最新第五章刚体力学参考答案资料
第05章刚体力学基础学习知识补充

第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
刚体力学参考答案

mg —sin f A l sin三个独立方程有四个未知数,不能唯一确定。
【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。
设L 为每一子弹相对与 O 点的角动量大小,3为子弹射入前圆盘的角速度,3为子弹射入第五章刚体力学参考答案(2014)—、选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为 m 和m 的物体(m v m ),如图5-7所示•绳与轮之间无相对滑动•若某时刻滑轮 沿逆时针方向转动,则绳中的张力 (A)处处相等. (B) 左边大于右边. (C)右边大于左边. (D) 哪边大无法判断. 【提示】:逆时针转动时角速度方向垂直于纸面向外 ,由于m v m ,实际上滑轮在作减 速转动,角加速度方向垂直纸面向内 ,设滑轮半径为 R,受右端绳子向下拉 力为T 2,左端绳子向下拉力为 T i ,对滑轮由转动定律得:(T 2-T I )R=J [D ]2、【基础训练3】如图5-8所示,一质量为 m 的匀质细杆AB 壁上,B 端置于粗糙水平地面上而静止•杆身与竖直方向成 角,则 1 1(A)为 mg pos . (B) 为 mg g4 2 (C) 为 m®n m2m 1图5-7 A 端靠在粗糙的竖直墙 A 端对墙壁的压力大 .(D) 不能唯一确定 图5-8■:::;SKB 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则有:NAfBAN B mgN A lcon[C]3、基础训练(7) 一圆盘正绕垂直于盘面的水平光滑固定轴 两个质量相同,速度大小相同,方向相反并在一条直线上的子弹, 内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (C)减小. (B) (D)不变. 不能确定. O 转动,如图5-11射来子弹射入圆盘并且留在盘m<J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒[C ]4、【自测提高4】光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆,可绕过其 中点且垂直于杆的竖直光滑固定轴 0自由转动,其转动惯量为 [mL ,起初杆静止•桌面上3有两个质量均为 m 的小球,各自在垂直于杆的方向上, 正对着杆的一端, 以相同速率v 相向运动,如图5-19所示•当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在 一起转动,则这一系统碰撞后的转动角速度应为…、 2v4v 6v 8v 12v (A)(B)• (C)• (D)(E)•3L5L7L9L7Lv y$ vO俯视图图 5-19【提示】:视两小球与细杆为一系统, 碰撞过程中系统所受合外力矩为零, 满足角动量守恒条件, 所以2 21 2lmv lmv [ml ml m(2l)]12可得答案(C )[A ] 5、【自测提高7】质量为m 的小孩站在半径为 R 的水平平台边缘上•平台可以绕通过 其中心的竖直光滑固定轴自由转动,转动惯量为 J .平台和小孩开始时均静止•当小孩突然 以相对于地面为 v 的速率在台边缘沿逆时针转向走动时, 旋转方向分别为【提示】:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:一 ,口 Rmv mR 2,v 、0 Rmv J 可得 ---------------- ------ (一)。
大学物理第五章习题答案

L
o
y
x
22
在锥体上 z 坐标处任取半径为 r高为 dz 的小柱体,则
L z 2 dm dv r dz ( R ) dz L 根据质心定义得
2
z
1 zC M
L
0
1 zdm M
L
L
0
L z 2 z ( R ) dz L
r
dz
L
R ML2 0 L L R 2 L 2 2 3 x [ zL dz 2 Lz dz z dz ] 2 0 0 0 ML R 2 L4 2 L4 L4 R 2 2 3 M L [ ] L L 2 ML 2 3 4 12 M 12 M 4
11
如果一个长度已知的不规则物体的重量超过一个弹簧秤的最大 量度,问怎样用这弹簧秤称出该物体的重量? F 上图,根据合力矩为零得
Gx Fl
N
下图,根据合力矩为零得
F l G(l x )
x
F
l
整理可得:
G F F
G
N
G
课后习题
12
5-3:静止的电动机皮带轮半径为 5 cm,接通电源后做匀变速 转动,30 s 后转速达到152 rad / s,求: 1)30 s 内电动机皮带轮转过的转数; 2)通电后 20 s 时皮带轮的角速度; 3)通电后 20 s 时皮带轮边缘上一点的速度、切向加速度和法 向加速度。 解:皮带轮的角加速度为 152 t 0 t t 5 (rad/s 2 )
8
来复线的作用是增加炮弹的射程和准确性。由于炮弹射出时 绕自身轴线高速转动,空气阻力产生的对质心的力矩使炮弹 围绕前进方向产生进动效应,弹头的轴线始终围绕着弹道切 线向前且做锥形运动,从而能克服空气阻气,保证弹头稳定 地向前飞行,避免大的偏离,提高射程与准确性。
5《学习指南 试题精解》 第五章 刚体力学

