【数学】高考复习点拨:二项分布与超几何分布辨析

合集下载

超几何分布和二项分布

超几何分布和二项分布

超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。

它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。

本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。

一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。

具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。

其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。

超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。

2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。

3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。

超几何分布在实际应用中有着广泛的应用。

例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。

二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。

具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。

其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。

二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。

2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。

深度剖析超几何分布和二项分布

深度剖析超几何分布和二项分布

高考数学2021年$月深度咅慚趨几何分布和二顶分布■江苏省天一中学周海军概率统计是高中数学的重要知识模块#近几年来在高考中考查的比例越来越高,基本以两道小题加一道解答题的形式出现,试题富有时代气息,通过创设源于社会生活中的真实情境,考查同学们的阅读、识图、计算、表达等能力,考查的重心是数据分析能力和数学运算能力。

在概率中,二项分布、超几何分布是出现频率较高的两种概率模型,很多同学在学习的过程中容易产生混淆,经常有同学问二项分布与超几何分布到底怎么区分。

要弄清楚两者的关系,我们先来看看人教版新课标教材选修2—$给出的概念:超几何分布:一般地,在含有M件次品的N件产品中,任取九件,其中恰有X件次品,那么+Q,-<)=C C C—3(<=0,1,2,…,C nB)#其中B=min{32},且2&N,M&N,n,3,N+N*。

如果随机变量X的分布列具有表1的形式,则称随机变量X服从超几何分布,记为X〜H53N)。

表1X01…BP厂0厂2—0J3「N—3c3c n—3…C3C n—3C N C N C N二项分布:在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为。

,则P(X=k)=C n p k(1—p)n—k(@=0,1,2,…,n),此时称随机变量X 服从二项分布,记为X〜B21),并称p为成功概率。

从定义通过实践我们可以提炼出两者的关系:相同点:超几何分布和二项分布都是离散型分布。

区别:(1)超几何分布需要知道总体的容量,而二项分布不需要;))超几何分布是“不放回%由取,而二项分布是“有放回%由取(独立重复);($)当总体的容量非常大时,超几何分布近似于二项分布。

一、超几何分布模型超几何分布特点:超几何分布是离散型分布,需要知道总体的容量,并且是“不放回”抽取。

!!(2020年广东模拟)台风“山竹”对我国多个省市的财产造成重大损害,据统计,直接经济损失达52亿元。

二项分布与超几何分布的区别

二项分布与超几何分布的区别

(1)从中每次取出1个球然后放回,连续抽取三次,求取到红球 次数X的分布列和数学期望。 3k k k 解:由已知X~B(3,0.4), PX k C3 0.4 1 0.4 , (k 0,1,2,3)
X 所以,X的分布列为: p
0
1
2
3
27 54 36 8 E X 3 0.4 1.2 125 125 125 125
k n- k P(X=k)=Ck p (1 - p ) ,k=0,1,2,…,n. n
则称随机变量 X 服从参数为 n、p 的二项分布,记 作 X~B(n,p),并称 p 为成功概率.
2.超几何分布
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其 中恰有 X 件次品,则事件{X=k}发生的概率为
E X 3 0.6 1.8
0
1
2
3
8 36 54 27 125 125 125 125
变式:(3)把(2)改为:若随机在样本不赞成高考改革的家长中 抽取3个,记这3个家长中是城镇户口的人数为Y,试求Y的分布列 及数学期望E(Y). k 3 k C15 C10 解:由已知Y服从超几何分布, PY k , (k 0,1,2,3) 3 C25 所以,Y的分布列为: Y
2018届南宁市摸底考试18题
摸底考试18题第(1)问
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家 长中抽取3个,记这3个家长中是城镇户口的人数为X,试求X的分 布列及数学期望E(X). 用样本的频率估计概率应怎样理解? 概率定义:对于给定的随机事件A,如果随着试验次数的增加,事 件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为 事件A的概率。 在样本中,不赞成高考改革的家长中是城镇户口的频率为0.6,因 此,估计全省从不赞成高考改革的家长中随机抽取1个,他是城镇 户口的概率为0.6,抽取3个,即进行3次独立重复试验,所以, X~(n,p)

