2.1.2两点分布和超几何分布(张亚宾)
超几何分布和二项分布

超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。
它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。
本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。
一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。
具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。
其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。
超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。
2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。
3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。
超几何分布在实际应用中有着广泛的应用。
例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。
二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。
具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。
其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。
二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。
2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。
两点分布、超几何分布、正态分布

两点分布、超几何分布、正态分布1.两点分布如果随机变量X 的分布列为其中0<p <1,则称离散型随机变量E (X )=p ,D (X )=p (1-p ). 2.超几何分布一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =k )=C k M C n -k N -MC n N(k =0,1,2,…,m ).即其中m =min{M ,n }如果一个随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布. 3.正态分布(1)正态曲线:函数φμ,σ(x )=12πσ,x ∈(-∞,+∞),其中实数μ和σ为参数(σ>0,μ∈R ).我们称函数φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π; ④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示bφμ,σ(x)d x,则称随机变量X 如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=⎠⎛a服从正态分布,记作X~N(μ,σ2).正态总体在三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)=0.682_6;②P(μ-2σ<X≤μ+2σ)=0.954_4;③P(μ-3σ<X≤μ+3σ)=0.997_4.4.判断下列结论的正误(正确的打“√”错误的打“×”)(1)抛掷均匀硬币一次,出现正面的次数是随机变量.服从两点分布.(×)(2)某人射击时命中的概率为0.5,此人射击三次命中的次数X服从两点分布.(×)(3)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.(√)(4)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.(√)(5)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.(√)(6)正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等.(√)(7)对于正态分布X~N(μ,σ2),总有P(x<μ-a)=P(x≥μ+a).(√)(8)X~N(μ,σ2),发生在(μ-3σ,μ+3σ),之外的概率为0,称之不可能事件.(×)(9)正态总体(1,9)在区间(0,1)和(-1,0)上的概率相等.(×)(10)随机变量分布列为是两点分布.(×)考点一两点分布、超几何分布[例1](1)设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于()A.0 B.12 C.13 D.23解析:设X的分布列为即“X=0”表示试验失败,“X=1”p,则成功率为2p.由p+2p=1,则p=13,故应选C.答案:C(2)一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是7 9.①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列及期望.解:①记“从袋中任意摸出2个球,至少得到1个白球”为事件A,设袋中白球的个数为x,则P(A)=1-C210-xC210=79,得到x=5.故白球有5个.②X服从超几何分布,P(X=k)=C k5C3-k5C310,k=0,1,2,3.于是可得其分布列为∴E(X)=0×112+1×512+2×512+3×112=1812=32.[方法引航](1)两点分布列的随机变量X取值为1和0,不能取其它整数,X=1表示“成功”.(2)对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.1.若将本例(1)改为,求X 的成功率.解:p +p 2=1,(p >0),∴p =5-12∴X 的成功率P (x =1)=2)215(=3-52.2.