(振动理论课件)非线性振动概述

合集下载

振动理论-连续系统与非线性系统的振动

振动理论-连续系统与非线性系统的振动

第六章 连续线性振动系统离散线性振动系统具有两个鲜明的特征:其一是描述系统在任一时刻的位形只需有限个自由度;其二是描述系统的状态用的是二阶常微分方程组,而在数学上对此类常微分方程组的处理可以很容易地转化为对一组线性代数方程组的处理,因此研究此类系统所需的数学工具自然而然地就是矩阵代数[1]。

工程实际中的许多结构均是可变形的弹性体,当这些弹性体的弹性恢复力和变形服从胡克定律时,通常将其当作线性连续媒质来处理,这里的连续指的是系统的质量、刚度、阻尼等在空间上的连续不间断的分布,因此是宏观意义上的,如果在物质的分子、原子等微观尺度上来考虑问题,则任何媒质均是不连续的。

任何物体均可以看作是由无限多个无穷小的微元体所组成的,为描述物体未变形时这些微元体在空间中的确切位置。

一般需事先在空间中建立一个参考坐标系。

参考坐标系的维数视情况而定,可能是一维的,也可能是二维的或三维的每个微元体在空间中的位置,就由该微元体所占空间位置在参考坐标系中的坐标来确定。

物体在变形过程中各微元体在t时刻的位置,由其位移矢量来描述。

因此位移矢量是各微元体在参考坐标系中的坐标和时间t的函数,位移矢量在参考坐标系中各坐标轴上投影的个数就称为该微元体的自由度数由于组成物体的微元体的个数是无限的,因此整个系统的自由度数是无限的为了保证不引入几何非线性。

一般要求物体的变形为小变形,即各微元体离开静止位置的位移为小位移。

且要求各微元体的位移函数对参考坐标和时间t具有足够阶数的连续偏导数。

由以上分析可知,连续线性振动系统是一个具有无限多个自由度的系统。

描述该系统运动过程的是偏微分方程。

典型的连续线性振动系统有作横向振动的弦、作纵向振动的杆、作扭转振动的轴、作弯曲振动的梁和板等。

本章主要讨论连续线性振动系统的运动微分方程、边界值问题、在初始条件下的自由振动响应、强迫振动响应、波在结构中的传播特性、连续线性系统的近似解法等。

§6.1 二阶系统的振动这里所讲的二阶系统是指其运动微分方程归结为二阶偏微分方程的系统,典型的有弦的横向振动、杆的纵向振动和轴的扭转振动等。

振动理论06(1-2)-非线性振动

振动理论06(1-2)-非线性振动

6.1 非线性系统的举例●在粘性阻尼条件下,系统的运动微分方程为线性二阶常微分方程⏹线性振动理论能表征很多实际问题⏹对于不能用常系数线性微分方程来描述的物理系统,需要讨论非线性微分方程●忽略质量变化,单自由度系统的运动方程的一般形式可以写为⏹带有非线性特征的系统称为非线性系统,其运动称为非线性振动或者非线性响应⏹叠加原理不适用于非线性系统⏹通常,非线性振动不是简谐的,其频率随振幅改变非线性现象的一个重要类型是弹性恢复力与变形不成比例硬化弹簧软化弹簧32014/11/14质量附在长度为的拉直的弦AB 的中部,弦的初始张力用表示。

令质量在弦的横向上离开平衡位置的距离为,弦中产生的弹性恢复力如图(b )所示该系统自由振动方程:对称硬化弹簧的例子2014/11/144由几何关系代入运动方程显然这是一个非线性方程如果认为是小振动,有,因此52014/11/14●单摆,重,长度。

单摆离开竖直位置的夹角为, 单摆关于轴的回复力矩为,绕轴的转动方程为●代入质量的惯性矩, 有●小振幅情况为简谐振动,●振幅较大,对称软化弹簧的例子2014/11/14 6对比两种情况的非线性方程72014/11/14硬化情形分段线性化恢复力2014/11/148软化情形92014/11/14●如果动力荷载使结构或机器部件变形时超出了材料弹性范围,造成的运动称为非弹性响应●一建筑的二维矩形钢框架,受横向力作用于屋顶。

