传感器实验指导书11
传感器实验指导书

实验指导书实验一、箔式应变片的温度效应及补偿实验目的:1、认识环境温度变化对传感器输出的影响(零点漂移、灵敏度漂移);2、 掌握差动电桥电路对温漂的抑制;3、 了解差动电桥电路抗干扰能力。
实验原理:传感器输出不仅反映被测量,环境的其它物理量(温度、电磁、偏载等等)也会对传感器的输出产生影响,即产生干扰。
为了提高测量精度,需提高传感器抗干扰能力,即干扰补偿。
一种有效的补偿措施是差动传感器方法。
含干扰的传感器静态数学模型为:)(3210T f X a X a X a a Y n n +++++=若传感器采用差动方法则有:)()(2222155331T f T f X a X a X a Y -++++=式中,)(T f 为干扰量产生的输出,)(1T f 、)(2T f 为两差动转换元件产生的输出。
通常干扰为共模干扰,即)(1T f 、)(2T f 同号,这样差动传感器的干扰减小,若传感器转换元件完全对称,即)(1T f 、)(2T f 完全相等,则干扰输出为零。
由工艺原因,传感器结构不可能完全对称,即通过差动方法不能完全消除干扰,或是传感器不能采用差动结构,传感器的干扰通常还需采取其它补偿措施。
实验步骤:1、连接主机与模块电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“-”输入端对地用实验线短路。
输出端接电压表2V 档。
开启主机电源,用调零电位器调差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。
2、 观察贴于悬臂梁根部的应变片的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R 为应变片(可选上梁或下梁中的一个工作片),图中每两个节之间可理解为实验连接线,注意连接方式,勿使直流电源激励电源短路。
将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。
3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。
传感器实验指导书

传感器实验指导书 Revised at 2 pm on December 25, 2020.传感器实验指导书实验一电位器传感器的负载特性的测试一、实验目的:1、了解电桥的工作原理及零点的补偿;2、了解电位器传感器的负载特性;3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。
二、实验仪器与元件:1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表;2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕);3、运算放大器LM358;4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。
三、基本原理:❖电位器的转换原理❖电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为电位器输出端接有负载电阻时,其特性称为负载特性。
当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。
❖电位器输出端接有负载电阻时,其特性称为负载特性。
四、实验步骤:1、在面包板上设计负载电路。
3、改进电路的负载电阻RL,用以测量的电位器的负载特性。
4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。
五、实验报告1、画出电路图,并说明设计原理。
2、列出数据测试表并画出负载特性曲线。
电源电压5V,测试表格1.曲线图:画图说明,x坐标是滑动电阻器不带负载时电压;y坐标是对应1000欧姆(负载两端电压)或100k欧姆(负载两端电压),100欧和100K欧两电阻可以得到两条曲线。
