人教版高中数学必修二 第四章 圆与方程 4.1.1 圆的标准方程
人教版高中数学必修2-4.1《圆的标准方程》教学设计

4.1圆的方程4.1.1圆的标准方程(熊用兵)一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径r 圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等.(2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一。
人教版数学必修二4.1.1圆的标准方程

圆的基本要素:圆心 ,半径
半径为r,圆心为A的圆:
(a,b)
(x,y)
即:
两边平方
复习: 在平面直角坐标系中,如何确定一条直线?
1.直线上任意的两个不同点
2.直线上一点和倾斜角
3.直线上一点和斜率
标准方程:
圆心为A(a,b),半径为r 的圆
思考:1:方程 与圆是什么关系?2:当圆心为原点时,方程情势是什么?3:由圆的标准方程,能否直接求出其圆 心坐标和半径?4:确定圆的标准方程需要什么条件?
练习:圆 关于直线 对称的圆的方程是( ) B.C.D.
B
1.圆心为C(a,b),半径为r 的圆的标准方程为
当圆心在原点时,a=b=0,圆的标准方程为:
数学必修2---4.1.1圆 的 标 准 方 程
虽然我的知识在你们看起来很高,但我认为人的学习就像一个圆,学的东西越多,则圆的周长越长,周长越长则接触外面世界的机会就越多。 ——爱因斯坦
教学目标:知识与技能: 1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。过程与方法: 进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生视察问题、发现问题和解决问题的能力。情感态度与价值观: 通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。教学重点:圆的标准方程及其求法教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。
4.注意圆的平面几何知识的运用以及应用圆的方程解决实际问题.
2.点和圆的位置关系:
点: 圆:
圆外:圆上:圆内:
3.求圆的标准方程的方法:
高一数学人教版A版必修二课件:4.1.1 圆的标准方程

位置关系 点M在圆上 点M在圆外 点M在圆内
利用距离判断 |CM|=r |CM|>r |CM|<r
利用方程判断 (x0-a)2+(y0-b)2=r2 (x0-a)2+(y0-b)2>r2 (x0-a)2+(y0-b)2<r2
答案
返回
题型探究
重点难点 个个击破
类型一 求圆的标准方程
例1 (1)以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是( D )
第四章 § 4.1 圆的方程
4.1.1 圆的标准方程
学习目标
1.掌握圆的定义及标准方程; 2.能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标 准方程.
问题导知识点一 圆的标准方程
新知探究 点点落实
思考1 确定一个圆的基本要素是什么? 答案 圆心和半径. 思考2 在平面直角坐标系中,如图所示,以(1,2)为圆心,以2为半径 的圆能否用方程(x-1)2+(y-2)2=4来表示? 答案 能. 1.以点(a,b)为圆心,r(r>0)为半径的圆的标 准方程为(x-a)2+(y-b)2=r2. 2.以原点为圆心,r为半径的圆的标准方程为x2+y2=r2.
答案
知识点二 点与圆的位置关系
思考 点A(1,1),B(4,0),C( 2, 2) 同圆x2+y2=4的关系 如图所示,则|OA|,|OB|,|OC|同圆的半径r=2是什么关系? 答案 |OA|<2,|OB|>2,|OC|=2. 点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2的位置关系及判断方法
所以半径为 9-32+6-52= 37,
故所求圆的标准方程为(x-3)2+(y-5)2=37.
解析答案
(3)圆过A(5,1),B(1,3)两点,圆心在x轴上. 解 线段AB的垂直平分线为y-2=2(x-3), 令y=0,则x=2, ∴圆心坐标为(2,0), 半径 r= 5-22+1-02= 10, ∴圆的标准方程为(x-2)2+y2=10.
《圆的标准方程教学》人教版高中数学必修二PPT课件(第4.411课时)

✓ 圆上每个点到圆心的距离为半径
✓ 到圆心的距离为半径的点在圆上
新知探究
解析几何的基本思想
圆在坐标系下有什么样的方程?
