2019-2020-1复变函数与积分变换A卷

合集下载

2019年4月自考工程数学—复变函数与积分变换考前试题和答案02199

2019年4月自考工程数学—复变函数与积分变换考前试题和答案02199

2019年4月自考《工程数学—复变函数与积分变换》考前试题和答案02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

第1题【正确答案】 B【你的答案】本题分数2分第2题【正确答案】 C【你的答案】本题分数2分第3题A. 解析的B. 可导的C. 不可导的D. 即不解析也不可导【正确答案】 B【你的答案】本题分数2分第4题复数-1+i的模是()【正确答案】 D【你的答案】本题分数2分第5题【正确答案】 D【你的答案】本题分数2分第6题【正确答案】 D【你的答案】本题分数2分第7题函数f(t)=tcoskt的拉氏变换为()【正确答案】 B【你的答案】本题分数2分第8题 2-i的模是()【正确答案】 D【你的答案】本题分数2分第9题A. 等于0B. 等于1C. 等于iD. 不存在【正确答案】 C【你的答案】本题分数2分第10题【正确答案】 B二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

___第1题题中横线处答案为:【正确答案】【你的答案】修改分数本题分数2分你的得分___第2题题中横线处答案为:【正确答案】 1/asinat【你的答案】本题分数2分修改分数你的得分第3题 |z-2i|=|z+2|所表示的曲线的直角坐标方程是___.【正确答案】 x=-y【你的答案】修改分数本题分数2分你的得分___第4题题中横线处答案为:【正确答案】【你的答案】修改分数本题分数2分你的得分第5题题中横线处答案为:___【正确答案】 -4πi【你的答案】修改分数本题分数2分你的得分___第6题题中横线处答案为:【正确答案】三、计算题(本大题共8小题,共52分)第1题【正确答案】【你的答案】本题分数6分你的得分修改分数第2题【正确答案】【你的答案】本题分数6分你的得分修改分数第3题【正确答案】【你的答案】本题分数6分你的得分修改分数第4题【正确答案】【你的答案】本题分数6分你的得分修改分数第5题【正确答案】【你的答案】本题分数6分你的得分修改分数第6题【正确答案】【你的答案】本题分数6分你的得分修改分数第7题【正确答案】【你的答案】本题分数6分你的得分修改分数第8题【正确答案】【你的答案】四、综合题(下列3个小题中,第1题必做,第2、3题中只选做一题。

复变函数练习册(全套)

复变函数练习册(全套)

第一章 复数与复变函数一、选择题1.当iiz -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z ( )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数( )(A )2 (B )i 31+ (C )i -3 (D )i +3 4.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 5.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周6.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续 (D )),(),(y x v y x u +在),(00y x 处连续学号:____________ 姓名:______________ 班级:_____________二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为4.方程i z i z +-=-+221所表示的曲线是连接点 和 的线 段的垂直平分线5.=+++→)21(lim 421z z iz三、将下列复数化为三角表达式和指数表达式:(1)i (2)13i -+四、求下列各式的值: (1)5(3)i - (2)100100(1)(1)i i ++- (3)1i +五、解方程:5()1z i +=六、设复数1≠z ,且满足,1||=z ,试证21]11Re[=-z .七 、证明复平面上的直线方程可写成:0,(0a z a z c a ++=≠其中为复常数,c 为实常数)八、证明复平面上的圆周方程可写成:0,(z z a z az c a +++=其中为复常数,c 为实常数)九 、函数1w z=把下列z 平面上的曲线映成w 平面中的什么曲线? (1) yx = (2) 224x y +=十、)0(),(21)(≠-=z zzz z i z f 试证当0→z 时)(z f 的极限不存在。

最新复变函数与积分变换期末考试试卷(A卷)

最新复变函数与积分变换期末考试试卷(A卷)