3、说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困难及解决方法。
实验二声音传感器应用实验-声控LED旋律灯一、实验目的:1、了解声音传感器的工作原理及应用;2、掌握声音传感器与三极管的组合电路调试。
二、实验仪器与元件:1、直流稳压电源、数字万用表、电烙铁等;2、电子元件有:声音传感器(带脚咪头)1个;弯座1个;线1个;5MM白发蓝LED 5个;9014三极管 2个1M电阻 1个;10K电阻 1个;电阻 1个;1UF电解电容 1个;47UF电解电容1个;万能电路板一块。
传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。
二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。
电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。
电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。
压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。
磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。
传感器实验指导书

使用说明实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。
一、实验仪的传感器配置及布局是:四片金属箔式应变计:位于仪器顶部的实验工作台部分,左边是一副双孔称重传感器,四片金属箔式应变计贴在双孔称重传感器的上下两面,受力工作片分别用符号和表示。
可以分别进行单臂、半桥和全桥的交、直流信号激励实验。
请注意保护双孔悬臂梁上的金属箔式应变计引出线不受损伤。
电容式:由装于圆盘上的一组动片和装于支架上的两组定片组成平行变面积式差动电容,线性范围≥3mm。
电感式(差动变压器):由初级线圈Li和两个次级线圈L。
绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm。
电涡流式:多股漆包线绕制的扁平线圈与金属涡流片组成的传感器,线性范围>1mm。
压电加速度式:位于悬臂梁自由端部,由PZT-5双压电晶片、铜质量块和压簧组成,装在透明外壳中。
磁电式:由一组线圈和动铁(永久磁钢)组成,灵敏度0.4V/m/s。
热电式(热电偶):位于仪器顶部的实验工作台部分,左边还有一副平行悬臂梁,上梁表面安装一支K分度标准热电偶,冷端温度为环境温度。
热敏式:平行悬臂梁的上梁表面还装有玻璃珠状的半导体热敏电阻MF-51,负温度系数,25℃时阻值为8~10K。
光电式传感器装于电机侧旁。
为进行温度实验,左边悬臂梁之间装有电加热器一组,加热电源取自15V直流电源,打开加热开关即能加热,加热温度通常高于环境温度30℃左右,达到热平衡的时间随环境温度高低而不同。
需说明的是置于上梁上表面的温度传感器所感受到的温度与在两片悬臂梁之间电加热器处所测得的温度是不同的。
霍尔式:半导体霍尔片置于两个半环形永久磁钢形成的梯度磁场中,线性范围≥3mm 。
MPX 压阻式:摩托罗拉扩散硅压力传感器,差压工作,测压范围0~50KP 。
精度1%。
(CSY10B )湿敏传感器:高分子湿敏电阻,测量范围:0~99%RH 。
气敏传感器:MQ3型,对酒精气敏感,测量范围10-2000PPm ,灵敏度RO/R >5。
传感器与检测技术综合实验指导书

《传感器与检测技术综合实验》教学大纲编号:04262400课程名称:传感器与检测技术综合实验英文名称:Comprehensive Experiments of Sensors and Measurement Technology 实验指导书名称:传感器与检测技术综合实验指导书一、学时学分总学时:1周学分:1 实验学时:30 开课学期:6二、实验目的传感器与检测技术综合实验是自动化专业和生物医学专业的一门重要的专业性实验。
