吸火式斯特林发动机图纸
斯特林发动机

斯特林发动机11机械八班何鹏飞201124190806这种发动机是伦敦的牧师罗巴特斯特林(Robert Stirling)于1816年发明的,所以命名为“斯特林发动机”(Stirling engine)。
斯特林发动机是独特的热机,因为他们实际上的效率几乎等于理论最大效率,称为卡诺循环效率。
斯特林发动机是通过气体受热膨胀、遇冷压缩而产生动力的。
这是一种外燃发动机,使燃料连续地燃烧,蒸发的膨胀氢气(或氦)作为动力气体使活塞运动,膨胀气体在冷气室冷却,反复地进行这样的循环过程。
外燃机是一种外燃的闭式循环往复活塞式热力发动机,有别于依靠燃料在发动机内部燃烧获得动力的内燃机。
燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。
由于外燃机避免了传统内燃机的震爆做功问题,从而实现了高效率、低噪音、低污染和低运行成本。
外燃机可以燃烧各种可燃气体,如:天然气、沼气、石油气、氢气、煤气等,也可燃烧柴油、液化石油气等液体燃料,还可以燃烧木材,以及利用太阳能等。
只要热腔达到700℃,设备即可做功运行,环境温度越低,发电效率越高。
外燃机最大的优点是出力和效率不受海拔高度影响,非常适合于高海拔地区使用。
但是,斯特林发动机还有许多问题要解决,例如膨胀室、压缩室、加热器、冷却室、再生器等的成本高,热量损失是内燃发动机的2-3倍等。
所以,还不能成为大批量使用的发动机。
由于热源来自外部,因此发动机需要经过一段时间才能响应用于气缸的热量变化(通过气缸壁将热量传导给发动机内的气体需要很长时间)。
这意味着:1、发动机在提供有效动力之前需要时间暖机。
2、发动机不能快速改变其动力输出。
热气机是一种外燃的、闭式循环往复活塞式热力发动机。
热气机可用氢、氮、氦或空气等作为工质,按斯特林循环工作。
在热气机封闭的气缸内充有一定容积的工质。
气缸一端为热腔,另一端为冷腔。
工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀作功燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。
斯特林发动机

斯特林发动机斯特林发动机是一种闭循环活塞式热机,闭循环的意思是工作燃气一直保存在气缸内,而开循环则如内燃机和一些蒸气机需要与大气交换气体。
斯特林发动机一般被归为外燃机。
切图以外的菱形驱动器测试配置斯特林发动机的设计:* 粉红-热筒壁* 深灰色-冷筒壁(与冷却进排气管在黄色)* 暗绿色-热绝缘分开的两个汽缸结束* 浅绿色-置换活塞* 深蓝色-功率活塞* 淡蓝色-曲柄连杆和飞轮没有表明:热源和热汇。
在此设计了置换活塞构造没有专门建造的再生。
介绍斯特林发动机在热机中的效率目前是最高的,有时可以达到80%。
In the conversion of heat into mechanical work, the Stirling engine has the potential to achieve the highest efficiency of any heat engine. It can theoretically perform up to the full Carnot efficiency, although not yet in practice. The practical limitations include the non-ideal properties of the working gas, and material properties such as friction, thermal conductivity, tensile strength, creep, rupture strength, and melting point. The Stirling engine can run on any heat source, including chemical, solar, geothermal and nuclear. There are many possible implementations of the Stirling engine. Most fall into the category of reciprocating piston engine.In contrast to internal combustion engines, Stirling engines have the potential to use renewable heat sources more easily, to be quieter, and to be more reliable with lower maintenance. They are preferred for applications that value these unique advantages, particularly if the the cost per unit energy generated ($/kWh) is more important than the capital cost per unit power ($/kW). On this basis, Stirling engines are cost competitive up to about 100 kW.[3]Compared to an internal combustion engine of the same power rating, Stirling engines currently have a higher capital cost and are usually larger and heavier. Their lower maintenance requirements make the overall energy cost comparable. The thermal efficiency is also comparable (for small engines), ranging from 15%-30%.[3]For applications such as micro-CHP, a Stirling engine is often preferable to an internal combustion engine. Other applications include water pumping, space-based astronautics, and electrical generation from plentiful energy sources that are incompatible with the internal combustion engine, such as solar energy, and biomass such as agricultural waste and other waste such as domestic refuse. Stirlings have also been used as a marine engine in Swedish Gotland class submarines. [4]However Stirlings are generally not price-competitive as an automobile engine, due to high cost per unit power, low power density and high material costs.In recent years, the advantages of Stirling engines have become increasingly significant, given the rise in liquid fuel prices and concerns such as peak oil and climate change. Stirling engines address these issues by being very compatible with all renewable energy and fuel sources. These growing interests in Stirling technology have fostered the ongoing research and development of Stirling devices, and R&D breakthroughs have in turn increased interest in the technology.If supplied with mechanical power, Stirlings can function in reverse as a heat pump for heating or cooling. Experiments have been performed using wind power driving a Stirling cycle heat pump for domestic heating and air conditioning. In the late 1930s, the Philips Corporation of the Netherlands successfully utilized the Stirling cycle in cryogenic applications.[5]Basic analysis is based on the closed-form Schmidt analysis{google翻译:}斯特林发动机是一个封闭的循环蓄热式发动机,气体工质。
Stirling Engine Plans 斯特林发动机模型简易图纸