新知探究
已知圆的圆心c(a,b)及圆的半径R,在直角坐标系下如何确定圆的方程?
y
M
R
P={M||MC|=R}
C(a,b)
O
x
新知探究
圆的标准方程
设C(a,b)、半径r,且设圆上任一点M坐标为(x,y).
若圆心在X轴上,则方程为:( − )2 + 2 = 2
若圆心在Y轴上,则方程为: 2 + ( − )2 = 2
可见,圆心用来定位
若半径r=1,就成了单位圆。可见半径用来定形。
C
O
x
新知探究
圆的方程情势有什么特点?
特点:
这是二元二次方程,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.
讲授人:XXX 时间:202X.6.1
P P T
新知探究
例1:根据下列条件,求圆的方程:
⑴圆心在点C(-2,1),并过点(2,-2)的圆。
⑵圆心在点C(1,3),并与直线3 − 4 − 6 = 0 相切的圆的方程。
⑶过点(0,1)和点(2,1),半径为 5 。
新知探究
⑴圆心在点C(-2,1),并过点(2,-2)的圆。
解:(1)∵点(2,-2)在圆上,∴所求圆的半径为
(5 −
于是൞(7 − )2 +(−3 − )2 = 2 ⇒
(2 − )2 +(−8 − )2 = 2
=2
ቐ = −3
=5
所求圆的方程为:( − 2)2 +( + 3)2 = 25
人教版高中数学必修二第四章圆与方程__4.1.1圆标准方程_ppt模板

(5 a ) 2 (1 b) 2 r 2 2 2 2 ( 7 a ) ( 3 b ) r ( 2 a ) 2 ( 8 b) 2 r 2
典型例题
ABC 的三个顶点的坐标分别 A(5,1), B(7,-3),C(2, -8),求它的 外接圆的方程.
例2
分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的 外接圆. 解: 解此方程组,得:
a 2, b 3, r 2 25.
所以, ABC 的外接圆的方程
点M0在圆上
点M0在圆内 点M0在圆外
典型例题
ABC 的三个顶点的坐标分别 A(5,1), B(7,-3),C(2, -8),求它的 外接圆的方程.
例2
分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的 外接圆. 2 2 2 ( x a ) ( y b ) r 解:设所求圆的方程是 (1)
练习:1、写出下列各圆的方程:
2+(y-4)2=5 (x-3) (1)圆心在点C(3, 4 ),半径是 5
(2) 经过点P(5,1),圆心在点C(8,-3)
补充练习: 写出圆的圆心坐标和半径: (1) (x+1)2+(y-2)2=9 (2)(x+a)2+y2=a2
(x-8)2+(y+3)2=25
(-1,2) (-a,0)
M 2 ( 5,1) 的坐标代入此方程,左右两边不相等,点
不在这个圆上.
的坐
M2
点M0(x0,y0)在圆(x-a)2+(y-b)2=r2上、内、外的条 件是什么?通过比较点到圆心的距离和半径r的大小关系
人教版高中数学必修2第四章第1节《圆的标准方程》ppt参考课件2

小1.结圆的标准方程
圆心C(a,b),半径r
y
(x a)2 (y b)2
2.圆心
C
①两条直线的交点
(弦的垂直平分线)
②直径的中点
O
3.半径
C
①圆心到圆上一点的距离
②圆心到切线的距离
A
B
x
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
C(2,-8)
解题思路:圆心:两条中垂线的交点 半径:圆心到圆上一点
A(5,1) x
B(7,-3)
例2.已知圆的方程是 x2 y2 ,r求2 经过圆上一点
M x的0切, y线0 的方程.
y
解:设切线的斜率为 k,半径OM的斜率为k1
由题意:k
k1
y k1 0
x0
1
k
练习
求圆的圆心及半径 (1)、x2+y2=4 (2)、(x+1)2+y2=1
(3)、(x 2)2 (y 3)2 m2 (m 0)
例1 △ABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程.