其任务是学生在学习专业理论课之后,需要对实际的传感器和检测技术有一个全面的认识,对传感器结构和组成以及工作原理有一个详细的了解,在此基础上能初步掌握各种传感器的使用,完成自动检测任务,为以后的学习和工作打好基础。
使学生熟悉和掌握电阻应变传感器、电感式传感器、电容式传感器、霍尔式传感器、电涡流式传感器、磁电式传感器、光纤、光电传感器、热电阻、热电偶传感器、压电传感器及半导体扩散硅压阻式压力传感器等传感器的使用,使学生了解双平行梁的动态特性—正弦稳态响应和力平衡式传感器的使用。
三、实验基本原理CSY-998B+传感器实验仪提供了12个综合实验项目。
该实验仪主要由四部分组成:传感器安装台、显示与激励源、传感器符号及引线单元、处理电路单元。
1.传感器安装台部分:装有双平行振动梁(应变片、热电偶、PN结、热敏电阻、加热器、压电传感器、梁自由端的磁钢)、激振线圈、双平行梁测微头、光纤传感器的光电变换座、光纤及探头、小机电、电涡流传感器及支座、电涡流传感器引线Φ3.5插孔、霍尔传感器的二个半圆磁钢、振动平台(圆盘)测微头及支架、振动圆盘(圆盘磁钢、激振线圈、霍尔片、电涡流检测片、差动变压器的可动芯子、电容传感器的动片组、磁电传感的可动芯子)、半导体扩散硅压阻式差压传感器、气敏传感器及湿敏元件安装盒,热释电传感器、光电开关、硅光电池、光敏电阻元件安装盒。
2.显示及激励源部分:电机控制单元、主电源、直流稳压电源(±2V - ±10V分5档调节)、F/V数字显示表(可作为电压表和频率表)、(5mV-500mV)、音频振荡器、低频振荡器、±15V不可调稳压电源。
传感器实验指导书

传感器特性实验目录传感器特性实验目录 (1)一、基础型实验部分 (3)实验一金属箔式应变片单臂电桥性能实验 (3)实验二金属箔式应变片半桥性能实验 (5)实验三金属箔式应变片全桥性能实验 (6)实验四金属箔式应变片单臂、半桥、全桥性能比较 (7)实验五金属箔式应变片全桥温度影响实验 (8)实验六直流全桥的应用—电子秤实验 (9)实验七交流全桥的应用—振动测量实验 (9)实验八压阻式压力传感器压力测量实验 (11)* 实验九扩散硅压阻式压力传感器差压测量 (13)实验十差动变压器位移性能实验 (14)实验十一激励频率对差动变压器特性的影响 (16)实验十二差动变压器零点残余电压补偿实验(1、2) (17)实验十三差动变压器的应用—振动测量实验 (19)实验十四电容式位移传感器位移测量实验 (21)实验十五电容式位移传感器的动态特性实验 (23)实验十六直流激励时接触式霍尔位移传感器特性实验 (25)实验十七交流激励时霍尔式位移传感器特性实验 (26)实验十八霍尔位移传感器振动测量 (27)实验十九霍尔式位移传感器的应用―电子秤实验 (28)实验二十霍尔转速传感器测速实验 (28)实验二十一磁电式转速传感器测速实验 (29)* 实验二十二用磁电式传感器测量振动实验 (30)实验二十三压电式传感器振动测量实验 (31)实验二十四电涡流传感器位移实验 (32)实验二十五被测体材质对电涡流传感器特性影响实验 (33)实验二十六被测体面积大小对电涡流传感器的特性影响实验 (34)实验二十七电涡流传感器测量振动实验 (35)实验二十八电涡流传感器的应用―电子秤实验 (36)* 实验二十九电涡流转速传感器 (37)实验三十光纤传感器的位移特性实验 (38)实验三十一光纤传感器测量振动实验 (39)实验三十二光纤传感器测量转速实验 (40)实验三十三光电转速传感器的转速测量实验 (41)实验三十四利用光电传感器测转速的其它方案* (43)实验三十五热电偶测温性能实验 (43)实验三十六热电偶冷端温度补偿实验 (45)实验三十七热电阻测温特性实验 (46)实验三十八集成温度传感器温度特性实验 (48)实验三十九气体流量的测定实验* (51)实验四十气敏(酒精)传感器气体浓度测量实验 (52)实验四十一湿度传感器湿度测量实验 (53)实验四十二移相器实验 (53)实验四十三相敏检波器实验 (55)实验四十四SET传感器特性实验软件操作 (59)二、增强型实验部分 (65)实验一热释电远红外传感器辐射特性 (65)实验二--- 实验五、光电传感器特性实验(光敏电阻、光电池、光敏二极管、光敏三极管) (67)实验六光纤温度传感器实验 (70)实验七光纤压力传感器实验 (71)实验八光栅位移传感器(原理型)实验 (71)实验九增量型光电编码器传感器(原理型)实验 (73)实验十超声测距传感器实验 (74)* 实验十一超声波传感器的运用 (75)实验十二矩传感器原理实验 (75)* 实验十三扭矩传感器的不同形式 (77)实验十四PSD位置传感器位置测量实验 (77)实验十五PSD位置传感器微振动测量实验 (79)* 实验十六PSD位置传感器用于自动定位 (79)实验十七CCD图像传感器线(圆)径测量实验 (79)实验十八J型热电偶温度特性实验 (83)实验十九T型热电偶温度特性实验 (83)实验二十半导体热敏电阻温度特性实验 (83)实验二十一表面无损探伤实验 (83)实验二十二指纹传感器(带控制输出)认知实验 (84)* 实验二十三指纹传感器计算机图像采集实验 (88)* 实验二十四红外辐射温度传感器实验 (88)* 实验二十五颜色识别传感器颜色识别实验 (89)* 实验二十六微波传感器运用实验 (90)* 实验二十七zigbee无线传感器网络实验 (90)* 实验二十八光栅位移传感器(测量型)实验(1) (90)* 实验二十九光栅位移传感器(测量型)实验(2) (91)* 实验三十环境监测实验(另附)一、基础型实验部分实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
传感器实训指导书

扬州高等职业技术学校实训指导书2011—2012学年第二学期课程名称传感器课程类别实训专业模具授课班级10205授课教师胡冯仪《传感器》实训指导书实验一、YL-CG2003型传感器实验台仪器的使用一、电源部分1.总电源空气式带漏电保护开关切换整个实验台的单相220V电源,额定电流最大为3A,安全可靠。
2.指示灯—电源插入电网后即亮,表示实验台已接入电源。
3.AC220输出双路多功能插座可输出220V单相电源,功率不大于300W二、温度控制部分1.温度控制仪面板说明(1)将K型热电偶接入主控箱面板温度中的Ei(+、-)标准值插孔中,合上热源开关。
仪表将首先按A、B、C程序自检2.通过切换开关可控制直流电压表输入端。
当为内接输入位置可测量指示2V-15V直流稳压输出电压。
外接输入分两档0-2V或0-20V。
A、所有数码管及所有指示灯全部点亮,用来检测发光系统是否正常,此时如发现有不能点亮的发光文件,请停止使用该仪表送修。
B、PV窗口显示“TYPE”,SV窗口显示仪表目前所应配输入类型。
C、显示仪表的控制范围,SV窗口显示下限测量控制值,PV窗口显示上限控制值。
(2)仪表进行完以上三步自检后,即投入正常测控状态,上排PV窗口显示测量值,下排SV 窗口设定值。
(3)要想修改设定值,请在正常显示方式下,按一下SET键,PV窗口显示,“SP”,SV窗口显示已设置的值,此时按▲键向上调节设定值,按键▼向下调节设定值。
2.温控仪电源开关—控制整个温控部分电源开或关。
(1)指示灯一亮表示电源部分总电源开关已打开,实验仪在工作。
(2)温控传感器输入插口一通过JK插头与9号温度实验模块E型热电偶连接用。
(3)加热源电源输出端—可提供20V交流5A功率电源。
与9号实验模块电源输入端进行加热温控。
控制温度精度±1℃。
三、数显单元和2V~15V直流电源部分1.直流电压显示为132数字电压表读数V。
2.通过切换开关可控制直流电压表输入端。
传感器实验指导书