\」回3132'
斗护/泣T
回::J '
③
I
3 /3 2' To p 7M
E:>f MC 25i叫
⑩
FIZGIG
Shee 吃
12
Li gh 吃 weigh 吃
Pis 吃 on ,
'-'μ r ~ ~
@口
2
311 坦
>SSU E' 0 (B E'-t oJ
C C>n俨。d
M龟 w e e n
c e ntr e ~
Sheet 7
Cylinde 俨&
豆二
Pis 吃 on
@口
(8" 变 α 〉
37/6 ~
"♂
E
Lodite ω〉唁
( tetedr T
~-- Approx
See de~ωled no 飞 E for fit协 9 p'" 毛~ to cy们 nder
@
一一γ
→忖←
U~
'"
也旬'
白
S .,..,. Sh ee t II for
"' r . QOk . d
"" hol. . T Ip of 1/驴
, .啊<co肝脏 l
《 ?①
},
,-,
E
g
E:>, ~c …
FIZGIG
Issue 0
4
Sheet 2b (Be 吃 Q)
1110' or 2MN bedplQte 0 口
S ~ ve 俨 5old~r
3/1豆
光热发电5-2

章 动过程中,压力变化幅度减小,导致输出功率下降。
抛
A线表示理想循环的功率和效率,无益容积导致发
物 面
动机功率下降见B线,效率仍保持理想循环的效率值。
碟
式
光
热
发
电
光热发电技术基础
第
五
发动机活塞的运动实际上是连续的,不可能间断运
章 动, 因此实际循环的四个过程没有明确的界限,导致
抛 压力和输出功率进一步下降,如图中的 C 线所示。 物 面 碟 式 光 热 发 电
光热发电技术基础
第 五
实际循环还存在摩擦损失,包括工质流动阻力损失
章 机械摩擦损失 辅助机械损失等。
抛
造成的发动机的功率和效率的下降分别如图中的G、
物 H、J线所示。
面
碟
式
光
热
发
电
光热发电技术基础
第 五
实际循环还可能存在工质泄露等其它与理想假设条
电 温度TL不变。理想情
况下可实现等温压
缩过程。
光热发电技术基础
第
五
章
(2) 等容吸热
抛
冷腔活塞继续运动
物 面
到上止点,热腔活塞也
碟 开始以相同的速率向下
式 止点运动,工质从冷腔
光 热
流向热腔,流经回热器
发 ,吸收一部分热量,温
电 度从TL 升高到TH,压力
从p2增大到p3,实现等
容吸热。
光热发电技术基础
光热发电技术基础
第 五
第二节 斯特林发动机的结构与工作原理
章
一、斯特林发动机
抛
物
1816 年,苏格兰牧师 Robert Stirling 发明
斯特林发动机模型制作大全

