数学高考复习点拨:二项分布与超几何分布辨析
超几何分布和二项分布

超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。
它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。
本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。
一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。
具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。
其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。
超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。
2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。
3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。
超几何分布在实际应用中有着广泛的应用。
例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。
二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。
具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。
其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。
二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。
2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。
二项分布与超几何分布的区别

(1)从中每次取出1个球然后放回,连续抽取三次,求取到红球 次数X的分布列和数学期望。 3k k k 解:由已知X~B(3,0.4), PX k C3 0.4 1 0.4 , (k 0,1,2,3)
X 所以,X的分布列为: p
0
1
2
3
27 54 36 8 E X 3 0.4 1.2 125 125 125 125
k n- k P(X=k)=Ck p (1 - p ) ,k=0,1,2,…,n. n
则称随机变量 X 服从参数为 n、p 的二项分布,记 作 X~B(n,p),并称 p 为成功概率.
2.超几何分布
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其 中恰有 X 件次品,则事件{X=k}发生的概率为
E X 3 0.6 1.8
0
1
2
3
8 36 54 27 125 125 125 125
变式:(3)把(2)改为:若随机在样本不赞成高考改革的家长中 抽取3个,记这3个家长中是城镇户口的人数为Y,试求Y的分布列 及数学期望E(Y). k 3 k C15 C10 解:由已知Y服从超几何分布, PY k , (k 0,1,2,3) 3 C25 所以,Y的分布列为: Y
2018届南宁市摸底考试18题
摸底考试18题第(1)问
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家 长中抽取3个,记这3个家长中是城镇户口的人数为X,试求X的分 布列及数学期望E(X). 用样本的频率估计概率应怎样理解? 概率定义:对于给定的随机事件A,如果随着试验次数的增加,事 件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为 事件A的概率。 在样本中,不赞成高考改革的家长中是城镇户口的频率为0.6,因 此,估计全省从不赞成高考改革的家长中随机抽取1个,他是城镇 户口的概率为0.6,抽取3个,即进行3次独立重复试验,所以, X~(n,p)
《二项分布与超几何分布》 讲义

《二项分布与超几何分布》讲义在概率论与数理统计中,二项分布和超几何分布是两个非常重要的离散型概率分布。
理解和掌握这两种分布对于解决实际问题以及深入研究概率理论都具有重要意义。
一、二项分布1、定义二项分布是 n 个独立的是/非试验中成功的次数的离散概率分布。
假设每次试验的成功概率为 p ,则在 n 次试验中,成功的次数 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p) 。
2、概率质量函数二项分布的概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) ,其中 C(n, k) 表示从 n 个元素中选取 k 个元素的组合数。
3、期望和方差二项分布的期望为 E(X) = np ,方差为 Var(X) = np(1 p) 。
4、应用场景二项分布常用于以下场景:多次独立重复的试验,例如抛硬币多次,计算正面出现的次数。
产品的质量检验,判断一批产品中不合格品的数量。
二、超几何分布1、定义超几何分布描述了从有限 N 个物件(其中包含 M 个指定种类的物件)中抽出 n 个物件,成功抽出指定种类物件的次数 X 的概率分布。
2、概率质量函数超几何分布的概率质量函数为:P(X = k) = C(M, k) C(N M, n k) / C(N, n) 。
3、期望和方差超几何分布的期望为 E(X) = n M / N ,方差为 Var(X) = n M /N (1 M / N) (N n) /(N 1) 。
4、应用场景超几何分布常用于以下情况:不放回抽样问题,例如从一批产品中随机抽取若干个,计算其中合格品的数量。
对有限总体的抽样分析。
三、二项分布与超几何分布的区别1、试验类型二项分布是独立重复试验,每次试验的结果只有两种(成功或失败),且每次试验的成功概率相同。
超几何分布是非独立试验,每次抽样的结果会影响下一次抽样的概率。
2、总体大小二项分布的总体大小通常是无限的或者很大,而超几何分布的总体大小是有限的。
二项分布与超几何分布问题区别举例