传感器(检测与转换)实验指导书李欣编著目录实验一电阻式传感器的单臂电桥性能实验 (3)实验二电阻式传感器的半桥性能实验 (6)实验三电阻式传感器的全桥性能实验 (8)实验四变面积式电容传感器特性实验 (10)实验五差动式电容传感器特性实验 (13)实验六差动变压器的特性实验 (14)实验七自感式差动变压器的特性实验 (16)实验八光电式传感器的转速测量实验 (18)实验九接近式霍尔传感器实验 (20)实验十涡流传感器的位移特性实验 (22)实验十一温度传感器及温度控制实验(AD590) (24)实验十二超声波传感器的位移特性实验 (27)附录一计算机数据采集系统的使用说明 (29)附录二检测与转换技术(传感器)实验台使用手册 (31)实验一电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。
2、掌握电阻应变式传感器放大电路的调试方法。
3、掌握单臂电桥电路的工作原理和性能。
二、实验所用单元电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架。
三、实验原理及电路1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。
通过测量电路将电阻变化转换为电流或电压输出。
2、电阻应变式传感如图1-1所示。
传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm。
11─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为电阻应变片,输出电压U O=EKε,E为电桥转换系数。
图1-2 电阻式传感器单臂电桥实验电路图四、实验步骤1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm 左右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验平台介绍传感器教学实验系列nextsense是针对传感器教学,虚拟仪器教学等基础课程设计的教学实验模块。
nextsense系列配合泛华通用工程教学实验平台nextboard使用,可以完成热电偶、热敏电阻、RTD热电阻、光敏电阻、霍尔元件等传感器的课程教学。
课程提供传感器以及调理电路,内容涵盖传感器特性描绘、电路模拟以及实际测量等。
图1 nextboard实验平台nextboard具有6个实验模块插槽;提供两块标准尺寸的面包板,用户可自搭实验电路;为NI 数据采集卡提供信号路由,可完全替代NI数据采集卡接线盒功能,轻松使用数据采集卡资源;还为实验模块和自搭电路提供电源,既可用于有源电路供电,也可作为外接设备供电。
实验模块区共有6个插槽,分别为4个模拟插槽Analog Slot 1-4,2个数字插槽Digital Slot 1-2。
数据采集卡的模拟通道和数字通道分配到实验模块区的Analog Slot 和Digital Slot 上。
Analog Slot 模拟插槽用于那些需要使用模拟信号的实验模块。
Digital Slot 数字插槽用于那些需要同时使用多个数字信号或脉冲信号的实验模块。
图2 模拟插槽和数字插槽特别需要注意的是:(1)在使用所有模块之前,都要先区分模块的类型:带有正弦波标记的为模拟实验模块,需要插在Analog Slot 上使用;带有方波标记的为数字模块,需要查在Digital Slot 上使用。
如果插错插槽,会导致模块工作不正常,甚至损坏模块。
(2)插拔实验模块前关闭nextboard电源。
(3)开始实验前,认真检查模块跳线连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。
Nextboard的连线:(1)电源线,把220V的电源通过一个15V的直流变压器,送到实验台上。
(2)数据采集卡,将数据采集卡的插头与实验台可靠连接。
光敏电阻实验实验目的1、了解光敏电阻的特性2、熟悉光敏电阻的常见测量电路及使用方法实验设备Nextboard热敏电阻模块电脑实验原理光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大,其结构一般如下图所示。
图1 光敏电阻结构光照射半导体材料时,材料吸收光子而产生电子-空穴对,使导电性能增加,电导率增加。
这种光照后电导率发生变化的现象称为光电导效应。
