .平台和小孩开始时均静止•当小孩突然 以相对于地面为 v 的速率在台边缘沿逆时针转向走动时, 旋转方向分别为【提示】:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:一 ,口 Rmv mR 2,v 、0 Rmv J 可得 ---------------- ------ (一)。
(完整word版)理论力学课后答案第五章(周衍柏)(word文档良心出品)

第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q &是不是只相差一个乘数m ?为什么a p 比aq &更富有意义? 5.4既然aq T &∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d &是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=ii i r F W ρρδδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11ρρ知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq &不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
理论力学(周衍柏)习题答案,第五章

第五章习题解答5.1解如题5.1.1图杆受理想约束,在满足题意的约束条件下杆的位置可由杆与水平方向夹角所唯一确定。
杆的自由度为1,由平衡条件:即mg y =0①变换方程y=2rcos sin-= rsin2②故③代回①式即因在约束下是任意的,要使上式成立必须有:rcos2-=0④又由于cos=故cos2=代回④式得5.2解如题5.2.1图三球受理想约束,球的位置可以由确定,自由度数为1,故。
得由虚功原理故①因在约束条件下是任意的,要使上式成立,必须故②又由得:③由②③可得5.3解如题5.3.1图,在相距2a的两钉处约束反力垂直于虚位移,为理想约束。
去掉绳代之以力T,且视为主动力后采用虚功原理,一确定便可确定ABCD的位置。
因此自由度数为1。
选为广义坐。
由虚功原理:w①又取变分得代入①式得:化简得②设因在约束条件下任意,欲使上式成立,须有:由此得5.4解自由度,质点位置为。
由①由已知得故②约束方程③联立②③可求得或又由于故或5.5解如题5.5.1图按题意仅重力作用,为保守系。
因为已知,故可认为自由度为1.选广义坐标,在球面坐标系中,质点的动能:由于所以又由于故取Ox为零势,体系势能为:故力学体系的拉氏函数为:5.6解如题5.6.1图.平面运动,一个自由度.选广义坐标为,广义速度因未定体系受力类型,由一般形式的拉格朗日方程①在广义力代入①得:②在极坐标系下:③故将以上各式代入②式得5.7解如题5.7.1图又由于所以①取坐标原点为零势面②拉氏函数③代入保守系拉格朗日方程得代入保守系拉格朗日方程得5.8解:如图5.8.1图.(1)由于细管以匀角速转动,因此=可以认为质点的自由度为1.(2)取广义坐标.(3)根据极坐标系中的动能取初始水平面为零势能面,势能:拉氏函数①(4),代入拉氏方程得:(5)先求齐次方程的解.②特解为故①式的通解为③在时:④⑤联立④⑤得将代回式③可得方程的解为:5.9解如题5.9.1图.(1)按题意为保守力系,质点被约束在圆锥面内运动,故自有度数为2. (2)选广义坐标,.(3)在柱坐标系中:以面为零势能面,则:拉氏函数-①(4)因为不显含,所以为循环坐标,即常数②对另一广义坐标代入保守系拉氏方程③有得④所以此质点的运动微分方程为(为常数)所以5.10解如题5.10.1图.(1)体系自由度数为2.(2)选广义坐标(3)质点的速度劈的速度故体系动能以面为零势面,体系势能:其中为劈势能.拉氏函数①(4)代入拉格郎日方程得:②代入拉格郎日方程得③联立②,③得5.11 解如题5.11.1图(1)本系统内虽有摩擦力,但不做功,故仍是保守系中有约束的平面平行运动,自由度(2)选取广义坐标(3)根据刚体力学其中绕质心转动惯量选为零势面,体系势能:其中C为常数.拉氏函数(4)代入保守系拉氏方程得:对于物体,有5.12解如题5.12.1图.(1)棒作平面运动,一个约束,故自由度. (2)选广义坐标(3)力学体系的动能根据运动合成又故设为绕质心的回转半径,代入①得动能②(4)由③(其中)则④因为、在约束条件下任意且独立,要使上式成立,必须:⑤(5)代入一般形式的拉氏方程得:⑥又代入一般形式的拉氏方程得:⑦⑥、⑦两式为运动微分方程(6)若摆动角很小,则,代入式得:,代入⑥⑦式得:⑧又故代入⑧式得:(因为角很小,故可略去项)5.13解如题5.13.1图(1)由于曲柄长度固定,自由度.(2)选广义坐标,受一力矩,重力忽略,故可利用基本形式拉格朗日方程:①(3)系统动能②(4)由定义式③(5)代入①得:得5.14.解如题5.14.1图.(1)因体系作平面平行运动,一个约束方程:(2)体系自由度,选广义坐标.