人教版高中数学必修2第四章圆与方程-《4.1.1圆的标准方程》教案

4.1.1 圆的标准方程整体设计教学分析在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.三维目标1.使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,注意培养学生观察问题、发现问题和解决问题的能力.2.会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣,培养学生分析、概括的思维能力.3.理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义观点,欣赏和体验圆的对称性,感受数学美.重点难点教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.课时安排1课时教学过程导入新课思路1.课前准备:(用淀粉在一张白纸上画上海和山)说明:在白纸上要表演的是一个小魔术,名称是《日出》,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).然后上升到数学层次:不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.推进新课新知探究提出问题①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?②具有什么性质的点的轨迹称为圆?③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:①根据两点之间的距离公式221221)()(y y x x -+-,得 |AB|=212)59()62(22=++-,|CD|=22)8()3(++-y x .②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).③圆心C 是定点,圆周上的点M 是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了.⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a 、b 、r 都是常数,r >0).设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件22)()(b y a x -+-=r.①将上式两边平方得(x-a)2+(y-b)2=r 2.化简可得(x-a)2+(y-b)2=r 2.②若点M(x,y)在圆上,由上述讨论可知,点M 的坐标满足方程②,反之若点M 的坐标满足方程②,这就说明点M 与圆心C 的距离为r,即点M 在圆心为C 的圆上.方程②就是圆心为C(a,b),半径长为r 的圆的方程,我们把它叫做圆的标准方程.⑥这是二元二次方程,展开后没有xy 项,括号内变数x,y 的系数都是1.点(a,b)、r 分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x 2+y 2=r 2.提出问题①根据圆的标准方程说明确定圆的方程的条件是什么?②确定圆的方程的方法和步骤是什么?③坐标平面内的点与圆有什么位置关系?如何判断?讨论结果:①圆的标准方程(x -a)2+(y -b)2=r 2中,有三个参数a 、b 、r,只要求出a 、b 、r 且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.②确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r 2;2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.③点M(x 0,y 0)与圆(x-a)2+(y-b)2=r 2的关系的判断方法:当点M(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r 2.当点M(x 0,y 0)不在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r 2. 用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x 0-a)2+(y 0-b)2>r 2,点在圆外;2°点到圆心的距离等于半径,点在圆上⇔(x 0-a)2+(y 0-b)2=r 2,点在圆上;3°点到圆心的距离小于半径,点在圆内⇔(x 0-a)2+(y 0-b)2<r 2,点在圆内.应用示例思路1例1 写出下列各圆的标准方程:(1)圆心在原点,半径是3;⑵圆心在点C(3,4),半径是5;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x 2+y 2=9.(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.(3)方法一:圆的半径r=|CP|=25)31()85(22=++-=5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.方法二:设圆的标准方程为(x-8)2+(y+3)2=r 2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r 2,r 2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.