不同的半导体材料产生光电导的光谱范围不同,常用的光敏电阻材料有硫化镉(CdS),硒化镉(CdSe),硒化铅(PbSe),碲化铅(PbTe)等。
本实验采用硫化镉材料光敏电阻,型号VT3ФN3。
光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变换转换为电的变化)。
在黑暗条件下,它的阻值(暗阻)可达1~10MΩ,在强光条件(100lux)下,它的阻值(亮阻)仅有几百至数千欧姆。
实验内容、步骤和数据处理1、安装Nextboard 实验台(连接电源线和数据采集卡的连线),将光敏电阻模块插在实验台的模拟插槽上。
打开实验台电源,实验台右上角绿色发光二极管灯亮。
2、光敏电阻的灵敏度测试(1)根据特性曲线,估算光敏电阻的灵敏度,记录下来。
(2)灵敏度测试区,在光照充足的情况下,测量光敏电阻的亮阻阻值,记录下来。
(3)灵敏度测试区,用手指完全遮盖住光敏电阻的感光面,测量光敏电阻的暗阻阻值,记录下来。
3、固定光照条件下,测量光敏电阻的伏安特性,记录下来。
(测量电路的电流由恒流源提供,4、固定电流,AO= —1.5 V通过拨码开关调整光照条件,手动测量当前光敏电阻的输出电5、使用实验面板中的自动测量功能,重复上述实验,查看数据和波形,核对手动测量的数据,记录自动测量数据和波形。
思考题为什么测量光敏电阻的灵敏度时,其阻值采用直接测量法;而测量不同光照条件下光敏电阻阻值时,却采用间接测量法?后一种情况下,能采用直接测量法吗?热敏电阻实验实验目的1、了解B值对热敏电阻的特性曲线的影响2、熟悉热敏电阻的常见测量电路及使用方法实验设备Nextboard热敏电阻模块电脑实验原理热敏电阻是一种半导体感温元件,它是利用半导体的电阻值随温度变化而显著变化的特性实现测温。
按照温度特性热敏电阻可分为三大类:随温度上升电阻值减小的负温度系数(NTC)热敏电阻;随温度上升电阻值增加的正温度系数(PTC)热敏电阻以及临界温度系数(CTR)热敏电阻。
其中NTC和PTC较为常用。
在一定温度范围内,PTC和NTC热敏电阻的电阻-温度特性可分别用一下实验公式表示:(1)(2)其中,R T为绝对温度为T(K)时的电阻值、R T0为绝对温度为T0(K)时的电阻值。
B为材料常数,它不仅与材料性质有关,而且与温度有关,在一个不太大的范围内,B是常数。
以上公式中的温度值均为绝对温度。
本实验采用NTC热敏电阻,R0=10KΩ,B=3750。
根据公式(2)可以获得相对温度T(℃)的表达式:(3)半导体热敏电阻有很高的温度系数,灵敏度高,适用于在0℃-150℃之间测量。
实验内容、步骤和数据处理1、安装Nextboard 实验台(连接电源线和数据采集卡的连线),将热敏电阻模块插在实验台的模拟插槽上。
将两个热敏电阻分别接入恒流源电路和分压法电路的Rt处。
(用一字螺丝刀将绿色接线柱上的螺丝拧松,在左边松开的插口中插入热敏电阻的两个金属端,再拧紧螺丝。
用手拉一下热敏电阻的连接线,确保牢固可靠的接触。
)打开实验台电源,实验台右上角绿色发光二极管灯亮。
2、相关参数的核实(1)测量所有备选电阻,记录下来,并将软件默认值改为实测值。
3、利用恒流源电路对热敏电阻进行测量(1)固定温度下,修改恒流源电路中跨接电阻值(Ri),手动测量热敏电阻的伏安特性,记录相关数据。
根据数据,分析当前环境下的室温。
注意:电压Vt可以直接在接热敏电阻的绿色接线柱上测量,Rt可以利用I=Vcc/Ri=Vt/Rt计算得到,T则利用R-T特性曲线换算得(2)利用自动测量功能,进行数据核实。
在自动测量选项卡中,注意备选电阻Ri的值与实际连线保持一致。
点击“Refresh”,确认采集配置,然后开始自动测量。
(3)固定恒流源电路中跨接电阻值Ri=10 KΩ,改变温度(将热敏电阻握在手里),手动测量热敏电阻的两端的输出电压Vt,根据R-T特性曲线换算出当前的温度值,记录开始和结束情况下的数据。
(开始约三秒,记录第一个数据;等待约3-5分钟,记录第二个数据。
)(4)固定恒流源电路中跨接电阻值Ri=10 KΩ,改变温度(将握在手里的热敏电阻松开)使用实验面板中的自动测量功能,查看数据和波形,记录相关数据和R-T波形。