二项分布与超几何分布问题区别举例文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)关于“二项分布”与“超几何分布”问题举例一.基本概念1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)= nNk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n 次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n 次独立重复试中,事件A 恰好发生k 次的概率为:P(X=k)= C n kp k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X 服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n 次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;(3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.分布”和“二项分布”的这种“巧合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。
不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。
《二项分布与超几何分布》知识讲解

二项分布与超几何分布★ 知 识 梳理 ★1.条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率。
特别提醒: ①0≤P (B|A )≤1;②P(B ∪C|A)=P(B|A)+P(C|A)。
2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。
特别提醒:①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_B 都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B )推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。
即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n )3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式:P n (k )=C k n P k (1-P )n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ 0 1… k … n P n n q p C 00 111-n n q p C … k n k k n q p C - …0q p C n n n 由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).6. 两点分布:X 0 1P 1-p p特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率.7. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则},,min{,,1,0,)(n M m m k C C C k X P n Nk n M N k M ====--Λ其中,N M N n ≤≤,。
高考数学总复习考点知识专题讲解13 二项分布与超几何分布

高考数学总复习考点知识专题讲解 专题13 二项分布与超几何分布知识点一 n 重伯努利试验及其特征 1.n 重伯努利试验的概念将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验. 2.n 重伯努利试验的共同特征 (1)同一个伯努利试验重复做n 次. (2)各次试验的结果相互独立.思考在相同条件下,有放回地抽样试验是n 重伯努利试验吗? 答案 是.其满足n 重伯努利试验的共同特征. 知识点二 二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n . 称随机变量X 服从二项分布,记作X ~B (n ,p ). 知识点三 二项分布的均值与方差若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).【例1】(2023•大埔县月考)设随机变量~(,)B n p ξ,若() 2.4E ξ=,() 1.44D ξ=,则参数n ,p 的值分别为()A .12,0.4B .12,0.6C .6,0.4D .6,0.6【例2】(2023•永春县月考)设随机变量~(2,)B p ξ,~(3,)B p η,5(1)9P ξ=…,则(2)(P η=…)A .19B .727C .59D .89【例3】(2023•海门市期末)A 、B 两组各3人独立的破译某密码,A 组每个人译出该密码的概率均为1p ,B 组每个人译出该密码的概率均为2p ,记A 、B 两组中译出密码的人数分别为X 、Y ,且12112p p <<<,则()A .()()E X E Y <,()()D X D Y <B .()()E X E Y <,()()D X D Y >C .()()E X E Y >,()()D X D Y < D .()()E X E Y >,()()D X D Y >【例4】(2018•新课标Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,() 2.4D X =,(4)(6)P X P X =<=,则(p =)A .0.7B .0.6C .0.4D .0.3【例5】(2023•多选•琼中县模拟)若袋子中有2个白球,3个黑球,现从袋子中有放回地随机取球4次,每次取一个球,取到白球记1分,取到黑球记0分,记4次取球的总分数为X ,则()A .3~(4,)5X B B .4(3)25P X ==C .X 的期望8()5E X =D .X 的方差24()25D X =【例6】(2023•武汉模拟)已知离散型随机变量X 服从二项分布(,)B n p ,其中*n N ∈,01p <<,记X 为奇数的概率为a ,X 为偶数的概率为b ,则下列说法中正确的有()A .1a b +=B .12p =时,a b =C .102p <<时,a 随着n 的增大而增大 D .112p <<时,a 随着n 的增大而减小知识点四 超几何分布1.定义:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -k N -MC n N,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }. 如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布. 2.均值:E (X )=nM N. 3.超几何分布是不放回抽样,且超几何分布与二项分布的均值相同. 二项分布与超几何分布的关系在n 次试验中,某事件A 发生的次数X 可能服从超几何分布或二项分布.l 联系:在不放回n 次试验中,如果总体数量N 很大,而试验次数n 很小,此时超几何分布可近似转化成二项分布区别:①当这n 次试验是n 重伯努利试验时(如有放回摸球),X 服从二项分布;②当n 次试验不是n 重伯努利试验时(如不放回摸球),X 服从超几何分布。
例谈超几何分布与二项分布的辨析