(4)设圆的标准方程为(x-1)2+(y-3)2=r 2,由圆心到直线的距离等于圆的半径,所以r=25|16|25|7123|=--.因此所求圆的标准方程为(x-1)2+(y-3)2=25256. 点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2 写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M 1(5,-7),M 2(-5,-1)是否在这个圆上.解:圆心为A(2,-3),半径长等于5的圆的标准方程是(x-2)2+(y+3)2=25,把点M 1(5,-7),M 2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25,则M 1的坐标满足方程,M 1在圆上.M 2的坐标不满足方程,M 2不在圆上.点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.例3 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r 2入手,要确定圆的标准方程,可用待定系数法确定a 、b 、r 三个参数.另外可利用直线AB 与AC 的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r 2,因为A(5,1),B(7,-3),C(2,-8)都在圆上, 它们的坐标都满足方程(x-a)2+(y-b)2=r 2,于是⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a rb a r b a 解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2r b a 所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB 的中点坐标为(6,-1),斜率为-2,所以线段AB 的垂直平分线的方程为y+1=21(x-6). ① 同理线段AC 的中点坐标为(3.5,-3.5),斜率为3,所以线段AC 的垂直平分线的方程为y+3.5=3(x-3.5). ②解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC 外接圆的圆心是△ABC 的外心,它是△ABC 三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.思路2例1 图2是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20 m,拱高OP=4 m,在建造时每隔4 m 需用一个支柱支撑,求支柱A 2P 2的长度(精确到0.01 m).图2解:建立坐标系如图,圆心在y 轴上,由题意得P(0,4),B(10,0).设圆的方程为x 2+(y-b)2=r 2,因为点P(0,4)和B(10,0)在圆上,所以⎪⎩⎪⎨⎧=-+=-+.)0(10,)4(0222222r b r b 解得⎩⎨⎧=-=,5.14,5.1022r b 所以这个圆的方程是x 2+(y+10.5)2=14.52.设点P 2(-2,y 0),由题意y 0>0,代入圆方程得(-2)2+(y 0+10.5)2=14.52,解得y 0=2225.14--10.5≈14.36-10.5=3.86(m).答:支柱A 2P 2的长度约为3.86 m.例2 求与圆x 2+y 2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程.活动:学生审题,注意题目的特点,教师引导学生利用本节知识和初中学过的几何知识解题.首先利用配方法,把已知圆的方程写成标准方程,再利用两圆外切及直线与圆相切建立方程组,求出参数,得到所求的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r 2.圆x 2+y 2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-b a =r+1, ①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-∙-+)3(.)3(1|3|)2(,1)31(332r b a a b 解得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y 2=4或x 2+(y+43)2=36. 点评:一般情况下,如果已知圆心(或易于求出)或圆心到某一直线的距离(或易于求出),可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.变式训练一圆过原点O 和点P(1,3),圆心在直线y=x+2上,求此圆的方程.解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a,a+2).则圆的方程为(x-a)2+(y-a-2)2=r 2.因为点O(0,0)和P(1,3)在圆上,所以⎪⎩⎪⎨⎧=--+-=--+-,)23()1(,)20()0(222222r a a r a a 解得⎪⎪⎩⎪⎪⎨⎧=-=.825,412r a 所以所求的圆的方程为(x+41)2+(y-47)2=825. 解法二:由题意:圆的弦OP 的斜率为3,中点坐标为(21,23), 所以弦OP 的垂直平分线方程为y-23=-31(x-21),即x+3y-5=0. 