将本例(2)改为:随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了了解公众对“延迟退休”的态度,某校课外研究性学习小组从某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:年龄在各随机选取2人,进行跟踪调查.①求从年龄在[25,30)的被调查者中选取的2人都赞成的概率; ②求选中的4人中,至少有3人赞成的概率;③若选中的4人中,不赞成的人数为X ,求随机变量X 的分布列和数学期望. 解:①设“年龄在[25,30)的被调查者中选取的2人都赞成”为事件A ,所以P (A )=C 23C 25=310.②设“选中的4人中,至少有3人赞成”为事件B ,所以P (B )=C 23C 12C 11C 25C 23+C 13C 12C 22C 25C 23+C 23C 22C 25C 23=12.③X 的可能取值为0,1,2,3,所以P (X =0)=C 23C 22C 25C 23=110, P (X =1)=C 13C 12C 22+C 23C 12C 11C 25C 23=25, P (X =2)=C 22C 22+C 13C 12C 12C 11C 25C 23=1330, P (X =3)=C 22C 12C 11C 25C 23=115.所以E(X)=0×110+1×25+2×1330+3×115=2215.考点二正态分布[例2](1)(2017·山西四校联考)设随机变量X~N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=__________.解析:因为P(X>m)=0.3,X~N(3,σ2)所以m>3,P(X<6-m)=P(X<3-(m-3))=P(X>m)=0.3所以P(X>6-m)=1-P(X<6-m)=0.7.答案:0.7(2)云南省2016年全省高中男生身高统计调查数据显示:全省100 000名高中男生的身高服从正态分布N(170.5,16).现从云南省某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5 cm和187.5 cm之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方式得到的频率分布直方图.①试评估该校高三年级男生在全省高中男生中的平均身高状况;②求这50名男生身高在177.5 cm以上(含177.5 cm)的人数;③身高排名(从高到低)在全省130名之内,其身高最低为多少?参考数据:若ξ~N(μ,σ2),则P(μ~σ<ξ≤μ+σ)=0.682 6,P(μ-2σ<ξ≤μ+2σ)=0.954 4,P(μ-3σ<ξ≤μ+3σ)=0.997 4.解:①由频率分布直方图知,该校高三年级男生平均身高为160×0.1+165×0.2+170×0.3+175×0.2+180×0.1+185×0.1=171.5(cm),∵171.5 cm>170.5 cm,故该校高三年级男生的平均身高高于全省高中男生身高的平均值.②由频率分布直方图知,后两组频率和为0.2,∴人数和为0.2×50=10,即这50名男生中身高在177.5 cm以上(含177.5 cm)的人数为10.③∵P(170.5-3×4<ξ<170.5+3×4)=0.997 4,∴P(ξ≥182.5)=1-0.997 42=0.001 3,又0.001 3×100 000=130.∴身高在182.5 cm以上(含182.5 cm)的高中男生可排进全省前130名.[方法引航]在高考中主要考查正态分布的概率计算问题,其解决方法如下:第一步,先弄清正态分布的均值是多少;第二步:若均值为μ,则根据正态曲线的对称性可得P(X≥μ)=0.5,P(X≤μ)=0.5,P(X≤μ+c)=P(X≥μ-c)(c>0)等结论;第三步,根据这些结论、题目中所给条件及对称性,对目标概率进行转化求解即可.,说明:关于正态总体在某个区间内取值的概率问题,要熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值,充分利用正态曲线的对称性和曲线与x轴之间的面积为1来解题.1.(2017·江西八校联考)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为()A.0.05B.0.1 C.0.15 D.0.2解析:选B.由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.2.在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现已知该班同学中成绩在80~85分的有17人.试计算该班成绩在90分以上的同学有多少人.解:依题意,由80~85分的同学的人数和所占百分比求出该班同学的总数,再求90分以上同学的人数.∵成绩服从正态分布N(80,52),∴μ=80,σ=5,μ-σ=75,μ+σ=85.于是成绩在(75,85]内的同学占全班同学的68.26%.由正态曲线的对称性知,成绩在(80,85]内的同学占全班同学的12×68.26%=34.13%.设该班有x名同学,则x×34.13%=17,解得x≈50.又μ-2σ=80-10=70,μ+2σ=80+10=90,∴成绩在(70,90]内的同学占全班同学的95.44%.∴成绩在(80,90]内的同学占全班同学的47.72%.∴成绩在90分以上的同学占全班同学的50%-47.72%=2.28%.即有50×2.28%≈1(人),即成绩在90分以上的同学仅有1人.[易错警示]不能正确理解正态曲线的对称性[典例]已知随机变量ξ满足正态分布N(μ,σ2),且P(ξ<1)=12,P(ξ>2)=0.4,则P(0<ξ<1)=________.[错解]由P(ξ>2)=0.4,∴P(ξ<2)=1-0.4=0.6,∴P(0<ξ<1)=12P(ξ<2)=0.3.[错因]P(0<ξ<1)是P(ξ<2)的一半.[正解]由P(ξ<1)=12得μ=1,∴随机变量ξ服从正态分布N(1,σ2),∴曲线关于x=1对称.∵P(ξ<2)=0.6,∴P(0<ξ<1)=0.6-0.5=0.1.