第5章 刚体力学5.1 本章要求:1、通过质点在平面内的运动情况理解角动量、动量矩和角动量守恒定律,了解转动惯量的概念;2、理解刚体的定轴转动的转动定律和刚体在定轴转动情况下的角动量定理和角动量守恒定律;3、能应用角动量定理和角动量守恒定律解简单的刚体运动的力学问题。
5.2 内容提要1、质点的角动量v r m P r L ⨯=⨯=;2、质点的角动量定理作用于质点的冲量矩等于质点的角动量的增量。
积分形式00L L d dt LL tt -==⎰⎰ ,微分形式dtd M =外 3、角动量守恒定律如果某一固定点,质点所受合外力矩为零,则此质点对该固定点的角动量矢量保持不变。
则0=dtLd , ∑=ii L L = 常矢量 4、刚体物体内任意两点间的距离在外力作用下始终保持不变,从而其大小和形状都保持不变的物体,称为刚体。
刚体也是物体的一种理想模型。
5、平动 刚体运动时,连接刚体中任意两点的直线始终保持它的方位不变。
这种运动称为刚体的平动或平移。
6、转动刚体运动时,如果刚体内各点都绕同一直线作圆周运动,这种运动称为刚体的转动;这一直线称为转轴。
如果转轴相对于所取的参考系是固定不动的,就称为定轴转动。
如果转轴上一点静止于参考系,而转动的方位在变动,这种转动称为定点转动。
刚体的一般运动,可以看作平动和转动所合成。
7、质心质心是与质点系的质量分布有关的一个代表点,它的位置在平均意义上代表着质点分布的中心。
对于有许多质点组成的系统,如果用i m 和i r 表示第i 个质点的质量和位矢,用c r 表示质心的位矢,则有Mrm r iii c ∑=,式中∑=ii m M 为质点系的总质量。
质心位置的坐标为:Mzm z M ym y M xm x iii c iii c iii c ∑∑∑===,,。
对于质量连续性分布的物体,质心的位矢为⎰=Mrdmr c其坐标为⎰⎰⎰===zdm Mz ydm M y xdm M x c c c 1,1,1。
第五章 刚体力学基础

第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A端并嵌入其内。
那么碰撞后A 端的速度大小: (A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球L的线速度:(A)B A v v = (B) B A v v <(C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
大学物理第五章和第六章习题答案

大学物理习题集(上)专业班级 姓名_ 学号_第五章 刚体的定轴转动一.选择题1.关于刚体对轴的转动惯量,下列说法中正确的是[ C ](A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2. 均匀细棒 OA 可绕通过某一端 O 而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自 由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?[ A ](A )角速度从小到大,角加速度从大到小。
A(B )角速度从小到大,角加速度从小到大。
(C )角速度从大到小,角加速度从大到小。
(D )角速度从大到小,角加速度从小到大。
3. 如图所示,一圆盘绕水平轴 0 做匀速转动,如果同时相向地射来两个质量相同、速度大小相同,且沿同一直线运动的子弹。
子弹射入圆盘均留在盘内,则 子弹射入后的瞬间,圆盘的角速度将 [ B ](A )增大; (B )减小; (C )不变; (D )无法确定。
解答 以圆盘和两子弹为系统,外力矩为零,系统的角动量守恒。
按题意, 两个子弹的初始角动量(对 0 轴之和为零。
两子弹留在圆盘内,增大了圆盘的 转动惯量。
设圆盘的转动惯为 J ,转动的角速度为 ω0 ,则有J ω0 = ( J + ∆J )ωω0 > ω有速度减小,所以应选(B )4. 一轻绳绕在具有水平转轴的定滑轮上,绳下端挂物体,物体的质量为 m ,此时滑轮的角加速度为 a 。
若将物体卸掉,而用大小等于 mg 、方向向下的力拉绳子,则滑轮的角加速度将[ A ](A)变大; (B )不变; (C )变小; (D )无法判断。
解答如图 5-4(a)所示,设滑轮半径为 R,转动惯量为 J。
当绳下滑挂一质量为m 的物体时,受绳的张力F T 和重力W=mg 作用,加速度a 铅直向下。
第五章刚体力学-副本