4、利用分压电路对热敏电阻进行测量(1)固定温度下,修改分压法电路中跨接电阻值(Ri),手动测量热敏电阻的伏安特性,记录相关数据。
注意:电压Vt可以直接在接热敏电阻的绿色接线柱上测量得到,Rt利用(2)固定分压法电路中跨接电阻值Ri=20 KΩ,改变温度(将热敏电阻握在手里),手动测量热敏电阻的两端的输出电压Vt,根据R-T特性曲线换算出当前的温度值,记录开始和结(3)固定分压法电路中跨接电阻值Ri=20 KΩ,改变温度(将握在手里的热敏电阻松开)思考题1、热敏电阻NTC、PTC是如何定义的,各有什么用途?2、B值对热敏电阻特性曲线有何影响?霍尔传感器实验实验目的1、了解霍尔式传感器的原理与特性2、掌握霍尔式传感器的基本用法实验设备Nextboard霍尔传感器模块电脑实验原理基于霍尔效应原理工作的半导体器件称为霍尔元件。
假设霍尔元件通电电流为I S,当磁场作用于霍尔元件时,电子将受到洛伦兹力的作用发生偏转,如图1虚线所示。
半导体的上下方向积聚的电荷形成了电场(E H)。
当E H对电子的作用力f E足够抵消洛伦兹力f B时,电子积累达到平衡。
此时的电势称为霍尔电势。
霍尔电势随外磁场强度增加而增加。
图1 霍尔效应原理图霍尔元件的种类有线性霍尔元件和开关型霍尔元件。
其中,开关型霍尔元件由半导体霍尔元件材料的输出电压经过放大器放大后,送至施密特整形电路将线性变化量转换为开关量。
线性霍尔元件常用于磁场测量、电压测量。
开关型霍尔元件常用于速度、位置测量。
实验内容、步骤和数据处理1、安装Nextboard 实验台(连接电源线和数据采集卡的连线),将霍尔传感器模块插在实验台的数字和模拟两个插槽上(实验台的左上角或左下角)。
2、手动测量线型霍尔元件的输出电压(1)附件中的下圆盘片用固定PVC螺丝固定在实验模块右侧,如下图2左所示,使红色箭头处于垂直。
固定完成后将上圆盘片叠放在下盘片上。
使红色箭头指向上盘片的角度刻度。
当箭头指向角度刻度的0°位置时,上盘片的深、浅槽与霍尔传感器的测试面垂直,不同导槽对应不同大小的磁片,深导槽对应附件中的4mm大磁片。
进行霍尔实验时将磁片放置在霍尔测试面所面对的导槽,如下图2右所示。
(2)将磁片从圆盘上取走,手动测量零磁场情况下的传感器输出值,记录零磁场电压。
(3)使红色箭头指向上盘片的0°,固定圆盘角度,推动导槽中磁片,至1cm位置,如下图,手动测量霍尔传感器输出电压,借助特性曲线计算当前磁感应强度;推动导槽中磁片,至0.5cm 位置,重复测量并填写表格。
0.5cm 以内可以每0.1cm 测试一次。
结束后,将红色箭头指向30°,重复上述实验,最终完成下表。
观察电压输出和永磁片相对位置间的关系。
图2 圆盘及磁片放置方法(4)需要更换3mm 小磁片时,先将浅槽旋转至霍尔测试面(刻度盘整体转动180º),再将3mm 磁片放置在浅槽中进行实验。
此时导槽的斜角可以用上方的红色箭头所指向角度值获取,如下图3。
图3 圆盘放置方法(5)使红色箭头指向上盘片的0°,固定圆盘角度,推动导槽中磁片,至0.2cm 位置,手动测量霍尔传感器输出电压,借助特性曲线计算当前磁感应强度;推动导槽中磁片,至0.5cm 位置,重复测量并填写表格。
0.5cm 以内可以每0.1cm 测试一次。
结束后,将红色箭头指向30°,重复上述实验,完成下表。
深槽浅槽霍尔测试面3、使用实验面板中的自动测量功能。
(1)圆盘上不要放磁铁片,开始自动测量。
此时,“线型霍尔历史数据”处获得的是零磁场电压,点击“Save”保存零磁场电压。
记录下这个电压值。
(2)调整刻度圆盘,将深导槽转至霍尔传感器右侧,放置4mm大磁片,使红色箭头指向上盘片的0°,固定圆盘角度,推动导槽中磁片,至0.2cm位置,自动测量霍尔传感器输出电压,记录当前电压和磁感应强度;推动导槽中磁片,至表格中对应位置,记录数据。
根据实验数据和波形,分º析并描绘出线型霍尔元件的特性曲线。
(3)深导槽中放置的4mm大磁片转180º,即改变磁场方向,重复实验步骤(2)。