[答案]0.1[警示]①正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相同.②P(X<a)=1-P(X≥a),P(X≤μ-a)=P(X≥μ+a).[高考真题体验]1.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为()A.2 386B.2 718 C.3 413 D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.解析:选C.由P(-1<X≤1)=0.682 6,得P(0<X≤1)=0.341 3,则阴影部分的面积为0.341 3,故估计落入阴影部分的点的个数为10 000×0.341 31×1=3 413,故选C.2.(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56% B.13.59% C.27.18% D.31.74%解析:选B.由正态分布的概率公式知P(-3<ξ<3)=0.682 6,P(-6<ξ<6)=0.954 4,故P(3<ξ<6)=P(-6<ξ<6)-P(-3<ξ<3)2=0.954 4-0.682 62=0.135 9=13.59%,故选B.3.(2014·高考课标全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.解:(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.4.(2016·高考天津卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.解:(1)由已知,得P(A)=C13C14+C23C210=13.所以,事件A发生的概率为13.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为随机变量X的数学期望E(X)=0×415+1×715+2×415=1.课时规范训练A组基础演练1.设随机变量X服从正态分布N(2,9),若P(X>c+1)=P(X<c-1),则c等于() A.1B.2 C.3 D.4解析:选B.∵μ=2,由正态分布的定义知其图象关于直线x=2对称,于是c+1+c-12=2,∴c=2.2.正态总体N(1,9)在区间(2,3)和(-1,0)上取值的概率分别为m,n,则()A.m>n B.m<n C.m=n D.不确定解析:选C.正态总体N(1,9)的曲线关于x=1对称,区间(2,3)与(-1,0)到对称轴距离相等,故m=n.3.一批产品共50件,次品率为4%,从中任取10件,则抽到1件次品的概率是()A.C12C948C1050 B.C12C950C1050 C.C12C1050 D.C948C1050解析:选A.50件产品中,次品有50×4%=2件,设抽到的次品数为X ,则抽到1件次品的概率是P (X =1)=C 12C 948C 1050.4.设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t ) 解析:选D.由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12, P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错; 因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错; 对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错; 对任意正数t ,P (X ≤t )≥P (Y ≤t )是正确的,故选D.5.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a =( )A.37B.73C.78D.87解析:选B.因为ξ服从正态分布N (3,4),且P (ξ<2a -3)=P (ξ>a +2),所以2a -3+a +2=6,∴a =73.6.若随机变量X 的概率分布密度函数是φμ,σ(x )=122π·e -(x +2)28(x ∈R ),则E (2X -1)=________.解析:σ=2,μ=-2,E (2X -1)=2E (X )-1=2×(-2)-1=-5. 答案:-57.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的分布列为解析:P (X =0)=C 22C 25=0.1,P (X =1)=C 3·C 2C 25=610=0.6,P (X =2)=C 23C 25=0.3.答案:0.1 0.6 0.38.已知某次英语考试的成绩X 服从正态分布N (116,64),则10 000名考生中成绩在140分以上的人数为________. 解析:由已知得μ=116,σ=8.∴P (92<X ≤140)=P (μ-3σ<X ≤μ+3σ)=0.997 4,∴P (X >140)=12(1-0.997 4)=0.001 3,∴成绩在140分以上的人数为13. 答案:139.甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是23. (1)求甲、乙至少有一人闯关成功的概率; (2)设甲答对题目的个数为ξ,求ξ的分布列.解:(1)设甲、乙闯关成功分别为事件A ,B ,则P (A )=C 14C 22C 36=420=15,P (B )=3)321(-+C 2312)32()321(-=127+29=727, 则甲、乙至少有一人闯关成功的概率是1-P (A -B -)=1-P (A -)P (B -)=1-15×727=128135.(2)由题意知ξ的可能取值是1,2.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12+C 34C 36=45,则ξ的分布列为10.盒内有大小相同的9个球,其中24个黑色球.规定取出1个红色球得1分,取出一个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球. (1)求取出的3个球中至少有一个红球的概率; (2)求取出的3个球得分之和恰好为1分的概率; (3)设ξ为取出的3个球中白色球的个数,求ξ的分布列.