因为圆心在直线y=x+2上,且圆心在弦OP 的垂直平分线上,所以由⎩⎨⎧=-++=,053,2y x x y 解得⎪⎪⎩⎪⎪⎨⎧=-=,47,41y x ,即圆心坐标为C(-41,47). 又因为圆的半径r=|OC|=825)47()41(22=+-, 所以所求的圆的方程为(x+41)2+(y-47)2=825. 点评:(1)圆的标准方程中有a 、b 、r 三个量,要求圆的标准方程即要求a 、b 、r 三个量,有时可用待定系数法.(2)要重视平面几何中的有关知识在解题中的运用.例3 求下列圆的方程:(1)圆心在直线y=-2x 上且与直线y=1-x 相切于点(2,-1).(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.解:(1)设圆心坐标为(a,-2a),由题意知圆与直线y=1-x 相切于点(2,-1),所以2222)12()2(11|12|+-+-=+--a a a a ,解得a=1.所以所求圆心坐标为(1,-2),半径r=22)12()21(+-+-=2.所以所求圆的标准方程为(x-1)2+(y+2)2=2.(2)设圆的方程为(x-2)2+(y+1)2=r 2(r >0),由题意知圆心到直线y=x-1的距离为d=2211|112|+-+=2.又直线y=x-1被圆截得弦长为22,所以由弦长公式得r 2-d 2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.知能训练课本本节练习1、2.拓展提升1.求圆心在直线y=2x 上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.解:首先两平行线的距离d=2221B A C C +-=2,所以半径为r=2d =1. 方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d=2221||B A C C +-,得222234|3|43|7|+-=++k k ,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x 组成的方程组⎩⎨⎧==-+,2,0243x y y x 得⎪⎪⎩⎪⎪⎨⎧==,114,112y x ,因此圆心坐标为(112,114).又半径为r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 方法二:解方程组⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==++⎩⎨⎧==-+.113,116117,1114,2,0343,2,0743x y x y x y y x x y y x 和得与因此圆心坐标为(112,114).又半径r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.课堂小结①圆的标准方程.②点与圆的位置关系的判断方法.③根据已知条件求圆的标准方程的方法.④利用圆的平面几何的知识构建方程.⑤直径端点是A(x1,y1)、B(x2,y2)的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.作业1.复习初中有关点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系有关内容.2.预习有关圆的切线方程的求法.3.课本习题4.1 A组第2、3题.。
2019年人教版A数学必修二第4章 4.1 4.1.1 圆的标准方程

4.1圆的方程4.1.1圆的标准方程学习目标:1.会用定义推导圆的标准方程并掌握圆的标准方程的特征.(重点)2.能根据所给条件求圆的标准方程.(重点、难点)3.掌握点与圆的位置关系.(易错点)[自主预习·探新知]1.圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的要素是圆心和半径,如图4-1-1所示.图4-1-1(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以圆点O为圆心、半径为r的圆.思考:确定圆的关键是什么?[提示]确定圆的核心关键点有两个,即位置(圆心)与大小(半径).2.点与圆的位置关系圆的标准方程为(x-a)2+(y-b)2=r2,圆心A(a,b),半径为r.设所给点为M(x0,y0),则1.思考辨析(1)方程(x -a )2+(y -b )2=m 2一定表示圆( )(2)若圆的标准方程为(x +m )2+(y +n )2=a 2(a ≠0),此圆的半径一定是a ( ) [提示] (1)× 不一定,当m =0时表示点(a ,b ),当m ≠0时,表示圆. (2)× 圆的半径r =|a |.2.圆(x -1)2+(y +3)2=1的圆心坐标是( ) A .(1,3) B .(-1,3) C .(1,-3)D .(-1,-3)C [由圆的标准方程知,圆心坐标为(1,-3). 选C.]3.已知圆的方程是(x -2)2+(y -3)2=4,则点P(3,2)( ) A .是圆心 B .在圆上 C .在圆内D .在圆外C [∵(3-2)2+(2-3)2=2<4.∴点P (3,2)在圆(x -2)2+(y -3)2=4的内部. 选C.][合 作 探 究·攻 重 难]+1=0上的圆的方程. 【导学号:07742271】[解] 法一:(待定系数法)设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧a 2+b 2=r 2,(a -1)2+(b -1)2=r 2,2a +3b +1=0,解得⎩⎪⎨⎪⎧a =4,b =-3,r =5.