例谈超几何分布与二项分布的辨析
超几何分布、二项分布是高考常考的概率分布类型,这两种分布既有区别,又有关联,学生在初学时由于对两种分布的本质认识不清,被易造成混淆,进面在解题中出现错解.那么如何区分这两种分布? 笔者归纳出如下几个区分点,供读者参考.
辨析超几何分布与二项分布既有区别,又有联系.当总体的数量非常大,抽取样本数量很少时,可以近似地认为每次抽取时事件发生的概率不变,这样就可以看成每次抽取结果是相互独立的,进面将超几何分布近似地看作二项分布来处理.
另外,常见的概率分布类型还有两点分布,两点分布是一种特殊的二项分布,即只进行一次独立重复试验,只有发生与不发生两种结果,与其有关的问题相对于前两种要简单一些
总之,在处理与概率分布有关的间题时,我们要明确各种概率分布的本质,以及不同概率类型之间的异同,结合题目条件,准确识别概率类型.。
超几何分布和二项分布的联系和区别

超几何分布和二项分布的联系和区别如何计算恰好有1件次品的概率?这道题目可以用超几何分布和二项分布两种方法来解决。
首先,我们可以使用超几何分布,因为这是一个不放回抽样问题。
根据题目条件,我们可以得到M=0.02n,N=n,n=3,k=1.代入超几何分布的公式,可以得到P(X=1)=0.111.其次,我们也可以使用二项分布,因为这是一个独立重复试验问题。
根据题目条件,我们可以得到n=3,p=0.02,k=1.代入二项分布的公式,可以得到P(X=1)=0.057.因此,两种方法得到的结果略有不同,但可以看出它们之间是有联系的。
二项分布可以看作是超几何分布的一种近似,当样本容量n很大时,二项分布的计算结果可以逼近超几何分布的计算结果。
在进行放回或不放回的方式抽取时,当产品总数分别为500、5000和时,恰好抽到1件次品的概率分别是多少?根据此问题,你对超几何分布与二项分布的关系有何认识?解析:在不放回的方式抽取中,每次抽取时都是从这n件产品中抽取,从而抽到次品的概率都为。
次品数X服从二项分布,恰好抽到1件次品的概率为1P(X=1)=C3×(1-2%)^2×(2%)^1≈0.057.在不放回的方式抽取中,抽到的次品数X是随机变量,X服从超几何分布,X的分布与产品的总数n有关,所以需要分3种情况分别计算。
①当n=500时,产品的总数为500件,其中次品的件数为500×2%=10,合格品的件数为490.从500件产品中抽出3件,其中恰好抽到1件次品的概率为P(X=1)=12C10×C×490×489÷3500×499×498≈0..②当n=5000时,产品的总数为5000件,其中次品的件数为5000×2%=100,合格品的件数为4900.从5000件产品中抽出3件,其中恰好抽到1件次品的概率为P(X=1)=12C100×Cxxxxxxx×4900×4899÷×4999×4998≈0.xxxxxx x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布与超几何分布辨析二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===.因此,Y 的分布列为辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样. 超几何分布和二项分布都是离散型分布,超几何分布和二项分布的区别: 超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布........二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
在实际应用中,理解并区分两个概率模型是至关重要的。
下面举例进行对比辨析。
1.有放回抽样:每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型。
2.不放回抽样:取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型。
因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样。
所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的(特别注意:二项分布是在n次独立重复试验的3个条件成立时应用的)。
超几何分布和二项分布的区别:(1)超几何分布需要知道总体的容量,而二项分布不需要;(2)超几何分布是“不放回”抽取,而二项分布是“有放回”抽取(独立重复)。
练习题:1. 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球。
求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列。
2. (2008年四川延考)一条生产线上生产的产品按质量情况分为三类:A类、B类、C类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A类品,B 类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.3. 今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以扰此计算出自己每天的碳排放量。
例如:家居用电的碳排放量(千克)=耗电度数×.785,汽车的碳排放量(千克)=油耗公升数×0.785等。
某班同学利用寒假在两个小区逐户进行了一次生活习惯进否符合低碳观念的调查。
若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”。
这二族人数占各自小区总人数的比例P 数据如下:(I )如果甲、乙来自A 小区,丙、丁来自B 小区,求这4人中恰有2人是低碳族的概率; (II )A 小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列。