解:(1)P =1-C 37C 39=712.(2)记“取出1个红色球,2个白色球”为事件B ,“取出2个红色球,1个黑色球”为事件C ,则P (B +C )=P (B )+P (C )=C 12C 23C 39+C 22C 14C 39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布,P (ξ=k )=C k 3C 3-k 6C 39,k =0,1,2,3.故P (ξ=0)=C 36C 39=521,P (ξ=1)=C 13C 26C 39=1528;P (ξ=2)=C 23C 16C 39=314,P (ξ=3)=C 33C 39=184.ξ的分布列为:1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为φμ,σ(x )=12π·10(x ∈R ),则下列命题中不正确的是( )A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10解析:选B.由密度函数知,均值(期望)μ=80,标准差σ=10,又正态曲线关于直线x =80对称,故分数在100分以上的人数与分数在60分以下的人数相同,所以B 是错误的. 2.已知X ~N (μ,σ2)时,P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4,则dx x 2)1(432e 21--⎰π=( )A .0.043B .0.021 5C .0.341 3D .0.477 2解析:选B.由题意知,μ=1,σ=1,P (3<X ≤4)=12×[P (-2<X ≤4)-P (-1<X ≤3)]=12×(0.997 4-0.954 4)=0.021 5.故选B.3.已知随机变量ξ服从正态分布N (2,9),若P (ξ>3)=a ,P (1<ξ≤3)=b ,则函数f (a )=a 2+a -1a +1的值域是________.解析:易知正态曲线关于直线x =2对称,所以P (ξ>3)=P (ξ<1)=a ,则有⎩⎨⎧2a +b =1,a >0,b >0⇒0<a <12.f (a )=a -1a +1=(a +1)-1a +1-1,令t =a +1∈)23,1(,函数f (a )=g (t )=t -1t -1在t∈)23,1(上是增函数,所以g (t )∈)61,1())23(),1((--=g g答案:)61,1(--4.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715, P (X =1)=C 12C 28C 310=715, P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故E (X )=0×715+1×715+2×115=35.5.某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取两人.(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率;(2)设这两人中享受折扣优惠的人数为ξ,求ξ的分布列和数学期望. 解:(1)设“两人都享受折扣优惠”为事件A , “两人都不享受折扣优惠”为事件B ,则P(A)=C212C236=11105,P(B)=C224C236=46105.因为事件A,B互斥,则P(A+B)=P(A)+P(B)=11105+46105=57105=1935.故这两人都享受折扣优惠或都不享受折扣优惠的概率是19 35.(2)据题意,得ξ的可能取值0,1,2.其中P(ξ=0)=P(B)=46105,P(ξ=1)=C112C124C236=48105,P(ξ=2)=P(A)=11 105.所以ξ的分布列为所以,E(ξ)=0×46105+1×48105+2×11105=23.。
《二项分布与超几何分布》 讲义

《二项分布与超几何分布》讲义在概率论中,二项分布和超几何分布是两个非常重要的离散型概率分布。
它们在实际生活和科学研究中有着广泛的应用,理解和掌握这两种分布对于解决各种概率相关的问题至关重要。
一、二项分布(一)定义二项分布是指进行\(n\)次独立的伯努利试验,每次试验中成功的概率为\(p\),失败的概率为\(1 p\)。
设随机变量\(X\)表示在\(n\)次试验中成功的次数,则\(X\)服从参数为\(n\)和\(p\)的二项分布,记为\(X ~ B(n, p)\)。
(二)概率质量函数二项分布的概率质量函数为:\(P(X = k) = C_{n}^k p^k (1 p)^{n k}\),其中\(C_{n}^k\)表示从\(n\)个元素中选取\(k\)个元素的组合数。
(三)期望和方差二项分布的期望为\(E(X) = np\),方差为\(Var(X) = np(1 p)\)。
(四)应用场景二项分布在很多实际问题中都有应用。
例如,抛硬币多次,计算正面朝上的次数;产品抽检中,确定不合格产品的数量等。
二、超几何分布(一)定义超几何分布描述的是从有限\(N\)个物件(其中包含\(M\)个成功物件)中,不放回地抽取\(n\)个物件,成功物件的数量为随机变量\(X\),则\(X\)服从超几何分布。
(二)概率质量函数超几何分布的概率质量函数为:\(P(X = k) =\frac{C_{M}^k C_{N M}^{n k}}{C_{N}^n}\)。
(三)期望和方差超几何分布的期望为\(E(X) = n\frac{M}{N}\),方差为\(Var(X) = n\frac{M}{N}(1 \frac{M}{N})\frac{N n}{N 1}\)。
(四)应用场景超几何分布常用于抽样调查,比如从一批产品中随机抽取一定数量的产品,计算其中合格品的数量;从一个班级中抽取若干学生,统计其中男生的人数等。
三、二项分布与超几何分布的比较(一)相同点1、都是离散型概率分布,用于描述随机变量取不同值的概率。
2.1.2两点分布与超几何分步

来研究,{X=0}和{X=
1}分别表示“出现的个数小于 4”和“出现的点数不小于 4”,X 服从两点分布,成功概率为 0.5.