∴圆的标准方程是(x -4)2+(y +3)2=25. 法二:(几何法)由题意知OP 是圆的弦,其垂直平分线为x +y -1=0. ∵弦的垂直平分线过圆心,∴由⎩⎪⎨⎪⎧ 2x +3y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =4,y =-3,即圆心坐标为(4,-3), 半径r =42+(-3)2=5.∴圆的标准方程是(x -4)2+(y +3)2=25. [规律方法] 求圆的标准方程的方法确定圆的标准方程就是设法确定圆心C (a ,b )及半径r ,其求解的方法:一是待定系数法,如法一,建立关于a ,b ,r 的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如法二.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.[跟踪训练]1.已知△ABC 的三个顶点坐标分别为A (0,5),B (1,-2),C (-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x -a )2+(y -b )2=r 2.因为A (0,5),B (1,-2),C (-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有⎩⎪⎨⎪⎧(0-a )2+(5-b )2=r 2,(1-a )2+(-2-b )2=r 2,(-3-a )2+(-4-b )2=r 2.解得⎩⎪⎨⎪⎧a =-3,b =1,r =5.故所求圆的标准方程是(x +3)2+(y -1)2=25.法二:因为A (0,5),B (1,-2),所以线段AB 的中点的坐标为⎝ ⎛⎭⎪⎫12,32,直线AB 的斜率k AB =-2-51-0=-7,因此线段AB 的垂直平分线的方程是y -32=17⎝ ⎛⎭⎪⎫x -12,即x -7y +10=0.同理可得线段BC 的垂直平分线的方程是2x +y +5=0. 由⎩⎪⎨⎪⎧x -7y +10=0,2x +y +5=0得圆心的坐标为(-3,1), 又圆的半径长r =(-3-0)2+(1-5)2=5,故所求圆的标准方程是(x +3)2+(y -1)2=25.12(1)求以线段P 1P 2为直径的圆的标准方程;(2)判断点M (5,3),N (3,4),P (3,5)是在圆上、圆内还是圆外.【导学号:07742272】思路探究:(1)先确定圆心与半径再求方程.(2)比较三点到圆心的距离与半径大小.[解](1)设圆心C(a,b),半径长为r.因为点C为线段P1P2的中点,所以a=3+52=4,b=8+42=6,即圆心坐标为C(4,6).又由两点间的距离公式,得r=|CP1|=(4-3)2+(6-8)2= 5.故所求圆的标准方程为(x-4)2+(y-6)2=5.(2)分别计算点M,N,P到圆心C的距离:|CM|=(4-5)2+(6-3)2=10>5,|CN|=(4-3)2+(6-4)2=5,|CP|=(4-3)2+(6-5)2=2<5,所以点M在此圆外,点N在此圆上,点P在此圆内.[规律方法]判断点与圆位置关系的两种方法(1)几何法:主要利用点到圆心的距离与半径比较大小.(2)代数法:主要是把点的坐标代入圆的标准方程来判断:点P(x0,y0)在圆C上⇔(x0-a)2+(y0-b)2=r2;点P(x0,y0)在圆C内⇔(x0-a)2+(y0-b)2<r2;点P(x0,y0)在圆C外⇔(x0-a)2+(y0-b)2>r2.[跟踪训练]2.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是()A .a <-1或a >1B .-1<a <1C .0<a <1D .a =±1B [∵点(1,1)在圆(x -a )2+(y +a )2=4的内部. ∴(1-a )2+(1+a )2<4.解得-1<a <1.][1.若P (x ,y )为圆C (x +1)2+y 2=14上任意一点,请求出P (x ,y )到原点的距离的最大值和最小值.[提示] 原点到圆心C (-1,0)的距离d =1,圆的半径为12,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.2.若P (x ,y )是圆C (x -3)2+y 2=4上任意一点,请求出P (x ,y )到直线x -y +1=0的距离的最大值和最小值.[提示] P (x ,y )是圆C 上的任意一点,而圆C 的半径为2,圆心C (3,0),圆心C 到直线x -y +1=0的距离d =|3-0+1|12+(-1)2=22,所以点P 到直线x -y +1=0的距离的最大值为22+2,最小值为22-2.已知x ,y 满足x 2+(y +4)2=4,求(x +1)2+(y +1)2的最大值与最小值. 【导学号:07742273】思路探究:x ,y 满足x 2+(y +4)2=4,即点P (x ,y )是圆上的点.而(x +1)2+(y +1)2表示点(x ,y )与点(-1,-1)的距离.故此题可以转化为求圆x 2+(y +4)2=4上的点与点(-1,-1)的距离的最值问题.[解]因为点P(x,y)是圆x2+(y+4)2=4上的任意一点,圆心C(0,-4),半径r=2,因此(x+1)2+(y+1)2表示点A(-1,-1)与该圆上点的距离.因为|AC|2=(-1)2+(-1+4)2>4,所以点A(-1,-1)在圆外.如图所示.而|AC|=(0+1)2+(-4+1)2=10,所以(x+1)2+(y+1)2的最大值为|AC|+r=10+2,最小值为|AC|-r=10-2.