虽有摩擦,但不做功,为保守体系(3)体系动能:轮平动动能轮质心转动动能轮质心动能轮绕质心转动动能.①以地面为零势面,体系势能则保守系的拉氏函数②(1)因为不显含,得知为循环坐标.故=常数③开始时:则代入得又时,所以5.15解如题5.15.1图(1)本系统作平面平行运动,干限制在球壳内运动,自由度;选广义坐标,体系摩擦力不做功,为保守力系,故可用保守系拉氏方程证明①(2)体系动能=球壳质心动能+球壳转动动能+杆质心动能+杆绕中心转动动能②其中代入②得以地面为零势面,则势能:(其中为常数)(3)因为是循环坐标,故常熟③而代入①式得④联立③、④可得(先由③式两边求导,再与④式联立)⑤⑤试乘并积分得:又由于当5.16解如题图5.16.1.(1)由已知条件可得系统自由度.(2)取广义坐标.(3)根据刚体力学,体系动能:①又将以上各式代入①式得:设原点为零势能点,所以体系势能体系的拉氏函数②(1)因为体系只有重力势能做工,因而为保守系,故可采用③代入③式得即(5)解方程得5.17解如题5.17.1图(1)由题设知系统动能①取轴为势能零点,系统势能拉氏函数②(2)体系只有重力做功,为保守系,故可采用保守系拉氏方程.代入拉氏方程得:又代入上式得即③同理又代入上式得④令代入③④式得:欲使有非零解,则须有解得周期5.18解如题5.18.1图(1)系统自由度(2)取广义坐标广义速度(3)因为是微震动,体系动能:以为势能零点,体系势能拉氏函数(4)即①同理②同理③设代入①②③式得欲使有非零解,必须解之又故可得周期5.19解如题5.19.1图(1)体系自由度(2)取广义坐标广义速度(3)体系动能体系势能体系的拉氏函数(4)体系中只有弹力做功,体系为保守系,可用①将以上各式代入①式得:②先求齐次方程③设代入③式得要使有非零,必须即又故通解为:其中又存在特解有②③式可得式中及为积分常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心搜集整理,只为你的需要
(2)
将(1)式代入(2)有:
(3)
(2)欲使盘对地静止,则式(3)必为零,即 。所以, 。
式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致。
2、【(自测提高19】一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R,质量为m/4,均匀分布在其边缘上.绳子的A端有一质量为m的人抓住了绳端,而在绳的另一端B系了一质量为m/2的重物,如图5-27所示。设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J=mR2/4)
解:系统所受的合外力矩为零,角动量守恒:
碰前的角动量为:
碰后的角动量为:
所以:
得
图5-25
4、【自测提高17】如图5-25所示,一质量均匀分布的圆盘,质量为 ,半径为R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心O的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上。求:(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O的竖直轴的转动惯量为 ,忽略子弹重力造成的摩擦阻力矩)
【提示】:
图5-21
5、【自测提高12】一根质量为m、长为l的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为 ,则杆转动时受的摩擦力矩的大小为=μmgl/2
【提示】:
在细杆长x处取线元dx,它所受到的摩擦力矩 ,则
三、计算题
1、【基础训练16】一转动惯量为J的圆盘绕一固定轴转动,起初角速度为 ,设它所受阻力矩与转动角速度成正比,即 (k为正的常数),求圆盘的角速度从 变为 时所需时间.
解:(1)以子弹和圆盘为系统,设 为碰撞后瞬间的角加速度,由角动量守恒定律得:
(2)圆盘的质量面密度 ,在圆盘上取一半径为r,宽为dr的小环带,质量元
此环带受到的摩擦阻力矩
则
根据可推出:
所以
5、【自测提高18】如图5-26所示,空心圆环可绕光滑的竖直固定轴AC自由转动,转动惯量为J0,环的半径为R,初始时环的角速度为0.质量为m的小球静止在环内最高处A点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O在同一高度的B点和环的最低处的C点时,环的角速度及小球相对于环的速度各为多大(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r<<R.)
解: 根据
可得 代入 有:
所以得
2、【基础训练18】如图5-17所示、质量分别为m和2m、半径分别为r和2r的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr2/2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m的重物,求盘的角加速度的大小.