如果柱的弯曲刚度小于梁的弯曲刚度,随着荷载无限增加,在柱的两端会形成所谓的塑性铰。

102014/11/14●对应的载荷-位移曲线●实验表明,最大的正力和最大的负力在数值上是相等的●滞后回线关于原点对称2014/11/1411线性软化弹性卸载反向加载弹性卸载●曲线部分常常用直线代替,用以模拟真实的材料行为●双线性非弹性恢复力2014/11/1412双线性●理想弹塑性恢复力●滞后回线表示的能量耗散在这里被假定通过塑性铰损失掉,结构的其余部分依然保持能量守恒●这种能量耗散机制称为滞后阻尼2014/11/1413刚塑形带有摩擦抗力的单自由度系统及其滞后回线142014/11/14●下图两个问题在数学上是相同的⏹前者是属于刚塑形恢复力的情况,弹性变形与塑形范围相比很小⏹后者是没有弹簧的质量在摩擦力的阻滞下运动⏹除粘性阻尼外,其它类型的耗散机制均导致非线性⏹通常,假定质量、阻尼和刚度特征不随位移、速度和加速度而改变。

非线性振动

非线性振动

非线性振动百科名片恢复力与位移不成正比或阻尼力不与速度一次方成正比的系统的振动。

尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。

一般说,线性模型只适用于小运动范围,超出这一范围,按线性问题处理就不仅在量上会引起较大误差,而且有时还会出现质上的差异,这就促使人们研究非线性振动。

目录编辑本段简介非线性振动恢复力与位移不成线性比例或阻尼力与速度不成线性比例的系统的振动。

尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。

一般说,线性振动只适用于小运动范围,超过此范围,就变成非线性振动。

非线性系统的运动微分方程是非线性的,不能用叠加原理求解。

方程中不显含时间的非线性系统称为非线性自治系统;显含时间的称为非线性非自治系统。

保守非线性自治系统的自由振动仍是周期性的,但其周期依赖于振幅。

对于渐硬弹簧,振幅越大,周期越短;对于渐软弹簧,振幅越大,周期越长。

非保守非线性自治系统具有非线性阻尼,阻尼系数随运动而变化,因而有可能在某个中间振幅下等效阻尼为零,从而能把外界非振动性能量转变为振动激励而建立起稳定的自激振动(简称自振)。

弦乐器和钟表是常见的自振系统。

周期地改变系统的某个参量而激起系统的大幅振动称参变激发。

当系统的固有频率⑴等于或接近参量变化频率的一半时,参变激发现象最易产生。

具有非线性恢复力的系统受到谐激励时,其定常受迫振动存在跳跃现象,即激励频率3缓慢变化时,响应振幅一般也平稳变化,但通过某些特定3值时,振幅会发生跳跃突变。

具有非线性恢复力且固有频率为 3 n 的系统,在受到频率为3的谐激励时,有可能产生频率为 3 /n (心3 n)的定常受迫振动(n为正整数),称为亚谐共振或分频共振。

