二项分布与超几何分布的区别
超几何分布和二项分布

超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。
它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。
本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。
一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。
具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。
其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。
超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。
2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。
3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。
超几何分布在实际应用中有着广泛的应用。
例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。
二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。
具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。
其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。
二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。
2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。
二项分布与超几何分布的区别

(1)从中每次取出1个球然后放回,连续抽取三次,求取到红球 次数X的分布列和数学期望。 3k k k 解:由已知X~B(3,0.4), PX k C3 0.4 1 0.4 , (k 0,1,2,3)
X 所以,X的分布列为: p
0
1
2
3
27 54 36 8 E X 3 0.4 1.2 125 125 125 125
k n- k P(X=k)=Ck p (1 - p ) ,k=0,1,2,…,n. n
则称随机变量 X 服从参数为 n、p 的二项分布,记 作 X~B(n,p),并称 p 为成功概率.
2.超几何分布
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其 中恰有 X 件次品,则事件{X=k}发生的概率为
E X 3 0.6 1.8
0
1
2
3
8 36 54 27 125 125 125 125
变式:(3)把(2)改为:若随机在样本不赞成高考改革的家长中 抽取3个,记这3个家长中是城镇户口的人数为Y,试求Y的分布列 及数学期望E(Y). k 3 k C15 C10 解:由已知Y服从超几何分布, PY k , (k 0,1,2,3) 3 C25 所以,Y的分布列为: Y
2018届南宁市摸底考试18题
摸底考试18题第(1)问
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家 长中抽取3个,记这3个家长中是城镇户口的人数为X,试求X的分 布列及数学期望E(X). 用样本的频率估计概率应怎样理解? 概率定义:对于给定的随机事件A,如果随着试验次数的增加,事 件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为 事件A的概率。 在样本中,不赞成高考改革的家长中是城镇户口的频率为0.6,因 此,估计全省从不赞成高考改革的家长中随机抽取1个,他是城镇 户口的概率为0.6,抽取3个,即进行3次独立重复试验,所以, X~(n,p)
超几何分布与二项分布的区别联系

件的概率: ⑴3 台都没有报警; (2)恰好有一台报警; (3)恰好有两台报警;
分析: 1.一个警报器对另一个警报器有干扰吗?
2.每一个警报器报警的概率一样吗?
3.属于几次独立重复实验?
返回
1.一个警报器对另一个警报器有干扰吗? 2.每一个警报器报警的概率一样吗? 3.属于几次独立重复实验?
(2)如以该次检查的结果作为该批次每件产品大肠菌群超标的概率,如 从该批次产品中任取2件,设随机变量η为大肠菌群超标的产品数量,求P(η =1)的值及随机变量η的数学期望.
规律总结:当提问中涉及'‘用样本数据来估计总体数
据”字样或有此意思表示的时候,就是二项分布,否则就不是。
返回
跟踪训练 1
1.(广东高考 17) 某食品厂为了检查一条自动包装流水线的生产情 况,随机抽取该流水线上的 40 件产品作为样本称出它们的重量(单 位:克),重量的分组区间为(490,495],(495,500],……,(510,515], 由此得到样本的频率分布直方图,如图 4 所示。 (1)根据频率分布直方图,求重量超过 505 克的产品数量。 (2)在上述抽取的 40 件产品中任取 2 件,设 Y 为重量超过 505 克 的产品数量, 求 Y 的分布列。 (3)从流水线上任取 5 件产品, 求恰有 2 件产品合格的重量超过 505 克的概率。
(1).C30 0.90 (0.1)3 0.001 (2).C31(0.9)1(0.1)2 0.027 (3).C32 (0.9)2 (0.1)1 0.243
返回
返回
探究一 某地工商局从某肉制品公司的一批数量较大的火腿肠产品中
抽取10件产品,检验发现其中有3件产品的大肠菌群超标. (1)如果在上述抽取的10件产品中任取2件,设随机变量ξ为
关于二项分布与超几何分布问题区别举例