解:受力情况如图5-17, ,
【提示】:
逆时针转动时角速度方向垂直于纸面向外,由于m1<m2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,设滑轮半径为R,受右端绳子向下拉力为T2,左端绳子向下拉力为T1,对滑轮由转动定律得:(T2-T1)R=J
[D]2、【基础训练3】如图5-8所示,一质量为m的匀质细杆AB,A端靠在粗糙的竖直墙壁上,B端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A端对墙壁的压力大
(A)为 mgcos.(B)为 mgtg.(C)为mgsin.(D)不能唯一确定
图5-8
【提示】:
因为细杆处于平衡状态,它所受的合外力为零,以B为参考点,外力矩也是平衡的,则有:
三个独立方程有四个未知数,不能唯一确定。
图5-11
[C]3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度
(1)
(2)
(3)
(4)
(5)
联立以上几式解得: 图5-17
3、【自测提高16】如图5-24所示,长为l的轻杆,两端各固定质量分别为m和2m的小球,杆可绕水平光滑固定轴O在竖直面内转动,转轴O距两端分别为 l和 l.轻杆原来静止在竖直位置.今有一质量为m的小球,以水平速度 与杆下端小球m作对心碰撞,碰后以 的速度返回,试求碰撞后轻杆所获得的角速度.
(A) 增大. (B) 不变.
(C) 减小. (D) 不能确定.
【提示】:
把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。
设 为每一子弹相对与O点的角动量大小,ω0为子弹射入前圆盘的角速度,ω为子弹射入后的瞬间与圆盘共同的角速度,J为圆盘的转动惯量,J子弹为子弹转动惯量,据角动量守恒定律有:
图5-16
求:(1) 圆盘对地的角速度.
(2) 欲使圆盘对地静止,人应沿着 圆周对圆盘的速度 的大小及方向
解:(1)设当人以速率v沿相对圆盘转动相反的方向走动时,
圆盘对地的绕轴角速度为ω,则人对地的绕轴角速度为
(1)
视人与盘为系统,所受对转轴合外力矩为零,系统的角动量守恒,设盘的质量为M,则人的质量为M/10,有:
【提示】:图5-14
由转动定律得:
(1)
(2)
(3)
(4)
联立以上4式,可解得:
4、【自测提高9】一长为l、质量可以忽略的直杆,两端分别固定有质量为2m和m的小球,杆可绕通过其中心O且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度,处于静止状态,如图5-21所示.释放后,杆绕O轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M= ,此时该系统角加速度的大小= .
[C]4、【自测提高4】光滑的水平桌面上,有一长为2L、质量为m的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O自由转动,其转动惯量为 mL2,起初杆静止.桌面上有两个质量均为m的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v相向运动,如图5-19所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为
(A) ,顺时针. (B) ,逆时针.
(C) ,顺时针. (D) ,逆时针.
【提示】:
视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:
可得 。
二、填空题
1、【基础训练8】绕定轴转动的飞轮均匀地减速,t=0时角速度为 ,t=20s时角速度为 ,则飞轮的角加速度 rad/s2,t=0到t=100 s时间内飞轮所转过的角度 250rad.
【提示】:
飞轮作匀变速转动,据 ,可得出:
据 可得结果。
2、【基础训练10】如图5-13所示,P、Q、R和S是附于刚性轻质细杆上的质量分别为4m、3m、2m和m的四个质点,PQ=QR=RS=l,则系统对 轴的转动惯量为50ml2。
【提示】:
据 有:
图5-13
3、【基础训练12】如图5-14所示,滑块A、重物B和滑轮C的质量分别为mA、mB和mC,滑轮的半径为R,滑轮对轴的转动惯量J= mCR2.滑 块A与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动.滑块A的加速度
(A) .(B) .(C) .(D) .(E) .
图5-19
【提示】:
视两小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件,所以
可得答案(C)
[A]5、【自测提高7】质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为
式中vB表示小球在B点时相对地面的竖直分速度,也等于它相对于环的速度.代入得:
当小球滑到C点时,由角动量守恒定律,系统的角速度又回复至0,又由机械能守恒定律可知,小球在C的动能完全由在A点的重力势能转换而来.所以:
,
四、附加题
1、【基础训练17】在半径为R的具有光滑竖直固定中心轴的水平圆盘上,有一人静止站立在距转轴为 处,人的质量是圆盘质量的1/10.开始时盘载人对地以角速度 匀速转动,现在此人垂直圆盘半径相对于盘以速率v沿与盘转动相反方向作圆周运动,如图5-16所示.已知圆盘对中心轴的转动惯量为 .
解:选小球和环为系统.运动过程中小球虽受重力作用,但重力方向与转轴平行,对绕轴转动不起作用,系统所受的对转轴的合外力矩为零,故系统对该轴的角动量守恒.即系统起初的角动量J00与小球滑到B点时系统角动量相同,
J00=(J0+mR2)
所以 图5-26
又因环的内壁和小球都是光滑,只有保守力做功,系统机械能守恒.取过环心的水平面为势能零点,则有
第五章刚体力学参考答案(2014)
一、选择题
[C]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力
图5-7
(A)处处相等.(B)左边大于右边.
(C)右边大于左边.(D) 哪边大无法判断.