它的出现不仅与系统和激励的参数有关,而且依赖于初始条件。

亚谐共振可以解释为,由于非线性系统的响应不是谐和的,频率3/n的响应中存在频率为 3 的高次谐波,激励对高次谐波作功而维持了振动。

《振动理论》课件

《振动理论》课件

振动控制通过控制振动源和结构减少振动对系统的影响其他应用领域
振动理论在航空航天、车辆工程和建筑工程等领域 中有广泛应用
总结
• 振动理论在工程领域中具有重要的应用价值 • 随着科学技术的发展,振动理论仍在不断完善和优化 • 未来的发展趋势包括更精确的模拟和更高效的数值计算方法
2 混沌和奇异吸引子
非线性系统的振动可能表现出混沌和奇异吸 引子行为
3 周期倍增
周期倍增是非线性振动出现周期性振幅倍增 现象
4 分岔与现象分析
分岔是非线性系统参数变化时振动解的结构 突变现象
应用实例
振动传感器
用于测量和监测机械设备振动状态的传感器
振动测量及分析
通过振动测量和分析了解设备运行状态和故障诊断
《振动理论》PPT课件
振动理论是研究物体在特定条件下的振动现象及其应用的学科。本课件将介 绍振动理论的基本概念、解析解和数值解法,以及其在实际应用中的重要性。
概述
• 振动理论是研究物体在特定条件下的振动现象及其应用 • 常见的振动现象包括机械振动、声学振动和电子振动等 • 振动理论的应用广泛,涵盖领域包括建筑工程、机械制造和航天航空等
单自由度振动
定义及简介
单自由度振动是指系统中只有一个自由度参与振 动的情况
阻尼、弹性及质量对运动的影响
阻尼、弹性系数和质量是影响振动运动特性的重 要参数
系统模型及运动方程
用微分方程描述单自由度振动系统的运动
解析解及其特点
解析解提供了一种可精确计算振动响应的方法
多自由度振动
1
定义及简介
多自由度振动研究系统中具有多个自由
系统模型及运动方程
2
度参与振动的情况
用一组微分方程描述多自由度振动系统

非线性振动_绪论

非线性振动_绪论

0.4 非线性振动的主要研究问题
• (1) 确定平衡点及周期解;(系统响应) • (2) 研究平衡点及周期解的稳定性;(局部性态) • (3) 研究方程参数变化时,平衡点及周期解个数的变化及 形态(稳定性)变化,即分岔与混沌运动; • (4) 研究在一定初始条件下系统长期发展的结果。(解的 全局形态)
3非线性振动系统的共振曲线不同于线性振动系统存在跳跃和滞后现象非线性振动系统的共振曲线不同于线性振动系统存在跳跃和滞后现象4某些有阻尼的非线性振动系统会出现自激振动振幅不衰减某些有阻尼的非线性振动系统会出现自激振动振幅不衰减?线性系统中自由振动总是衰减的esinntxat??5强迫振动系统有超谐波响应和次谐波响应成分?简谐激振力作用下的非线性系统响应波形除了与激振力频率相同的谐波外还含有频率为激振频率的几分之一即频率为的次谐波响应及频率为激振频率的整数倍即频率为的超谐波响应nm为正整数?由于存在次谐波与超谐波振动非线性系统共振频率的数目将多于系统的自由度nm6多个简谐激振力作用下的组合振动?如激励为?响应中的频率含mnnm12为正整数ftft1122coscos和7存在频率俘获现象?在非线性振动系统中当系统以振动受到另一激励时系统可能以其中之一的频率振动即频率俘获128在一定条件会出现分叉现象与混沌运动duffing方程的倍周期分叉现象与混沌运动03非线性振动问题的研究方法????????????????????????????????????????????????????????????????????????????????????????等价线性化法谐波平衡法伽辽金法多尺度法渐进法平均法小参数法摄动法近似法解析法
6 闻邦椿等.非线性振动理论中的解析方法及工程应用. 东北大学出版社,2001年 7 刘延柱,陈立群.非线性振动.北京:高等教育出版社,2001年 8 陈予恕.非线性振动. 北京:高等教育出版社,2002年 9 闻邦椿等.工程非线性振动. 北京:科学出版社, 2007年