二项分布与超几何分布问题区别举例

二项分布与超几何分布问题区别举例

二项分布与超几何分布问题区别举例文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)关于“二项分布”与“超几何分布”问题举例一.基本概念1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)= nNk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n 次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n 次独立重复试中,事件A 恰好发生k 次的概率为:P(X=k)= C n kp k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X 服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n 次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;(3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.分布”和“二项分布”的这种“巧合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。

不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。

《二项分布与超几何分布》知识讲解

《二项分布与超几何分布》知识讲解

二项分布与超几何分布★ 知 识 梳理 ★1.条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率。

特别提醒: ①0≤P (B|A )≤1;②P(B ∪C|A)=P(B|A)+P(C|A)。

2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

特别提醒:①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_B 都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B )推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。

即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n )3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式:P n (k )=C k n P k (1-P )n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ 0 1… k … n P n n q p C 00 111-n n q p C … k n k k n q p C - …0q p C n n n 由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).6. 两点分布:X 0 1P 1-p p特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率.7. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则},,min{,,1,0,)(n M m m k C C C k X P n Nk n M N k M ====--Λ其中,N M N n ≤≤,。

关于二项分布与超几何分布问题区别举例

关于二项分布与超几何分布问题区别举例

关于二项分布与超几何分布问题区别举例Company number:【0089WT-8898YT-W8CCB-BUUT-202108】关于“二项分布”与“超几何分布”问题举例一.基本概念 1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)=n Nk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。

不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。

因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 二.典型例题例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,. 03031464(0)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 333141(3)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P YC ===.因此,Y 的分布列为例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1) 取出的3件产品中一等品件数多于二等品件数的概率.(2) 记:X表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量 X服从超几何分布.解:(1) 记A1:取出3件一等品;A2:取出2件一等品;A3:取出1件一等品,二件三等品.A1、A2、A3互斥,P(A 1)= C 33C 103 = 1120 , P(A 2)= C 32C 71C 103 =740,P(A 3)= C 31C 72C 103 = 340 ; 所以,P =P(A 1)+ P(A 2)+ P(A 3)= 31120 .(2)X=0,1,2,3; X 服从超几何分布,所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310131413C C C C =310;P(X=1)=P (二件一等品,一件二等品) =3101423C C C =110; P(X=2)=P(三件一等品,一件二等品)=3101433C C C =130 ; P(X=3)= P (三件一等品,零件二等品)= 3100433C C C = 1120;EX = nM N = 3310=说明:谨防错误地认为随机变量X 服从二项分布,即:XB(3, 31120).例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X服从“二项分布”而不是“超几何分布”.解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14,则XB(3,14 );P(X=0)= C 30( 14 )0(1- 14)3-0 = 2764; P(X=1)= C 31( 14 )1(1- 14)3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 964 ;P(X=3)= C 33( 14 )3(1- 14 )3-3 = 164;EX = 3×14 = 34. 说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)= 3163124C C C k k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34.。