(1)本题将最值转化为线段长度问题,从而使问题得以顺利解决.充分体现了数形结合思想在解题中的强大作用.(2)涉及与圆有关的最值,可借助图形性质,利用数形结合求解.一般地: ①k =y -b x -a的最值问题,可转化为动直线斜率的最值问题;②形如t =ax +by 的最值问题,可转化为动直线截距的最值问题;③形如m =(x -a )2+(y -b )2的最值问题,可转化为两点间的距离的平方的最值问题等.[当 堂 达 标·固 双 基]1.方程(x -1)x 2+y 2-3=0所表示的曲线是( ) A .一个圆 B .两个点C .一个点和一个圆D .一条直线和一个圆D [(x -1)x 2+y 2-3=0可化为x -1=0或x 2+y 2=3,因此该方程表示一条直线和一个圆.]2.以(2,-1)为圆心,2为半径的圆的标准方程为( ) A .(x +2)2+(y -1)2=4 B .(x +2)2+(y -1)2=2 C .(x -2)2+(y +1)2=2 D .(x -2)2+(y +1)2=4D [由圆的标准方程(x -a )2+(y -b )2=r 2,知圆心为(a ,b ),半径为r ,易知答案为D.]3.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围为( ) A .|a |<1 B .a <113 C .|a |<15D .|a |<113D [∵点P (5a +1,12a )在圆(x -1)2+y 2=1的内部. ∴(5a +1-1)2+(12a )2<1,∴|a |<113.选D.]4.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为________.x2+(y-1)2=1[由题意知圆C的圆心为(0,1),半径为1,所以圆C的标准方程为x2+(y-1)2=1.]5.已知圆C的半径为17,圆心在直线x-y-2=0上,且过点(-2,1),求圆C的标准方程. 【导学号:07742274】[解]∵圆心在直线x-y-2=0上,r=17,∴设圆心为(t,t-2)(t为参数).∴圆C的标准方程为(x-t)2+(y-t+2)2=17.∵圆C过点(-2,1),∴(-2-t)2+(1-t+2)2=17.解得t=2或t=-1.∴圆心C的坐标是(2,0)或(-1,-3).∴所求圆C的标准方程是(x-2)2+y2=17或(x+1)2+(y+3)2=17.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 圆与方程
§4.1 圆的方程
4.1.1 圆的标准方程
【课时目标】 1.用定义推导圆的标准方程,并能表达点与圆的位置关系.2.掌握求圆的标准方程的不同求法.
1.设圆的圆心是A (a ,b ),半径长为r ,则圆的标准方程是________________,当圆的圆心在坐标原点
时,圆的半径为r ,则圆的标准方程是________________.
2.设点P 到圆心的距离为d ,圆的半径为r ,点P 在圆外⇔________;点P 在圆上⇔________;点P 在圆内⇔________.
一、选择题
1.点(sin θ,cos θ)与圆x 2+y 2=12
的位置关系是( ) A .在圆上 B .在圆内
C .在圆外
D .不能确定
2.已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )
A .在圆内
B .在圆上
C .在圆外
D .无法判断
3.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.圆(x -3)2+(y +4)2=1关于直线y =x 对称的圆的方程是( )
A .(x +3)2+(y +4)2=1
B .(x +4)2+(y -3)2=1
C .(x -4)2+(y -3)2=1
D .(x -3)2+(y -4)2=1
5.方程y =9-x 2表示的曲线是( )
A .一条射线
B .一个圆
C .两条射线
D .半个圆
6.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x 轴和y 轴上.则此圆的方程是( )
A .(x -2)2+(y +3)2=13
B .(x +2)2+(y -3)2=13
C .(x -2)2+(y +3)2=52
D .(x +2)2+(y -3)2=52
二、填空题
7.已知圆的内接正方形相对的两个顶点的坐标分别是(5,6),(3,-4),则这个圆的方程是________________________________________________________________________.
8.圆O 的方程为(x -3)2+(y -4)2=25,点(2,3)到圆上的最大距离为________.
9.如果直线l 将圆(x -1)2+(y -2)2=5平分且不通过第四象限,那么l 的斜率的取值范围是________.
三、解答题
10.已知圆心为C 的圆经过点A (1,1)和B (2,-2),且圆心C 在直线l :x -y +1=0上,求圆心为C 的圆的标准方程.
11.已知一个圆与y轴相切,圆心在直线x-3y=0上,且该圆经过点A(6,1),求这个圆的方程.
能力提升
12.已知圆C:(x-3)2+(y-1)2=4和直线l:x-y=5,求C上的点到直线l的距离的最大值与最小值.
13.已知点A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,求|P A|2+|PB|2+|PC|2的最值.