第五章 刚体力学5-1 作定轴转动的刚体上各点的法向加速度,既可写为2n va R=,这表示法向加速度的大小与刚体上各点到转轴的距离R 成反比;也可以写为2n a R ω=,这表示法向加速度的大小与刚体上各点到转轴的距离R 成正比。
这两者是否有矛盾?为什么?解: 没有矛盾。
根据公式 2n va R=,说法向加速度的大小与刚体上各点到转轴的距离R 成反比,是有条件的,这个条件就是保持v 不变;根据公式2n a R ω=,说法向加速度的大小与刚体上各点到转轴的距离R 成正比,也是有条件的,条件就是保持ω不变。
5-2一个圆盘绕通过其中心并与盘面相垂直的轴作定轴转动,当圆盘分别在恒定角速度和恒定角加速度两种情况下转动时,圆盘边缘上的点是否都具有法向加速度和切向加速度?数值是恒定的还是变化的? 解:设圆盘的角速度为ω,角加速度为α,则:(1)圆盘以恒定角速度转动时:()20n a R d R dv a dt dt τωω⎧=⎪⎨===⎪⎩0a τ=、n a 数值均是恒定的。
(2)圆盘以恒定角加速度转动时:00tdt t ωωαωα=+=+⎰ (其中0ω为0t =时圆盘转动的角速度)()()220n a R t R d R dv a R dt dt τωωαωα⎧==+⎪∴⎨===⎪⎩n a 数值是变化的、而a τ数值均是恒定的。
5-3 原来静止的电机皮带轮在接通电源后作匀变速转动,30 s 后转速达到1152rad s -⋅ 。
求:(1)在这30 s 内电机皮带轮转过的转数;(2)接通电源后20 s 时皮带轮的角速度;(3)接通电源后20 s 时皮带轮边缘上一点的线速度、切向加速度和法向加速度,已知皮带轮的半径为5.0 cm 。
解:电机作匀速转动,所以角加速度α为常量()00ω=d dt ωα=0t d t t ωαα∴==⎰ 故:21525.0730rad s t ωα-===⋅而:d dt θω= 20012t t dt tdt t θωαα∴===⎰⎰(1) 2211152302280362.92230t rad θα==⨯⨯= 转(2)'15.0720101.3t rad s ωα-==⨯⋅ (3)''15.07v R m s ω-==⋅225.075100.254a R m s τα--==⨯⨯=⋅ 2'2222101.3510513.1n va R m s Rω--===⨯⨯=⋅ 5-4 一飞轮的转速为1250rad s -⋅ ,开始制动后作匀变速转动,经过90 s 停止。
第五章 刚体力学参考答案