例2
在一次购物抽奖活动中,假设某 10 张奖券中有一等
奖券 1 张,可获得价值 50 元的奖品;有二等奖券 3 张, 每张可获价值 10 元的奖品;其余 6 张没有奖,某顾客从 这 10 张中任抽 2 张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值 X(元)的分布列.
此表称为离散型随机变量 X 的概率分布列,简称为 X 的
分布列
.
n
2.离散型随机变量的分布列的性质: (1)pi ≥
ks5u精品课件 0,i=1,2,3,…, n;(2)∑pi= 1 .
i=1
1.下列表中可以作为离散型随机变量的分布列是(
)
ks5u精品课件
例1
一袋中装有编号为 1,2,3,4,5,6 的 6 个大小相同的球,
ξ P X1 P1 X2 P2 … … Xi Pi … …
离散型随机变量的分布列具有下述两个 性质:
(1) pi ≥ 0, i 1 , 2, 3,
(2) p1 p2 p3 1
ks5u精品课件
2.1.2
离散型随机变量的分布列
离散型随机变量的分布列
1. 定义: 若离散型随机变量 X 可能取的不同值为 x1, x2, …, xi,…,xn,X 取每一个值 xi (i=1,2,…,n)的概率 P(X=xi)= pi ,以表格的形式表示如下: X P x1 p1 x2 p2 … … xi pi … … xn pn
①由分布列性质得,
1 ②P(ξ<0)=P(ξ=-1)= , 2 P(ξ≤0)=P(ξ=-1)+P(ξ=0)
两点分布和超几何分布

应用场景
产品质量检测
生物统计学
超几何分布可以用于描述从一批产品 中随机抽取一定数量的样本,样本中 合格品或不合格品的概率分布。
在生物统计学中,超几何分布可以用 于描述从有限总体中随机抽取一定数 量的样本,样本中某一基因型或表型 的个体所占的比例。
市场调查
在市场调查中,超几何分布可以用于 描述从总体中随机抽取一定数量的样 本,样本中某一特征的个体所占的比 例。
例如,在伯努利试验中,可以用两点分布来描述试验的成功 和失败的概率。
02
超几何分布
定义
定义
超几何分布是统计学中描述从有限总体中不放回地抽取n个样本,样本中某一特定类别的 个体数量所遵循的分布。
公式
超几何分布的公式为H(X=k)=C(Nk)C(M(n−k))C(Nn)×P^k×(1−P)^(n−k),其中X表示样本 中某一特定类别的个体数量,N表示总体容量,M表示总体中某一特定类别的个体数量,n表 示样本容量,P表示某一特定类别的个体在总体中的比例。
交叉学科研究
实际应用研究
将两点分布和超几何分布在不同学科领域 中的应用进行交叉研究,促进各学科之间 的交流与合作。
加强两点分布和超几何分布在各领域的实 际应用研究,如统计学、生物学、物理学 等,为相关领域提供更有效的解决方案。
感谢观看
THANKS
适用场景
超几何分布在统计学中广泛应用于解决不放回的抽取问题,如产品质量检测、市场调查等 。
性质
无记忆性
超几何分布具有无记忆性,即从一个总体中抽 取一个样本后,不影响下次抽取的概率。
独立性
超几何分布的各个抽取事件是相互独立的,即 抽取一个样本不影响其他样本的抽取。
离散性
超几何分布描述的是离散随机变量的概率分布。
两点分布和超几何分布PPT课件

思考:若将这个游戏的中奖概率控制在 55%左右,应如何设计中奖规则?