(振动理论课件)非线性振动概述

(振动理论课件)非线性振动概述
而线性常微分方程的数学理论已十分完善,因此将非 线性系统以线性系统代替是工程中常用的有效方法, 但仅限于一定的范围。 ➢ 至于什么属于线性振动问题,在未说明该系统预期工 作范围之前没有明确答复。因为系统中某些部件响应 与其激励之间的关系可能会依赖与其工作范围
非线性振动概述
➢ 当非线性因素较强时,用线性理论得出的结果 不仅误差过大,而且无法对自激振动、参数振 动、多频响应、超谐和亚谐共振、跳跃现象等 实际现象作出解释。
A
几何非线性
➢几何非线性—例2
单摆振动方程 gsin 0
l 这是一个非线性方程,对于小偏角,sin
可以得到足够精确的线性方程 g 0
l
可得单摆的固有振动周期为 T 2 l 与摆角无关,具有等时性
g
但是对于较大的偏角,必须考虑动非线性的影响。如果偏角并不 十分大,可以对sinθ展开成泰勒级数只取前两项,
非线性振动概述
➢几何方法—研究非线性振动的定性分析方法
❖ 传统的几何方法是利用相平面内的相轨迹作为对运动 过程的直观描述。
❖ 在常微分方程定性理论的基础上,根据相轨迹的几何 性质判断微分方程解的性质。利用相平面内的奇点和 极限环作为平衡状态和孤立周期运动的几何表述。
❖ 因此,关于奇点的类型和稳定性的研究,关于极限环 的存在性和稳定性的研究,以及稳定性随参数变化的 研究,是传统几何方法讨论的主要内容。
➢ 在工程问题中,稳态运动往往对应于机械系统的正常 工作状态。这种工作状态必须是稳定的,因为只有稳 定的运动才是可实现的运动。
非线性振动的定性分析方法
➢ 相平面法是最直观的定性分析方法,它只适用于单 自由度系统
➢ 相平面法利用相轨迹描绘系统的运动性态。相轨迹 的奇点和极限环分别对应于系统的平衡状态和周期 运动。

非线性振动概述

非线性振动概述
一、关于非线性振动
1、什么是非线性振动: 指不能用线性微分方程所能描述的运动。
2、发生非线性振动的根本原因是:振动系统由于某种因素而处于非线性状态。
(1)内在的非线性因素
※ 例如振动系统由于振幅过大,而出现了非线性恢复力
例如单摆: 恢复力矩为
当 50 时
sin 1 3 1 5
2、参数振动: 漏摆,荡秋千等可作为参数振动的实例;而航天器液体燃料
自由面的振荡对飞行的影响则是当代科研的前沿;对圆柱容器中 的水面上、下铅直振动时所发生的参量振动既是古老的话题,(1831年法拉第研究过) 也是当今热极一时的“混沌”的一个例子。
4
0
A x
X 0/
/
例10-12 轻质弹簧下挂一个小盘,小盘
以小物体与盘相碰时为计时零点,以新平衡位置为原点,即当t=0时,x>0, v>0。 可知,与之对应的位相角在第四相象限,所以选(D)
6
例10-11 一质点在x轴上作简谐振动,振幅A=4cm,周期 T=2s,其平衡位置取作坐标原点。若t=0时质点第一次通过x=-2cm处且向X轴负 方向运动,则质点第二次通过x=-2cm处的时刻为
F x, x2 v, v2
对以上所述的非线性因素中,只要出现其中一种,系统的振动就是非线性的。即使振 动系统本身是线性的(或说所有内在的非线性因素都可忽略),若受到外来的非线性策 动力的作用,其振动也是非线性的。
针对具体的非线性因素,系统的振动形式是完全不同的。 3、非线性系统的本质特点是:
3! 5!
M mgl sin mgl( 1 3 1 5)
6 120
弹簧振子,当振幅过大,亦出现非线性现恢复力,即
F k1x k2 x 2 k3 x3