一、选择题[ C ]1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB .图5-18参考答案:设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB .对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB[ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为 41mg cos θ. (B)为21mg tg θ.(C) 为 mg sin θ. (D) 不能唯一确定.[ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-8mm图5-11参考答案:把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。
设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0[ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ⎪⎭⎫⎝⎛=RJ mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=RJ mR v2ω,逆时针. (C) ⎪⎭⎫⎝⎛+=R mRJ mRv 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.参考答案:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-J ω 可得结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所受到的合外力矩的大小 M= mgl ,此时该系统角加速度的大小
2g
=.
3l
参考答案: 力矩: M 2mgl mgl mgl
据刚体定轴转动M =J 有:
M
mgl
2g
J 2m( l )2 ml2 3l 2
2m O
m
图 5-21
名师整理
优秀资源
三、 计算题
1、一转动惯量为 J 的圆盘绕一固定轴转动, 起初角速度为 0 .设它所受阻力矩与转动角速
名师整理
优秀资源
第五章 刚体力学参考答
一、选择题 [ C ] 1、如图所示, A、 B 为两个相同的绕着轻绳的
定滑轮. A 滑轮挂一质量为 M 的物体, B 滑轮受拉力 F,而 A 且 F= Mg.设 A、 B 两滑轮的角加速度分别为 A 和 B,不计
滑轮轴的摩擦,则有 (A) A= B.
(B) A> B.
地面为 v 的速率在台边缘沿逆时针转向走动时, 则此平台相对地面旋转的角速度和旋转方向
分别为
mR2 v
mR2 v
(A)
,顺时针. (B)
,逆时针.
JR
JR
mR2 v
(C)
J
mR2
,顺时针.
R
(D)
mR2 v J mR2 R ,逆时针.
参考答案:
视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-Jω 可得结论。
的四个质点, PQ= QR= RS= l,则系统对 OO 轴的转动惯量为 50ml 2 .
O′
参考答案:
据J
mi ri 2 有:
J 4m(3l )2 3m(2l )2 2ml2 0 50ml 2
PQ R
S
R
RO
图 5-13
8、 一飞轮以 600 rev/min 的转速旋转,转动惯量为 2.5 kg ·m2,现加一恒定的制动力矩使 飞轮在 1 s 内停止转动,则该恒定制动力矩的大小 M= 157N.m.
1
(A) 为 mgcos .
4
(C) 为 mgsin .
1
(B) 为 mgtg .
2
(D) 不能唯一确定.
图 5-8
参考答案:
因为细杆处于平衡状态,它所受的合外力为零,以
NA=f B
f A+NB=mg
l mg sin
2
f Al sin
N Al cos
三个独立方程有四个未知数,不能唯一确定。
B 为参考点,外力矩平衡可有:
[ C ]5、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴
O 旋转,初
始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,
则在碰撞过程中对细杆与小球这一系统
(A) 只有机械能守恒.
O
(B) 只有动量守恒.
(C) 只有对转轴 O 的角动量守恒.
(D) 机械能、动量和角动量均守恒.
l
0
m l
gxdx
1 2
mgl
10、一长为 l 、质量可以忽略的直杆,两端分别固定有质量为
2m 和 m 的小球,杆可绕通过
其中心 O 且与杆垂直的水平光滑固定轴在铅直平面内转动. 开始杆与水平方向成某一角度 ,
处于静止状态,如图 5-19 所示.释放后,杆绕 O 轴转动.则当杆转到水平位置时,该系统
参考答案 :
把三者看作同一系统时 , 系统所受合外力矩为零 , 系统角动量守恒。
每一子弹相对固定轴 O的角动量大小 . 故由角动量守恒定律得 :
J
L-L=(J+J 子弹 )
设 L为
[ A ]4 、质量为 m的小孩站在半径为 R的水平平台边缘上.平台可以绕通过其中心的
竖直光滑固定轴自由转动,转动惯量为 J.平台和小孩开始时均静止.当小孩突然以相对于
图 5-10
参考答案:
视小球与细杆为一系统, 碰撞过程中系统所受合外力矩为零, 动量和机械能守恒的条件,故只能选( C)
满足角动量守恒条件, 不满足
[ C ]6、光滑的水平桌面上,有一长为 2L、质量为 m 的匀质细杆,可绕过其中点且垂
直于杆的竖直光滑固定轴
O 自由转动,其转动惯量为
1 mL 2,起初杆静止. 桌面上有两个质 3
度成正比,即 M=- k ( k 为正的常数 ) ,求圆盘的角速度从
解: M k
1 0 变为 2 0 时所需时间.
根据 M J Mdt Jd
d J
dt dt Jd
t
dt
0
1 2
0
J
d
0
所以得 t J ln 2 k
2、如图 5-17 所示、质量分别为 m 和 2m、半径分别为 r 和 2r 的两个均匀圆盘,同轴地粘在
T T
(C) A< B.
(D) 开始时 A= B,以后 A< B. Mg
B F
参考答案:
设定滑轮半径为R,转动惯量为 对 B: FR=MgR= J B.
J,如图所示,据刚体定轴转动定律M
对 A: Mg-T=Ma TR=J A, a=R A, 可推出: A< B
图 5-18
=J 有:
[ D ]2 、如图 5-8 所示, 一质量为 m 的匀质细杆 AB,A 端靠在 粗糙的竖直墙壁上, B 端置于粗糙水平地面上而静止.杆身与竖直 方向成 角,则 A 端对墙壁的压力大小
参考答案: 由 M=Jβ , 0 2 n ,及 ω - ω0=β t 可得。
9、一根质量为 m、长为 l 的均匀细杆, 可在水平桌面上绕通过其一端的竖直固定轴转动.
已
知细杆与桌面的滑动摩擦系数 为 ,则杆转动时受的摩擦力矩的大小为 =1/2 μ mgl
参考答案: 在细杆长 x 处取线元 dx,所受到的摩擦力矩 dM=μ (m/l)gxdx ,则 M
图 5-19
名师整理
优秀资源
参考答案:
视两小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件。 据角动量守恒有:
lmv lmv [ml 2 ml 2 1 m(2l )2 ] 12
则可得答案( C)。
二、填空题 7、如图 5-11 所示, P、Q、R 和 S 是附于刚性轻质细杆上的质量分别为 4m、 3m、 2m 和 m
量均为 m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率
v 相向运动,
如图 5-17 所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转
动,则这一系统碰撞后的转动角速度应为
2v
(A)
.
3L
4v
(B)
.
5L
6v
(C)
.
7L
8v
(D)
.
9L
12v
(E)
.
7L
v
v
O
俯视图
[ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴
O转
动,如图 5-11 射来两个质量相同,速度大小相同,方向相
m
m
反并在一条直线上的子弹, 子弹射入圆盘并且留在盘内, 则 子弹射入后的瞬间,圆盘的角速度
O M
(A) 增大. (C) 减小.
(B) 不变. (D) 不能确定.
图 5-11