关于二项分布与超几何分布问题区别举例Company number:【0089WT-8898YT-W8CCB-BUUT-202108】关于“二项分布”与“超几何分布”问题举例一.基本概念 1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)=n Nk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。
不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。
因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 二.典型例题例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,. 03031464(0)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 333141(3)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P YC ===.因此,Y 的分布列为例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1) 取出的3件产品中一等品件数多于二等品件数的概率.(2) 记:X表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量 X服从超几何分布.解:(1) 记A1:取出3件一等品;A2:取出2件一等品;A3:取出1件一等品,二件三等品.A1、A2、A3互斥,P(A 1)= C 33C 103 = 1120 , P(A 2)= C 32C 71C 103 =740,P(A 3)= C 31C 72C 103 = 340 ; 所以,P =P(A 1)+ P(A 2)+ P(A 3)= 31120 .(2)X=0,1,2,3; X 服从超几何分布,所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310131413C C C C =310;P(X=1)=P (二件一等品,一件二等品) =3101423C C C =110; P(X=2)=P(三件一等品,一件二等品)=3101433C C C =130 ; P(X=3)= P (三件一等品,零件二等品)= 3100433C C C = 1120;EX = nM N = 3310=说明:谨防错误地认为随机变量X 服从二项分布,即:XB(3, 31120).例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X服从“二项分布”而不是“超几何分布”.解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14,则XB(3,14 );P(X=0)= C 30( 14 )0(1- 14)3-0 = 2764; P(X=1)= C 31( 14 )1(1- 14)3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 964 ;P(X=3)= C 33( 14 )3(1- 14 )3-3 = 164;EX = 3×14 = 34. 说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)= 3163124C C C k k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34.。
二项分布与超几何分布的区别

二项分布与超几何分布
的区别
Company number【1089WT-1898YT-1W8CB-9UUT-92108】
二项分布与超几何分布的区别:
定义:若有N 件产品,其中M 件是废品,无返回...
地任意抽取n 件,则其中恰有的废品件数X 是服从超几何分布的。
概率为()k n K M N M n N
C C P X k C --==. 若有N 件产品,其中M 件是废品,有.返回..
地任意抽取n 件,则其中恰有的废品件数X 是服从二项分布的。
概率为()()1n k k k n P X k C p p -==-,其中M p N
=. 区别:(1)二项分布是做相同的n 次试验(n 次独立重复试验),
(2)当样本个数为无穷大时,超几何分布和二项分布的对应概率就相等,换而言之超几何分布的极限就是二项分布。
在废品为确定数M 的足够多的产品中,任意抽取n 个(由于产品个数N 无限多,无返回与有返回无区别,故可看作n 次独立重复试验)中含有k 个废品的概率当然服从二项分布。
在这里,超几何分布转化为二项分布的条件是①产品个数应无限多,否则无返回地抽取n 件产品是不能看作n 次独立试验的.②在产品个数N 无限增加的过程中,废品数应按相应的“比例”增大,否则上述事实也是不成立的。
(3)实际上,在以样本估计总体时,从样本中无返回地任意抽取n 件,当然废品件数X 服从超几何分布的;而从总体中无返回地任意抽取n 件,理想认为....
废品件数X 服从二项分布的。
超几何分布和二项分布

超几何分布和二项分布
超几何分布与二项分布是统计分析中常用的概率分布,它们通常
在不同的环境中应用。
深入了解这两种分布有助于我们理解统计模型,并精确地将现实世界与数学理论联系起来。
首先,超几何分布是一种分布,它描述了一件事情中事件发生的
概率。
这件事情可以是抛洒抛骰子,当抛n次投掷骰子时,超几何分
布就可以描述这次投掷中,某个特定的数字骰子的概率分布。
特别的,如果我们观察那些有共同特征的事件发生的情况,超几何分布可以描
述该情况的发生概率。
其次,二项分布是另一种分布,它是超几何分布的一般化。
也就
是说,二项分布是一种由n个独立试验组成的随机实验,每次试验能
返回True或False两种结果。
在该实验中,某种指定的结果“True”
发生的概率就是超几何分布,而当观察两个或更多事件发生的状况,
就将特征整合到二项分布中去了。
此外,超几何分布和二项分布都可以用于模拟不同事件的发生概率。
超几何分布用于模拟单次实验的发生概率,而二项分布则可以用
于模拟两个或更多事件发生的状况。
也就是说,超几何分布更偏向于
简单的一次实验,而二项分布则可以用来模拟现实世界更复杂的事件
发生概率。
最后,超几何分布和二项分布都是统计学中常用的概率分布形式。
超几何分布用于模拟单次实验的发生概率,适用于单一特征的实验;
二项分布则可以模拟多事件发生的情况,通常在多特征实验中使用。
理解这两种概率分布的基本原理和应用,将有助于理解统计模型,帮
助我们更准确地把现实世界与数学理论联系起来。
上课124超几何分布与二项分布ppt课件