振动理论及工程应用9 第十章 非线性振动


从研究方法上或是振动过程的变化规律上, 非线性振动与线性振动之间有本质区别。
研究非线性振动有两种基本方法
定性方法:
定性方法关心的是在已知解的邻域内系统的一 般稳定性特征,并非寻求与时间相关的解。
定量方法:
定量方法关心的是运动的时间历程,一般应用 摄动法来求得这类方程的近似解析解。
10.1 非线性振动的例子
x3
0
如果不再假设位移x很小,那么弹簧的弹性恢复
力一般地是位移x的非线性函数
一般非线性系统的运动微分方程可表示为
mx Fx 0
如果 xFx 0
则称弹性恢复力为硬特性恢复力(称为硬弹簧);
如果 xFx 0
则称弹性恢复力为软特性恢复力(称为软弹簧)
例如
F x x x3 , 0
当 0 时表示硬弹簧;
1 2
稳定结点
1 2 稳定非正常结点
1 2
稳定星形结点
(2)两特征值均为正实数(p<0 , p2≥ 4q>0),则平 衡点是不稳定结点。分别称为不稳定结点,不稳定非 正常结点和不稳定星形结点。图形分别与上图相似, 但箭头方向相反。
(3)特征值为相异实数(q<0),则平衡点称为鞍 点,如图所示。
运动微分方程为
mx 2 S AEl sin 0
l
其中A, E和l分别表示钢丝的横截面 积,弹性模量和长度增量; 为钢丝 与竖直线的偏角。
运动微分方程为
其中
mx 2 S AEl sin 0
l
l l 2 x2 l x2 2l
代入整理得
sin
x
x
l2 x2 l
mx
2S l
x
AE l3
微分方程式的一个解x=x(t), y=y(t)对应于相平面 上的一条曲线,称为相轨迹,简称轨迹。

机械振动第6章非线性振动


F (t ) f1 n cos(n t ) f 2 n sin(n t )
其中,
1 T /2 f1 n T / 2 F (t ) cos (n t ) d t T 1 T /2 f 2 n T / 2 F (t ) sin (n t ) d t T
n 1


2 T
d d ml 2 l mg sin F cos t dt dt
2
●一个复杂的非线性系统。其解更为复杂。
结论:对于一个非线性系统,在确定的初始条件 下,其解可能具有不可预测的随机性。
第5章 非线性振动
5. 3.1 非线性振动的近似解析方法
定性分析方法讨论振动系统在奇点(平衡位置) 附近的运动稳定性,它不需要求解系统的动力学微 分方程。但定性分析方法的研究对象主要限于自治 系统,而且不能定量地计算系统运动的时间历程,
第五章 非线性系统的振动
5.1 非线性振动概述
5.2 非线性振动问题的主要特点 5.3 非线性振动问题的研究方法 5.4 分叉与混沌的概念
王卫滨
5.1 非线性振动概述
不能用线性微分方程描述的振动称为非线性振动。恢复力与位移不成 正比或阻尼力不与速度一次方成正比的系统的振动。 工程技术与自然界中的振动问题及现象,绝大多数属于非线性的,线 性振动系统往往是对非线性系统进行性 恢复力
非线性 激振力
5.2 非线性振动问题的主要特点
• (1) 非线性振动系统的频率与系统响应的振幅和初始条件有关
线性振动系统的振动周期不随振幅大小而变化
(2) 对于非线性振动系统,叠加原理不适用
• 对于线性微分方程
• 对于非线性系统
d n x1 x2 d n x1 d n x2 n n dt dt dt n

非线性振动现象

非线性振动现象振动是物体围绕平衡位置做周期性的来回运动,它是自然界中普遍存在的现象。

在很多实际问题中,我们会遇到非线性振动现象,即振动系统不满足线性的回复力定律。

非线性振动现象在物理学、工程学以及生物学等领域都有广泛的应用和重要的研究价值。

一、什么是非线性振动现象非线性振动现象是指振动系统的受力律不满足线性回复力定律,即系统力与位移之间的关系不是线性的。

与线性振动相比,非线性振动显示出更加丰富的运动特性和行为。

非线性振动现象的出现主要归结为以下几个方面的原因:1.回复力律的非线性:通常线性振动系统受到的回复力与振动的位移成正比,但在某些情况下,回复力可能随着位移的增加而变化速率不等,导致非线性振动现象的出现。

2.系统参数的非线性:振动系统的参数非线性,如刚度、阻尼系数、质量等的变化,也会导致系统的振动特性发生变化。

3.外部扰动的非线性:外界对振动系统的扰动如果不规律、不可逆,也会导致系统出现非线性振动现象。

二、非线性振动的种类非线性振动现象的种类繁多,下面介绍几种常见的非线性振动现象:1.硬度非线性:当振动系统的回复力不仅与位移的大小有关,还与位移的变化率有关时,就会出现硬度非线性。