如果2周后随机地从A 小区中任选25个人,记ξ表示25个人中低碳族人数,求.ξE4. 在“自选模块”考试中,某试场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况.(Ⅰ)求选出的4 人均为选《矩阵变换和坐标系与参数方程》的概率;(Ⅱ)设ξ为选出的4个人中选《数学史与不等式选讲》的人数,求ξ的分布列和数学期望.5.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布;(2)求甲、乙两人至少有一人入选的概率.正态分布和线性回归高考要求1.了解正态分布的意义及主要性质2.了解线性回归的方法和简单应用知识点归纳1.正态分布密度函数:22()2()2xf x eμσπσ--=,(σ>0,-∞<x<∞)其中π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为),(2σμN2.正态分布),(2σμN)是由均值μ和标准差σ唯一决定的分布例1、下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ.(1)2221)(xexf-=π,(-∞<x<+∞)(2)2(1)8()22xf x eπ--=,(-∞<x<+∞)解:(1)0,1 (2)1,23.正态曲线的性质:正态分布由参数μ、σ唯一确定,如果随机变量ξ~N(μ,σ2),根据定义有:μ=Eξ,σ=Dξ。
正态曲线具有以下性质:(1)曲线在x轴的上方,与x轴不相交。
(2)曲线关于直线x =μ对称。
(3)曲线在x =μ时位于最高点。
(4)当x <μ时,曲线上升;当x >μ时,曲线下降。
并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近。
(5)当μ一定时,曲线的形状由σ确定。
σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。
五条性质中前三条较易掌握,后两条较难理解,因此应运用数形结合的原则,采用对比教学4.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x ex f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题 5.标准正态总体的概率问题:对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率, 即 )()(00x x P x <=Φ,其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5例2 设),(~2σμN X ,且总体密度曲线的函数表达式为:412221)(+--=x x ex f π,x ∈R 。
(1)求μ,σ;(2)求)2|1(|<-x P 的值。
分析:根据表示正态曲线函数的结构特征,对照已知函数求出μ和σ。
利用一般正态总体),(2σμN 与标准正态总体N (0,1)概率间的关系,将一般正态总体划归为标准正态总体来解决。
解:(1)由于222)2(2)1(41222121)(--+--⋅==x x x eex f ππ,根据一般正态分布的函数表达形式,可知μ=1,2=σ,故X ~N (1,2)。
(2))2121()2|1(|+<<-=<-xP x P(1(1(1)(1)2(1)120.84131F F =-=Φ-Φ=Φ-Φ-=Φ-=⨯- 6826.0=。
点评:在解决数学问题的过程中,将未知的,不熟悉的问题转化为已知的、熟悉的、已解决了的问题,是我们常用的手段与思考问题的出发点。
通过本例我们还可以看出一般正态分布与标准正态分布间的内在关联。
9.相关关系:当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系相关关系与函数关系的异同点如下: 相同点:均是指两个变量的关系不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.10.回归分析一元线性回归分析: 对具有相关关系的两个变量进行统计分析的方法叫做回归分析 对于线性回归分析,我们要注意以下几个方面:(1)回归分析是对具有相关关系的两个变量进行统计分析的方法。
两个变量具有相关关系是回归分析的前提。
(2)散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析。
(3)求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义。
11.散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度粗略地看,散点分布具有一定的规律12. 回归直线 设所求的直线方程为,^a bx y +=,其中a 、b 是待定系数.1122211()()()n ni i i i i i n n i i i i x x y y x y nxy b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑, ∑==n i i x n x 11,∑==ni i y n y 11 相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 13.相关系数:相关系数是因果统计学家皮尔逊提出的,对于变量y 与x 的一组观测值,把∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((=∑∑∑===---n i n i i i ni ii y n y x n x yx n yx 1122221))((叫做变量y 与x 之间的样本相关系数,简称相关系数,用它来衡量两个变量之间的线性相关程度.14.相关系数的性质: r ≤1,且r 越接近1,相关程度越大;且r 越接近0,相关程度越小.一般的,当r ≥ 0.75 时,就可以判断其具有很强的相关性,这时求线性回归方程才有意义。