制作热声效应斯特林引擎十九世纪的吹玻璃工人,偶尔会听到被加热的玻璃管自然发出神秘的单音,这令人费解的声音其实是热机的另一种输出形式。
一般的引擎以转动的形式输出能量;声音也具有能量,只不过以空气作为传递的媒介。
热声效应的原理空气振动形成声音,声音发生时,为方便讨论,将传播声音的空气分成无数小块空气,应用牛顿力学来分析空气振动的情形,会得到声音的波动方程式,此方程式的解显示:声音传播时,各个小块空气都会发生膨胀收缩和位移。
如果小块空气被压缩后,再被加热膨胀,对周围空气作较大的正功;之后这小块空气又先被冷却,再被压缩,作较小的负功 (周围空气对这小块空气作较小的功) 。
虽然这小块空气并非对活塞或涡轮作功,而是对周围空气作功,事实上也完成了工作流体加热后膨胀,冷却后被压缩的热机循环,把热能转换成声音振动的能量,增加声音的强度,此即所谓“热声效应”。
凡是利用工作流体在冷、热区间移动,执行压缩的工作流体经加热而膨胀作正功,膨胀后先冷却再压缩作负功的热机循环,这样的机构都被归类为斯特林引擎。
利用热声效应把热能转换成机械能的装置,也就称为热声效应斯特林引擎(thermoacoustics stirling heat engine) ,热声效应斯特林引擎大致可分为驻波(standing wave)和行波(traveling wave)两种。
驻波型斯特林引擎的作功原理驻波型斯特林引擎,基本上是一端闭口,一端开口的管状共振腔,在共振腔内近闭口端装有热片堆(stack),热片堆中有许多平行共振腔轴向的密集穿孔。
热片堆在靠近闭端温度较高,另一端温度较低,于是延共振腔轴向的温度梯度(temperature gradient)相当大。
当驻波发生时,热堆片穿孔中的各小块空气(工作流体)向闭口端位移,而被压缩,同时移向热片堆较高温处,该小块空气在热穿透深度(thermal penetration depth)以内的部分,会被热片堆加热,使得温度升高,随即膨胀对周围空气做较大的正功,驻波的能量于是加大,小块空气也随着膨胀,同时移至热片堆的冷端,当能量增加的驻波再度压缩这小块空气时,此小块空气已先被较低温的热片堆冷却,只消耗较少的声波能量即可被压缩。
AIP发动机原理图

AIP发动机原理图潜水艇对动力系统的要求,非常苛刻.即要有强大的动力.更要能非常的安安静静.尽量是无声.AIP 发动机就是这样的发动机.再加上燃料电池驱动.更是完美的搭配.因为到目前为止.除了声纳探测可发现水下潜艇.还未有真正的探测技术,能发现潜艇.所以中国潜艇在日本近海.能驶到美国航空母舰的身边浮出水面,才被老美发现.当然那是故意叫老美知道."请不要在我家门口耀武扬威"!AIP发动机原理图斯特林发动机系统斯特林发动机(SE/AIP)系统与闭式循环柴油机系统大致相同,最主要的不同就是发动机。
SE/AIP系统使用的是热气机,而CCD/AIP系统使用的是闭式循环柴油机。
热气机的构想是英国科学家罗伯特·斯特林于1816年率先提出来的,它是一种由外部热源加热,并将热能转换为机械能的热机,其循环是一种闭式、采用定容下回热的气体循环,简称斯特林循环,其具体工作原理是:斯特林发动机的活塞上室为热室,它与另一活塞的下室相连,四个缸相互连接在一起,具体的是1号缸上部的热室与2号缸下部的冷室相连,2号缸上部的热室与3号缸下部的冷室相连,3号缸上部的热室与4号缸下部的冷室相连,4号缸上部的热室与1号缸下部的冷室相连,互相差90°角。
它们使工作气体在热室和冷室之间来回移动,使活塞运动并带动曲柄转动。
斯特林发动机主要是在水下续航状态下工作,与蓄电池并联,向推进电机、全艇辅机及其他用电设备供电。
技术实现的难点和重点主要在于斯特林发动机的水下燃烧系统,因为该系统所使用的氧化剂是纯氧,燃烧方式为燃气再循环,并且是在高于周围海水压力的高压情况下进行燃烧。
主要技术优点机械噪声与振动较小。
因为斯特林发动机是一种从外部对内部气体工质连续加热使之做功的活塞式往复发动机,燃烧过程中没有柴油机的爆燃现象,燃烧过程平稳,因此发动机的噪声与振动较小,但是有些斯特林发动机的部件依然采用往复式运动机械,所以在装备潜艇时仍要加装双层隔振系统以减小水下噪声。
自制斯特林发动机制作教程及斯特林发动机原理、图纸