硬度非线性表现为振动系统的频率与振幅的关系非线性,通常存在频率间跳变、倍频和次谐波等特点。

2.阻尼非线性:振动系统受到非线性阻尼时,会出现振幅的跃变、突变等非线性现象。

3.非线性共振:当振动系统的频率接近系统的特征频率时,振幅会出现非线性的迅速增大,达到共振峰值。

4.受迫非线性振动:当振动系统受到非线性外力激励时,振幅和频率会发生非线性变化。

三、非线性振动的应用非线性振动现象在各个领域都有广泛的应用和研究价值:1.物理学:非线性振动现象的研究在物理学领域中有重要的地位。

例如,非线性振动现象的研究为材料的性能评估和电磁波的传播提供了重要依据。

2.工程学:非线性振动的研究对于工程结构的设计和优化至关重要。

例如,建筑结构和桥梁的振动特性分析需要考虑非线性振动的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 由于处理非线性振动问题的数学工具尚不完备,数 值方法起着非常重要甚至是不可替代的作用。数值 方法在非线性振动中的突出作用是发现新现象,这 已成为非线性振动现代发展的突出特点。
气象学家洛伦兹教授在科学上是敏锐的,他并没有在经典科学 中寻找问题的答案,而是另辟蹊径地解答现象背后的深层次的 科学问题。他认为天气的变化是一个庞大而又复杂的非线性动 力学系统,用传统的线性动力学模型是无法描述那些非周期性 和对初始条件的敏感依赖性。
在复杂系统中,常常存在着系统发生的临界点。用著名的耗散 结构理论的创始人普里高津的话来说,系统存在着分叉点和涨 落机制,任何一个从经典科学来看不足为奇的小小干扰,往往 会导致系统从稳定转向不稳定,或从不稳定趋向稳定
非线性世界的发现
非线性世界是由一位气象学家发现的。
➢千百年以来,关于明天是晴还是雨,人们都是通过对云彩的观 察凭借经验估计。科学家一直希望天气变化的预报,能像日月 食和潮汐那样可以预言。
➢20世纪60年代初,美国麻省理工学院著名气象学家洛伦兹 教授最早尝试用计算机模拟天气。这种尝试完全是凭借着一种 信念:自然是有规律的,规律是可以认识的。一旦人们掌握了 这种规律,知道了初始条件,就可以通过逻辑和数学必然性的 桥梁,模拟过去,预见未来。
➢ 而上述各种实际现象在现代工程技术中愈来愈 频 繁 地 出 现 。 早 在 1940 年 美 国 塔 可 马 (Tacoma)吊桥因风载引起振动而坍塌的事故 就是典型的非线性振动引起破坏的例子。
➢ 有必要发展非线性振动理论,研究对非线性系 统的分析和计算方法,解释各种非线性现象的 物理本质,以分析和解决工程技术中实际的非 线性振动问题。
非线性振动概述
➢几何方法—研究非线性振动的定性分析方法
❖ 传统的几何方法 在常微分方程定性理论的基础上,根据相轨迹的几何 性质判断微分方程解的性质。利用相平面内的奇点和 极限环作为平衡状态和孤立周期运动的几何表述。
❖ 因此,关于奇点的类型和稳定性的研究,关于极限环 的存在性和稳定性的研究,以及稳定性随参数变化的 研究,是传统几何方法讨论的主要内容。
❖ 几何方法的局限性是不能得到非线性振动的定量规律, 而且传统的几何方法通常难以推广到高维时变系统。
❖ 尽管如此,几何方法仍在非线性振动研究中起着重要 作用。几何方法不仅能得到直观的定性结果,而且可 为其他研究方法提供理论依据。
非线性振动概述
➢ 解析方法是研究非线性振动的定量分析方法。即通
过精确地或近似地寻求非线性微分方程的解析解, 得到非线性系统的运动规律,以及对系统参数和初 始条件的依赖关系。