复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。

复变函数积分变换复习卷及答案

复变函数积分变换复习卷及答案

复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。

2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。

3、62111i i i -æö==-ç÷+èø。

10125212131i i i i i +-=+-=-。

4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。

5、()()231,f z z z =-+则()61f i i ¢-=--。

6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。

7、()(2)1321,(13)2ik i iiee i p p p -++==+。

8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。

1224(4)2i i -==±。

9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。

11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。

1()s i n f z z=,0z =是本性奇点。

二、判断下列函数在何处可导?何处解析?在可导处求出导数。

(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。

《复变函数与积分变换》试题

《复变函数与积分变换》试题

南京信息工程大学试卷 学年 第 2学期 复变函数与积分变换 课程试卷本试卷共4页;考试时间 120 分钟;任课教师 ;出卷时间 年 月 系 电子信息工程(本科)专业 年级 班 学 号 姓名 得分一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ) 0.lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<= 8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,61t a dta e π==-⎰则___________.14.设2cos xz y =则dz= _______.15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1xy x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分()()1.51ln 51dx x x ++⎰19.计算定积分I=220.a a x dx -⎰20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。

复变函数与积分变换A考试大纲

复变函数与积分变换A考试大纲

6、熟练掌握解析函数的求导公式 f ( z ) ux iv x , 会把一个解析函数表示为 z 的函数; 7等式或不等式; 8、理解并掌握支点、支割线定义;熟练掌握把(幂)函数 w
n
p( z ), p( z ) [ z ], 分解为单值解
析分支的方法(见课堂讲义或 钟玉泉 版 复函教材相关部分,较高要求) ; 9、理解并掌握指数函数、幂函数的几何意义(与第六章保形映射关系) 第三章 复变函数的积分 考试范围与内容: 第 1 节 柯西定理 复变函数积分的定义、计算方法、基本性质(P41-42) ;单连通区域上柯西积分定理(条件、结论) (了解定理产生的背景、古萨证明用到的技术和思想方法:闭集套定理、有限覆盖定理、逼近和化 归的思想方法等; ) ;柯西积分定理推广情形(定理 3.1’) ;积分的路径无关性、原函数存在定理与 不定积分;广义的牛顿-莱布尼兹公式;复多连通区域的柯西积分定理-复合闭路定理(条件、结论 与等价形式) 、n=1 情形,闭路变形原理 第 2 节 柯西公式 柯西积分公式(积分形式、使用条件) ;高阶导数公式(积分形式、使用条件,结论 -解析函数有任 意阶导数) ;柯西不等式;刘维尔定理;解析函数的平均值定理与最大模原理; Morera 定理(柯西 定理的逆定理) (条件、结论) 重点难点及要求 1、复积分的计算方法:

C
f ( z )dz udx vdy i vdx udy f ( z(t ))z (t )dt , C : z z(t )
c c


t , 熟练掌握复积分与实积分的关系、一般计算方法(转换为实的曲线积分,或曲线参数方
程计算) ; 2、理解并掌握单连通区域的柯西积分定理(条件、结论) 、推广情形及应用; 3、理解解析函数的不定积分概念,会利用广义牛顿-莱布尼兹公式计算与路径无关的积分; 4、理解并掌握复合闭路定理(条件、结论) 、闭路变形原理;能熟练使用复合闭路定理计算带有两 个或以上有限个奇点的闭路积分(注意和第五章留数定理的关系) ; 5、熟练掌握和应用柯西积分公式与柯西高阶导数公式,理解柯西积分公式的几何意义(边界函数值 与内部函数值的关系-特例:解析函数平均值定理) ; 6、掌握柯西不等式、刘维尔定理、最大模原理,并能用它们做一些简单证明题.(较高要求); 7、理解和掌握函数解析的充分条件:Morera 定理; 8、综合第 1-5 章,总结计算各种积分的计算方法并举例(请同学们自己完成) 第四章 级数 考试范围与内容: 第 1 节 级数和序列的基本性质 复数数列概念及敛散性定义、与实部,虚部实数数列敛散性的关系;复数项级数概念及敛散性(部 分和数列、与实部和虚部相应实级数敛散性关系) ;复级数的柯西收敛准则;级数收敛的必要条件; 绝对收敛定义及性质;收敛、条件收敛和绝对收敛的关系;数项级数的柯西乘积;复变函数列(级 数)的敛散性、一致收敛的复函数列(级数)及其和函数的性质(连续性、 (逐项)可积性) ;内闭 一致收敛于逐项可微性;复函数项级数一致收敛的维尔斯特拉斯判别法(优级数判别法) ;幂级数定 义及收敛域;Abel 定理;幂级数收敛域结构(收敛圆) ;收敛半径的计算(达朗贝尔-柯西-阿达玛 公式) ;幂级数和函数的解析性(定理 3.4) ;收敛、绝对收敛、内闭一致收敛,一致收敛的关系(见