自制斯特林发动机制作教程及斯特林发动机原理、图纸一杯咖啡不能化身为一杯汽油,但是它一样可以用来驱动一个发动机,只不过这个发动机有点特别,是用硬纸板做成的小型发动机,当然也不是全部用硬纸板做成,还包括黄金冲件,激光切割的铝片,低摩擦的塑料轴承以及弹性钢丝。
来自德国一家叫作Astromedia,以硬纸板小发明和小玩意为主的公司。
这个能在一杯热咖啡上就能转起来的发动机,正是斯特林发动机(Stirling engine),由于能源,环境和可持续发展等人类问题的影响,人们开始热衷发展斯特林发动机,由Robert Stirling(罗伯特斯特林)在1816年发明的外燃发动机。
前不久我们网络文摘收过一篇文章,讲著名的发明家Dean Kamen(Segway的发明者)也在挪威成立一个公司,投身于他的下一个大项目,就是使用斯特林发动机的交通工具的计划。
斯特林发动机是活塞式热气发动机,在外部加热密封气室,里面的气体(氢气或氦气)膨胀推动活塞做功,膨胀后的气体在冷气室冷却,然后进入下一个流程。
同样只要有一定值的温度差存在,都可以形成斯特林发动机,比如上面这个咖啡杯上的斯特林发动机,如果下面是冰块,它也能转起来,而且比里面是热咖啡(或热水)还要持久,一个小时左右。
斯特林发动机可以使用多种的燃料,各种可燃气体估计是最佳材料,Dean Kamen还用牛粪来作过燃料。
而且排气洁净,还有一个优势相对于内燃机来说,因为没有气体爆炸,所以大大降低了噪音污染。
这个“玩意”是不是设计也没什么值得讨论的,以前人们总是很难分辨设计师或者发明家,但现在来说好像足够分明了,设计师是明星,艺术家……,而在国内发明家基本都是农民。
如果你既是设计师,又是发明家,那么肯定会得到更多人的敬佩(人人喜欢hardcore),如果你还有商业头脑,那你就是下一个Dyson了。
虽然说学科细分很难让普通人精通几般武艺,但这不是100%的,因为一方面设计本来就是知识面广泛的学科,有深入钻研的机会,另外还有想成为非普通人的普通人呢。
史特林引擎

史特林引擎工作原理史特靈引擎(Stirling Engine 或翻譯為史特林或斯特林引擎),是一高效率的能量轉換裝置。
史特靈引擎並非新發明,蘇格蘭愛丁堡的牧師史特靈(Robert Sterling)於一八一六年為其發明的引擎申請專利權後,該種引擎近兩百年來出現至少百種不同機構型式,但大多以史特靈牧師的原始設計為基礎。
史特靈引擎屬於外燃引擎,只要高溫熱源溫度夠高,無論是使用太陽能、廢熱、核原料、牛糞、丙烷、天然氣、沼氣(甲烷)、丁烷與石油在內的任何燃料,皆可使之運轉,不同於必須使用特定燃料的汽油引擎、柴油引擎等內燃引擎。
A. 基礎篇A1 氣體的特性如圖1 把橡皮綁在容器口上,我們能容易瞭解到受熱時橡皮會膨脹(圖2),冷卻時橡皮會縮收(圖3),這是加熱時,內部氣體壓力作用在橡皮上(圖2),當然人的眼睛是無法看到氣體壓力的。
A2移氣器如果我們放入一個移氣器(Displacer)到容器內(圖4),而這個移氣器的直徑比容器的內徑小一些,當移氣器自由上下移動時,即可以把容器內的氣體擠下或擠上。
這個時候,如果我們在容器底端加熱,而在容器上端冷卻,使上下兩端具有足夠的溫差,即可看見此時橡皮會不斷膨脹及收縮。
其原理如下:當移氣器上移,容器內的氣體被擠至容器底端,此時由於容器底端加熱,因此氣體受熱,壓力變大,此壓力經由活塞與容器間的空隙傳到橡皮,使得橡皮會膨脹(圖5)。
相反的,若施以適當的力量把移氣器下移,則容器內的氣體被擠至容器上端,此時由於容器上端為冷卻區,因此氣體被冷卻,使氣體溫度降低,壓力變小,而使得橡皮會縮收(圖5)。
如此,不斷使移氣器自由上下移動,即可看見此時橡皮會不斷膨脹及收縮。
由此,可知移氣器的功用主要在於移動氣體,使氣體在冷熱兩端之間來回流動。
國立成功大學航太系鄭金祥教授把 Displacer 命名為”移氣器”,實在更為貼切,也比較不容易混淆,比較不會使人誤以為它的作用跟輸出功率的動力活塞一樣。
A3 曲柄機構要讓移氣器上下移動,只要將移氣器與一曲軸連結(圖6) 。