非线性振动概述
➢ 数值方法是研究非线性振动系统的数值计算方法
➢ 数值方法通过数值求解非线性微分方程,得到非线 性系统在特定的参数条件和初始条件下的运动规律
➢ 数值方法的基础是常微分方程组的初值问题的数值 解法。数值方法既可以计算特定非线性系统的各种 运动的时间历程,包括 平衡、周期运动和非周期 运动等,也可以通过数值计算确定参数对系统运动 的影响及初始条件对系统运动的影响。
➢洛伦兹充满自信地进行计算机天气模拟的尝试。他把与天气 变化相关的温度、气压、风速、气流、风向等众多的关系方程 进行了计算机处理。用洛伦兹的话说,把复杂多变的天气简化 到只剩下骨头架子—数字规律,进行计算机天气模拟。
➢随着对计算机天气变化模型的逐步修正,计算机天气模拟的 输出曲线已开始接近实际天气变化的曲线。
非线性世界的发现
然而,有一天,洛伦兹为了方便起见,无意中对一个输入值 0.506127 作了一个小小的变动,改成了0.506,
没想到这个1‰的误差,引起了灾难性的后果:两次几乎相同 的天气模拟,结果导致了两条分道扬镳的曲线。
在经典科学中,1‰的数值误差常常是可以忽略不计的。在洛 伦兹看来,输入数值小小的变化,在整个天气中充其量只是一 阵小小的风,整个天气模拟系统何以如此敏感?
非线性振动概述
➢ 实际机械系统中广泛存在着各种非线性因素
❖作用力非线性:非线性弹簧力,万有引力等 ❖运动学非线性:法向加速度、科氏加速度 ❖材料非线性:非线性本构关系等 ❖几何非线性 :弹性大变形等
➢ 工程实际中振动系统绝大多数都是非线性系统 ➢ 由于非线性微分方程尚无普遍有效的精确求解方法,
非线性振动概述
➢ 解析方法的局限性是应用范围十分有限,仅用于讨 论可积和接近可积系统的平衡和周期运动。而且解 析方法得到的解未必具有稳定性,可能不是实际问 题中能出现的运动。
➢ 解析方法的优点是不仅能确定非线性系统的运动随 时间变化的规律,而且能得到运动特性与系统参数 之间的依赖关系,因此是非线性振动问题研究的重 要方法。
➢ 非线性微分方程的精确解通常涉及非初等函数(例 如椭圆函数)的引入和研究。能够得到精确解的非 线性系统称为可积系统,这种系统的数量极其有限。
➢ 更常用的解析方法是近似解析方法。近似解析方法 主要适用于弱非线性系统,即与线性系统十分接近 的非线性系统。通常是以线性振动理论中得到的精 确解为基础,将非线性因素作为一种摄动,求出近 似的解析解。
而线性常微分方程的数学理论已十分完善,因此将非 线性系统以线性系统代替是工程中常用的有效方法, 但仅限于一定的范围。 ➢ 至于什么属于线性振动问题,在未说明该系统预期工 作范围之前没有明确答复。因为系统中某些部件响应 与其激励之间的关系可能会依赖与其工作范围
非线性振动概述
➢ 当非线性因素较强时,用线性理论得出的结果 不仅误差过大,而且无法对自激振动、参数振 动、多频响应、超谐和亚谐共振、跳跃现象等 实际现象作出解释。
非线性振动概述
➢ 非线性振动理论的研究目的是基于非线性振动 系统的数学模型,在不同参数和初始条件下, 确定系统运动的定性特征和定量规律。
➢ 非线性振动系统的数学模型为非线性微分方程。 与线性微分方程不同,非线性微分方程尚无普 遍有效的求解方法,很难得到精确的解析解。
➢ 对于工程中的实际非线性振动问题,除采用实 验方法进行研究以外,常用的理论研究方法为: 几何方法、解析方法和数值方法。
相关文档
最新文档