《复变函数与积分变换》课程考试模拟试卷A及答案

《复变函数与积分变换》课程考试模拟试卷A及答案

机 密★启用前大连理工大学网络教育学院2014年3月份《复变函数与积分变换》课程考试模 拟 试 卷考试形式:闭卷 试卷类型:(A )☆ 注意事项:本考卷满分共:100分;考试时间:90分钟。

学习中心______________ 姓名____________ 学号____________一、单项选择题(本大题共10小题,每小题2分,共20分)1、已知iii z +--=131,则=z Re ( )A 、0B 、21-C 、23-D 、无法确定2、下列函数中,为解析函数的是( ) A 、xyi y x 222--B 、xyi x +2C 、)2()1(222x x y i y x +-+-D 、33iy x +3、设2,3z i z =+=ω,则=ωarg ( )A 、3π B 、6π C 、6π-D 、3π-4、2)1()1()31(-+--=i i i z 的模为( )A 、0B 、1C 、2D 、25、=-⎰=-dz z e z z1|2|2( ) A 、e 2B 、e π2C 、22e πD 、i e 22π6、C 为正向圆周:2||=z ,则=-⎰dz z z e C z2)1(( )A 、i πB 、i π2C 、i π-D 、i π47、将点1,,1-=i z 分别映射为点0,1,-∞=ω的分式线性变换为( ) A 、11-+=z z ω B 、zz -+=11ω C 、zz e i-+=112πωD 、112-+=z z eiπω 8、0=z 是3sin zz的极点,其阶数为( ) A 、1B 、2C 、3D 、49、以0=z 为本性奇点的函数是( ) A 、zzsin B 、2)1(1-z zC 、ze 1D 、11-z e 10、设)(z f 的罗朗展开式为 +-++-+-+----nz n z z z z )1()1(2)1(11)1(222,则 =]1),([Re z f s ( )A 、-2B 、-1C 、1D 、2二、填空题(本大题共10小题,每小题3分,共30分)1、=-i33____________________________________2、设C 为正向单位圆周在第一象限的部分,则积分=⎰zdz z C3)(_________。

2019-2020-1复变函数与积分变换A卷答案

2019-2020-1复变函数与积分变换A卷答案
河南科技大学
2019 至 2020 学年复变函数与积分变换第一学期试卷(A 卷)
标准答案及评分标准
一、判断题(2 分×4=8 分)
1.×
2.×
3.×
二、选择题(2 分×5=10 分)
1.B
2.D
3.C
三、填空题(2 分×5=10 分)
1. 1 + 1 i 22
2.∞ 3.一阶极点(或简单极点)
4.√ 4.B
对(1)两边求 y 的积分,可得 v= 6x dy x = 6xy x (3)
再对(3)两边同时求 x 的偏导,对比(2)可得, x =0, x C
从而 v= 6xy C , f z = 3y2 3x2 i 6xy C
由于 f (0) 2i ,故 C=-2,
f z = 3y2 3x2 i 6xy 2 3z2 2i
4. 3t 2
5.C
5. f (t)e jtdt
四、计算题(8 分×4=32 分)
1.(8 分)解:方程即为 z3 1 i=
2
cos
3 4
isin
3 4
根据 3 次方根公式可得:
1
z (1 i)3
2
3
1 3
cos
4
2k 3
3 isin 4
2k 3
, k 0,1,2
1
1 s
4
因此我们有
y(t) =L1 Y (s) 1 1 et 1 e4t
4 3 12
所以方程有 3 个根,对应于 k=0,1,2 分别为
z
6
2
cos
4
i
sin
4
,
6
2
cos
11 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