例 4:二十世纪 50 年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到 污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒. 引起世人对食品安全的关注.《中 华人民共和国环境保护法》规定食品的汞含量不得超过 1.00ppm.
ξ 可能的取值为 0,1,2,3,由 ξ~ B(3, 1) , 3
其分布列如下:
ξ
0
1
2
3
P(ξ)
C
0 3
(
1) 3
0
(
2 3
)
3
C13
(
1 3Biblioteka )1(2 3)2
C
2 3
(
1 3
)
2
(
2 3
)1
C
3 3
(
1 3
)
3
(
2 3
)
0
由 ξ~ B(3, 1) , 所以 Eξ=1. 3
条鱼,记 ξ 表示抽到的鱼汞含量超标的条数,求 ξ 的分布列及 Eξ.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
解:(I)记“15 条鱼中任选 3 条恰好有 1 条鱼汞含量超标”为事件 A
1求X的概率分布表; 2求去执行任务的同学中有男有女的概率.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
项分布与超几何分布比较

二项分布与超几何分布二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
在实际应用中,理解并区分两个概率模型是至关重要的。
下面举例进行对比辨析。
1.有放回抽样:每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型。
2.不放回抽样:取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型。
因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样。
所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的(特别注意:二项分布是在n次独立重复试验的3个条件成立时应用的)。
超几何分布和二项分布的区别:(1)超几何分布需要知道总体的容量,而二项分布不需要;(2)超几何分布是“不放回”抽取,而二项分布是“有放回”抽取(独立重复)。
练习题:1.袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球。
求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列。
2.今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以扰此计算出自己每天的碳排放量。
例如:家居用电的碳排放量(千克)=耗电度数×.785,汽车的碳排放量(千克)=油耗公升数×等。
某班同学利用寒假在两个小区逐户进行了一次生活习惯进否符合低碳观念的调查。
若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”。
这二族人数占各自小区总人数的比例P数据如下:(IB(2周后随机地从A小区中任选25个人,记ξ表示25个人中低碳族人数,求.ξE3.在“自选模块”考试中,某试场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况.(Ⅰ)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;(Ⅱ)设ξ为选出的4个人中选《数学史与不等式选讲》的人数,求ξ的分布列和数学期望.4.(2008年四川延考)一条生产线上生产的产品按质量情况分为三类:A类、B类、C类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A类品,B类品和C类品的概率分别为,和,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.5.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布;(2)求甲、乙两人至少有一人入选的概率.6.7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布与超几何分布的
区别
This model paper was revised by the Standardization Office on December 10, 2020
二项分布与超几何分布的区别:
定义:若有N 件产品,其中M 件是废品,无返回...
地任意抽取n 件,则其中恰有的废品件数X 是服从超几何分布的。
概率为()k n K M N M n N
C C P X k C --==. 若有N 件产品,其中M 件是废品,有.返回..
地任意抽取n 件,则其中恰有的废品件数X 是服从二项分布的。
概率为()()1n k k k n P X k C p p -==-,其中M p N
=. 区别:(1)二项分布是做相同的n 次试验(n 次独立重复试验),
(2)当样本个数为无穷大时,超几何分布和二项分布的对应概率就相等,换而言之超几何分布的极限就是二项分布。
在废品为确定数M 的足够多的产品中,任意抽取n 个(由于产品个数N 无限多,无返回与有返回无区别,故可看作n 次独立重复试验)中含有k 个废品的概率当然服从二项分布。
在这里,超几何分布转化为二项分布的条件是①产品个数应无限多,否则无返回地抽取n 件产品是不能看作n 次独立试验的.②在产品个数N 无限增加的过程中,废品数应按相应的“比例”增大,否则上述事实也是不成立的。
(3)实际上,在以样本估计总体时,从样本中无返回地任意抽取n 件,当然废品件数X 服从超几何分布的;而从总体中无返回地任意抽取n 件,理想认为....废品件数X 服从二项分布的。