游戏规则可定为至少摸到2个红球就中奖.
精选ppt课件最新
12
练习1:从5名男生和3名女生中任选3人参加奥运 会火炬接力活动。若随机变量ξ表示所选3人中女 生的人数,求ξ的分布列及P(ξ <2)。
9
超几何分布;
一般地, 在含有M件次品的N件产品中, 任取n件,
其中恰有X件次品数, 则事件X k发生的概率
为
PX
k
C
k M
C
nk NM
C
n N
,
k
0,1, 2, , m
, 其中 m
minM , n, 且n N , M N , n, M , N N .称分布列
X
0
1
3
P
C
0 M
C
n0 N M
败”,这样就得到了描述该随机试验的服从两点分布的随
机变量。(两点分布还称伯努利分布)
精选ppt课件最新
5
如果随机变量X的分布列由下表 给出,它服从 两点分布吗?
X 2 5 两点分布又称
P 0.3 0.7
0-1分布
不服从两点分布,因为X的取值不是0或1。
令 Y = ìïïíïïî10,, XX==52 ,则Y服从两点分布.
C
n N
பைடு நூலகம்
C
1 M
C
n 1 N M
C
n N
C C m n m M NM
C
n N
为 超几何分布列.如果随机变量X的分布列为
超几何分布列, 则称随机变量X服从超几何分
2.1.2两点分布与超几何分布(修改)ppt课件

所以随机变量X的分布列是 如取小数,注意保留小
p( X
k)
C5k
•
C 3k 95
C3 100
数位X不能太少0,此外四 1
舍五入时还要注意各
个概P率和等C50于• C1.935
C51•CFra bibliotek2 95
C3 100
C3 100
2
C52 • C915 C3
100
3
C53 • C905 C3
100
(2)P(X≥1)=P(X=1)+P(X=2)+P(X=3)≈0.14400; 或P(X≥1)=1-P(X=0)=1- C50 • C935 ≈0.14400; C3
1
一.离散型随机变量的分布列:
1、定义 设离散型随机变量X的所有可能的取值为
x1, x2 , x3 , , xn .
X取每一个值xi(i=1,2,…,n)的概率为P(X=xi)=pi, 以表格的形式表示如下:
X x1 x2 … xi … xn
P p1 p2 … pi … pn
这个表就称为离散型随机变量X的概率分布列,简称为X 的分布列. 有时为了简单起见,也用等式 P(X xi ) pi,
2、对于0-1分布,设P(0)=m,0<m<1,则 P(1)= 1-m .
3、篮球比赛中每次罚球命中得1分,不中得0分,已知某运动员
罚球命中概率为0.7,求他一次罚球得分的分布列。
X
0
1
P
0.3
0.7
8
例2、在含有5件次品的100件产品中, 任取3件, 求取到的次品数X的分布列. 问:X的可能取哪些值?
两点分布,而称p=P(X=1)为成功概率。
上课124超几何分布与二项分布ppt课件

例 4:二十世纪 50 年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到 污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒. 引起世人对食品安全的关注.《中 华人民共和国环境保护法》规定食品的汞含量不得超过 1.00ppm.
ξ 可能的取值为 0,1,2,3,由 ξ~ B(3, 1) , 3
其分布列如下:
ξ
0
1
2
3
P(ξ)
C
0 3
(
1) 3
0
(
2 3
)
3
C13
(
1 3Biblioteka )1(2 3)2
C
2 3
(
1 3
)
2
(
2 3
)1
C
3 3
(
1 3
)
3
(
2 3
)
0
由 ξ~ B(3, 1) , 所以 Eξ=1. 3
条鱼,记 ξ 表示抽到的鱼汞含量超标的条数,求 ξ 的分布列及 Eξ.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
解:(I)记“15 条鱼中任选 3 条恰好有 1 条鱼汞含量超标”为事件 A
1求X的概率分布表; 2求去执行任务的同学中有男有女的概率.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2-2--- 2.1.2两点分布和超几何分布
课型:高二班姓名:日期:编号:NO. 2
主编: 修订:审核:
一、【学习目标】1.理解离散型随机变量的分布列的意义,会求某些简单的离散型随机
变量的分布列;
⒉掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一
些简单的问题.