一、判断题(2 分×4=8 分):

1. 由 0 z 1 2 确定的集合是单连通区域。
( )学
2. 函数在某一点可导等价于在该点处解析。
3.
1 复数项级数 n1 3n
i n2
ቤተ መጻሕፍቲ ባይዱ
发散。
教 ()

处 ()
A. 2 阶
B. 3 阶
3. Ln(-2)=( )。
A. ln 2 i
C. 4 阶
D. 5 阶
s3
2 B. s2+9
2s C. s2+9
三、填空题(2 分×5=10 分):
1.
2+i
_______________。
(1 i)(1 2i)
6 D. s2+9
2.
n0
(1)n
n+1!
z
+1n
的收敛半径是_______________。
专业、班级
专业、班级
姓名
学号
--------------------------密-------------------------封------------------------------线------------------------------------



三、1._______________ 2.______________________ 3.________
4.__________ 5.________________________________________


......................................................................................... 科
学号
姓名

.......................................答题区...................................... 一

一、1.______ 2._____ 3._____ 4._____


二、1.______ 2._____ 3._____ 4._____ 5.______
试 线。


A







页 ︶
4.(8 分)计算积分
ez sin z dz 的值。
z |z|1
河 南 科 技 大 学 教 务 处
----------------------------密-------------------------封------------------------------线------------------------------------
B. ln 2 +2k i
C. ln 2 +2k i, k 0, 1, D. 无法计算
4. C-R 方程成立是函数解析的( A. 充分必要条件 C. 充分非必要条件
)条件。 B. 必要非充分条件 D. 既不充分也不必要条件
5. f (t) 2 cos 3t 的拉普拉斯变换为( )。
2
A.
f (0) 2i。
A

学号
姓名
2.(10 分)计算积分
|z|3
z(z
1 1)(z
2) 2
dz
的值。
第 三 页 ︵ 共 三 页 ︶
y 5y+4y 1

4.
(10
分)用
Laplace
变换求微分方程
y(0)
y(0)
0









专业、班级
题号 一 二 三 四 五 六 七 八 九 十 总分 得分
4. ez 是周期函数。
()
试 二、选择题(2 分×5=10 分):
卷 1. 设 C 表示从 0 到1 i 的直线段, z Re z dz ( )。

C
A A. i

3
B. 2i 3
C. 1 i 3
D. 1 2i 3
2. f (z) z 2 sin z z 在 z 0 处零点的阶是( )。
------------------------------密-----------------------------封-------------------------- -线------------------------
河南科技大学
2019 至 2020 学年第一学期试卷
课程 复变函数与积分变换 年级、专业 2018 级各专业
3.
z=0

f
(z)
sin z z2
的什么类型孤立奇点?
4.
F (s)
6 s3
的拉普拉斯逆变换为
5. F f (t)
。 。
四、计算题(8 分×4=32 分)
1.(8 分)解方程 z3 1i 0。
2.(8 分)计算积分
z 2
(z
ez i)2
dz 。

3. (8 分)计算积分 z sin zdz ,其中 C 是从 0 到π的一条简单曲 C
五、解答题(10 分×4= 40 分):
3.(10
分)求
f
(z)
z
1
3 z
2
分别在下面两个圆环域内的洛

1 .( 10 分 ) 求 以 u 3y2 3x2 为 实 部 的 解 析 函 数 f ( z ) 使 得
卷 ︵
朗展开式(1) 0 | z 3 | 5 ;(2) 5 | z 3 | + 。
相关文档
最新文档