1.点与圆的位置关系的判定:(1)利用点到圆心距离d与圆半径r比较.(2)利用圆的标准方程直接判断,即(x0-a)2+(y0-b)2与r2比较.
2.求圆的标准方程常用方法:(1)利用待定系数法确定a,b,r,(2)利用几何条件确定圆心坐标与半径.3.与圆有关的最值问题,首先要理清题意,弄清其几何意义,根据几何意义解题;或对代数式进行转化后用代数法求解.
第四章圆与方程
§4.1圆的方程
4.1.1圆的标准方程
答案
知识梳理
1.(x-a)2+(y-b)2=r2x2+y2=r2
2.d >r d =r d <r
作业设计
1.C [将点的坐标代入圆方程,得sin 2θ+cos 2θ=1>12
,所以点在圆外.] 2.B [点M (5,-7)到圆心A (2,-3)的距离为5,恰好等于半径长,故点在圆上.]
3.D [(-a ,-b )为圆的圆心,由直线经过一、二、四象限,得到a <0,b >0,即-a >0,-b <0,再由各象限内点的坐标的性质得解.]
4.B [两个半径相等的圆关于直线对称,只需要求出关于直线对称的圆心即可,(3,-4)关于y =x 的对称点为(-4,3)即为圆心,1仍为半径.即所求圆的方程为(x +4)2+(y -3)2=1.]
5.D [由y =9-x 2知,y ≥0,两边平方移项,得x 2+y 2=9.∴选D .]
6.A [设直径的两个端点为M (a,0),N (0,b ),
则a +02=2⇒a =4,b +02
=-3⇒b =-6. 所以M (4,0),N (0,-6).
因为圆心为(2,-3),
故r =(2-4)2+(-3-0)2=13.
所以所求圆的方程为(x -2)2+(y +3)2=13.]
7.(x -4)2+(y -1)2=26
解析 圆心即为两相对顶点连线的中点,半径为两相对顶点距离的一半.
8.5+ 2
解析 点(2,3)与圆心连线的延长线与圆的交点到点(2,3)的距离最大,最大距离为点(2,3)到圆心(3,4)的距离2加上半径长5,即为5+2.
9.[0,2]
解析 由题意知l 过圆心(1,2),由数形结合得0≤k ≤2.
10.解 因为A (1,1)和B (2,-2),
所以线段AB 的中点D 的坐标为⎝⎛⎭⎫32
,-12, 直线AB 的斜率k AB =-2-12-1
=-3, 因此线段AB 的垂直平分线l ′的方程为y +12=13⎝⎛⎭
⎫x -32,即x -3y -3=0. 圆心C 的坐标是方程组⎩
⎪⎨⎪⎧ x -3y -3=0,x -y +1=0的解. 解此方程组,得⎩⎪⎨⎪⎧
x =-3,y =-2.所以圆心C 的坐标是(-3,-2). 圆心为C 的圆的半径长
r =|AC |=(1+3)2+(1+2)2=5.
所以,圆心为C 的圆的标准方程是(x +3)2+(y +2)2=25.
11.解 设圆的方程为(x -a )2+(y -b )2=r 2 (r >0).
由题意得⎩⎪⎨⎪⎧ |a |=r a -3b =0
(6-a )2+(1-b )2=r 2.
解得a =3,b =1,r =3或a =111,b =37,r =111.
所以圆的方程为(x -3)2+(y -1)2=9或(x -111)2+(y -37)2=1112.
12.解 由题意得圆心坐标为(3,1),半径为2,则圆心到直线l 的距离为d =|3-1-5|2
=32-62,
则圆C上的点到直线l距离的最大值为32-
6
2+2,最小值为32-
6
2-2.
13.解设P点坐标(x,y),则x2+y2=4.
|P A|2+|PB|2+|PC|2=(x+2)2+(y+2)2+(x+2)2+(y-6)2+(x-4)2+(y+2)2=3(x2+y2)-4y+68=80-4y.
∵-2≤y≤2,∴72≤|P A|2+|PB|2+|PC|2≤88.
即|P A|2+|PB|2+|PC|2的最大值为88,最小值为72.。