⒊了解二项分布的概念,能举出一些服从二项分布的随机变量的例子二、【学习考点】1、学习重难点:离散型随机变量的分布列的概念
求简单的离散型随机变量的分布列
2、高考考纲考点:
本考点高考中主要结合互斥事件、对立事件、独立事件考查分布列和数学
期望,考查运用概率知识解决实际问题的能力,试题形式选择题、填空题、
解答题都有,以解答题为主,难度以中档为主。
三、【自主学习我专注】(课前预时20分钟)
1.定义:若离散型随机变量X可能取的不同值为x
1,x
2
,…,x
i
, (x)
n
,X
(i=1,2,…,n)的概率P(X=x
i
)=_______,以表格的形式如下,
率分布列,简称为X的__________.
为了表达简单,也用等式.
P(X=x
i
)=_______,(i=1,2,…,n)表示X的分布列.或者用图象直观表示. ___________,纵坐标为________.
2.表示:离散型随机变量分布列可以用________、________、________表示.
3.性质:①p
i
_________,i=1,2,3,…,n; ②∑
=
n
i
i
p
1
=_________.
【课堂探究】
探究一:分布列
1.分布列:设离散型随机变量ξ可能取得值为
x1,x2,…,x3,…,
ξi
为随机变量ξ的概率分布,简称ξ的分布列
2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:
⑴P i ≥0,i =1,2,…;
⑵P 1+P 2+…=1. 思考探究:
1.如何求离散型随机变量在某一范围内的概率?
2.离散型随机变量的各个可能取值表示的事件是什么关系?
探究二:两点分布和超几何分布
3.离散型随机变量的二点分布列:在一次随机试验中,某事件可能发生也可能不发生,事件发生的概率为P ,则不发的概率为1-P 随机变量ξ
如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称p=P(X=1)为成功概率. 思考探究:
分布列是两点分布列吗?
4. 离散型随机变量的超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X =k }发生的概率为:
P (X =k )=,,2,1,0,m k C C C n
N
k n M
N k M =-- 其中m=min{M,n},且*∈≤≤N N M n N M N n ,,,,,
称分布列:
为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称这样的随机变量
X 服从超几何分布。
【典例分析】
例1. 在掷一枚图钉的随机实验中,当针尖向上时,令X =1,当针尖向下时令X =0,如果
针尖向上的概率为P ,试写出随机变量X 的分布列。
小结 :⑴根据随机变量的概率分步(分步列),可以求随机事件的概率; ⑵两点分布和超几何分布的特点及适用范围 四、【合作探究我深入】(限时6分钟)
1.两人小对子:相互检查自研成果,指点纠错,并用红笔给对子评定等级。
2.
(13个红球,2个白球的袋中随机取出2个球,设其中有ξ
个红球,求ξ的分布列.
(2设袋中有N 个球,其中有M 个红球,N M -个黑球,从中任取n 个
问恰有k 个红 球的概率是多少?
一、【基础题】
1.从一副不含大小王的52张扑克牌中任意抽出5张,至少有3张A 的概率是_____.
2.在含有5件次品的100件产品中,任取3件,试求:
(1)取到的次品数X 的分布列; (2)至少取到1件次品的概率。
二、【发展题】
3某射手有5发子弹,射击一次命中的概率为0.9,
⑴如果命中了就停止射击,否则一直射击到子弹用完,求耗用子弹数 的分布列; ⑵如果命中2次就停止射击,否则一直射击到子弹用完,求耗用子弹数 的分布列. 三、【腾飞题】
4将一枚骰子掷2次,求下列随机变量的概率分布. (1)两次掷出的最大点数ξ;
(2)第一次掷出的点数减去第二次掷出的点数之差η.
九、【课堂智慧我生成】
等级评定:干净度
高速度
准确度 ξη。