高考数学总复习考点知识专题讲解13 二项分布与超几何分布

高考数学总复习考点知识专题讲解13 二项分布与超几何分布

高考数学总复习考点知识专题讲解 专题13 二项分布与超几何分布知识点一 n 重伯努利试验及其特征 1.n 重伯努利试验的概念将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验. 2.n 重伯努利试验的共同特征 (1)同一个伯努利试验重复做n 次. (2)各次试验的结果相互独立.思考在相同条件下,有放回地抽样试验是n 重伯努利试验吗? 答案 是.其满足n 重伯努利试验的共同特征. 知识点二 二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n . 称随机变量X 服从二项分布,记作X ~B (n ,p ). 知识点三 二项分布的均值与方差若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).【例1】(2023•大埔县月考)设随机变量~(,)B n p ξ,若() 2.4E ξ=,() 1.44D ξ=,则参数n ,p 的值分别为()A .12,0.4B .12,0.6C .6,0.4D .6,0.6【例2】(2023•永春县月考)设随机变量~(2,)B p ξ,~(3,)B p η,5(1)9P ξ=…,则(2)(P η=…)A .19B .727C .59D .89【例3】(2023•海门市期末)A 、B 两组各3人独立的破译某密码,A 组每个人译出该密码的概率均为1p ,B 组每个人译出该密码的概率均为2p ,记A 、B 两组中译出密码的人数分别为X 、Y ,且12112p p <<<,则()A .()()E X E Y <,()()D X D Y <B .()()E X E Y <,()()D X D Y >C .()()E X E Y >,()()D X D Y < D .()()E X E Y >,()()D X D Y >【例4】(2018•新课标Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,() 2.4D X =,(4)(6)P X P X =<=,则(p =)A .0.7B .0.6C .0.4D .0.3【例5】(2023•多选•琼中县模拟)若袋子中有2个白球,3个黑球,现从袋子中有放回地随机取球4次,每次取一个球,取到白球记1分,取到黑球记0分,记4次取球的总分数为X ,则()A .3~(4,)5X B B .4(3)25P X ==C .X 的期望8()5E X =D .X 的方差24()25D X =【例6】(2023•武汉模拟)已知离散型随机变量X 服从二项分布(,)B n p ,其中*n N ∈,01p <<,记X 为奇数的概率为a ,X 为偶数的概率为b ,则下列说法中正确的有()A .1a b +=B .12p =时,a b =C .102p <<时,a 随着n 的增大而增大 D .112p <<时,a 随着n 的增大而减小知识点四 超几何分布1.定义:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -k N -MC n N,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }. 如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布. 2.均值:E (X )=nM N. 3.超几何分布是不放回抽样,且超几何分布与二项分布的均值相同. 二项分布与超几何分布的关系在n 次试验中,某事件A 发生的次数X 可能服从超几何分布或二项分布.l 联系:在不放回n 次试验中,如果总体数量N 很大,而试验次数n 很小,此时超几何分布可近似转化成二项分布区别:①当这n 次试验是n 重伯努利试验时(如有放回摸球),X 服从二项分布;②当n 次试验不是n 重伯努利试验时(如不放回摸球),X 服从超几何分布。

超几何分布、二项分布区别

超几何分布、二项分布区别


P X k
CMk
C nk N M
CNn
k 0,1,2,,M
区分超几何分布及二项分布的使用
(1)逐次抽取,取后放回用二项分布 (2)一次性抽取(无放回、无顺序)用超几何分布 (3)在统计中,用频率估计概率,在总体中抽取用二项分布 (4)在统计中,在样本中抽取用超几何分布
常见数列通项求法 求an
(1)Sn与n关系式,例如: Sn n2 n或Sn n2 n 1 (2)Sn与an关系式(不含n),例如:Sn 1 2an
Sn1与Sn关系式(不含n),例如:a1 2,Sn1 2Sn 1
Sn与an1关系式(不含n),例如:a1
1 2
,Sn
1
2an1
(3)an1与an的关系式(不含 n,非等差等比),例如a1 1,an1 2an 3
超几何分布、二项分布的区别与联系
超几何分布和二项分布都是离散型随机变量 的一种概率分布模型,一般以分布列的形式 体现其分布
二项分布:
(1)是在n次独立重复试验条件下的概率分布模型 (2)随机变量的取值是这n次独立重复试验中事件发生的次数,为0—n (3)每次试验的结果只有发生和不发生两种情况,且相互独立 (4)每次试验中事件发生的概率保持不变
错位相减法万能公式
差比数列 cn an bqn1 ,则其前n项和一定为: Sn An Bqn B
其中A a ,B b A q 1 q 1
注:本结论只能作为最后结果的检验,不能 作为解答过程。
在n次独立重复试验中,事件A发生的次数为X,每次试验中事件A
发生概率为p,记 X ~ Bn, p ,则
PX k Cnk pk 1 p nk
k 0,1,2,,n
超几何分布:描述了由有限个物件中抽出n个物件,成功抽
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项分布与超几何分布辨析
山东 韩文文
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.
例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:
(1)有放回抽样时,取到黑球的个数X的分布列;
(2)不放回抽样时,取到黑球的个数Y的分布列.
解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到
黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫ ⎪⎝⎭
,. 03
31464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴; 12
1
31448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 21
2
31412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 30
33141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为
2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:
03283107(0)15
C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C
P Y C ===. 因此,Y 的分布列为
辨析:某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.
超几何分布和二项分布都是离散型分布
超几何分布和二项分布的区别:
超几何分布需要知道总体的容量,而二项分布不需要;
超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布.........。

相关文档
最新文档