固体蓄热电锅炉和量子能供热机组有何区别

固体蓄热电锅炉和量子能供热机组有何区别
固体蓄热电锅炉和量子能供热机组有何区别

受冷空气影响,北方出现明显的降温天气,各地供暖工作正陆续展开。不少客户来电咨询固体蓄热电锅炉和量子能供热机组哪种比较好,现今市场上的绿色供暖技术主要有电热供暖、燃气供暖、生物质供暖、空气能供暖、量子能供暖等技术品种。纵观前几类技术,特别是电热与燃气供暖,其实未尝做到绿色环保,也同样具有安全隐患。今天请利冠佳特给大家介绍一下。

(量子能供热机组-图片)

一、两种技术简介

固体蓄热电锅炉:将谷电通过加热管(Ni80Cr20)转化为热量,用固体蓄热材料(MgO)将热存储起来,在白天峰电时段输出热量进行供暖。从而实现电能的“移峰填谷”,达到资源的合理利用,降低用户的使用成本。该设备是电脑全自动控制,可无人值守,加热、蓄热、放热一体,结构简单,便于维护,技术成熟。目前在使用的设备已经有60多年了,且目前还继续在使用。

量子能供热机组:利用电能加热保密配方NWS量子液,量子液在热能作用下可自身发热产生热量,

再经换热器加热储水箱中的热水,以达到供暖。量子液5年需消耗10%(需要补充)。技术较新,还没有运行5年以上的产品。该设备可电脑全自动控制,与直热式电锅炉相比有一定的节能。加热和放热是离分的需要有两套循环系统。管路系统比较复杂。

二、该项目设备选型

固体蓄热电锅炉:按照采暖负荷50w/㎡计算,则需选择一台450kW的蓄热锅炉。

量子能供热机组:依据NWS量子公司的选型推荐,7000㎡的采暖面积需选择至少3台NWS-B90锅炉并配套6m3保温水箱。

(量子能供热机组-图片)

三、运行及建设费用

(一)前期投入费用:

1、固体蓄热电锅炉:锅炉是一体化的所以只有锅炉的设备及安装费约50万;

2、量子能供热机组:量子能供热机组NWS-B90单台价格在36万,三台则需要108万,此价格参

考甘肃政府采购网公布的中招价格。

(二)运行费用:

两种设备都是通过电能来进行加热的所以主要费用是电费。

在100天的采暖期内,我们选择采暖系数为0.55,由此可得到:

1、固体蓄热电锅电费=蓄热功率*蓄热时间*电费*采暖天数*采暖系数=450*10*0.265*100*0.55=65587.5元

2、量子能供热机组电费=加热功率*采暖时间*电费*采暖天数*采暖系数=(270*14*0.76+270*10*0.265)*100*0.55=197356.5元

3、说明:量子能供热机组是直接供热,所以其一天的电价分为平段和谷段两个价格。

(量子能供热机组-图片)

【量子电锅炉生产厂家】

利冠佳特是一家拥有自主知识产权与专利、创新研发能力的新型高新技术企业,主要生产固体蓄热设备、电蓄热导热油锅炉、电磁加热智能设备、电加热管加热设备、天然气热风设备和空气能热水供暖及制冷设备,本公司产品是煤改电项目的替代产品(煤炉、生物质颗粒炉、油炉、天燃气炉)。山东

利冠佳特热能科技有限公司位于山东省潍坊临朐东城工业园,距长深高速(G25)临朐下口3公里,交通便利,地理位置优越。

量子能供热机组厂家利冠佳特集科研、生产、销售、服务为一体,拥有一支以教授级高工领衔,在储能领域经验丰富的高素质专职研发队伍,具备自主研发新技术、新产品的雄厚技术力量。经过全体研发人员的不断努力,获得了二项发明专利及各项实用新型专利。

利冠佳特热能科技是山东省规范化程度非常高的电热蓄能设备生产企业,采用德国、英国企业相同的国际制造标准。主要服务于企业的喷涂、烘干、蒸气、导热油、热水和小区、学校、企业供暖领域。

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

电极式电锅炉蓄热系统简介

电极式电锅炉蓄热系统 简介 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电极式电锅炉蓄热系统 一、产品简介 工作电压:一般采用中压电压(≥ 6 kV); 大功率锅炉电压(可达13.5 kV); 控制电压380/220V 。 保护措施: 1)、过流保护; 2)、缺相保护; 3)、短路保护; 4)、三相不平衡保护。 加热原理:一般采用电厂除盐水,加入一定电解质,使炉水具有一定电阻。利用水的高热阻特性,直接将电能转换为热能并产生蒸汽的一种装置,装置包含高电阻绝缘的压力容器和三相电级。 结构形式: 功率调整范围:调整范围是1%-100%. 在 10%-100%的范围内可以做到无级调节。

优点: 锅炉利用水的电阻性直接加热,电能100%转化成热量,基本无热损失。 当锅炉缺水时,电极间的电流通道被切断,不存在类似常规锅炉干烧的现象。 体积小巧,启动速度快,从冷态启动到满负荷只需要几十分钟,从热态到满负荷只需1分钟。 在节能领域,电极热水锅炉结合大型蓄能设备,在低谷电价时间段把蓄能装置内热水加温,在高电价时使用,能够起到平衡电网负荷的作用。 图一:电极式电锅炉蓄热系统示意图 二、国内外同类产品水平综述 电极锅炉的应用在国外由来已久,世界上第一台电极锅炉于1905年诞生于欧洲。国内针对电极锅炉的研究始于20世纪80年代,主要是电热水锅炉技术,通常使用的是380V动力电,常压水箱作为蓄热体,此设备占地面积大、系统热效率低。20世纪80年代,承压蓄热一体化锅炉能有效减小设备占地面积,缺点是承压蓄热电锅炉技术的单台设备不能适用于高于100 m3的蓄热体积。20世纪90年代,喷射式电极锅炉通过美国西屋公司进入中国,开始了长达十余年的价格垄断阶段。目前,国内的少数企业通过吸收欧洲技术并经过改造升级,形成了常压电极锅炉。 年度主要发展里程碑 1905年世界上第一台电极锅炉在欧洲出现,电压等级限制在2000V以下 1920年代瑞典Z&I公司发明了浸没式电极锅炉,控制精度大幅度提高,采用高电压(6-15kV)直接供电,称为高压电极锅炉

固体蓄热锅炉的发展前景及社会经济效益分析

固体蓄热锅炉的发展前景 及社会经济效益分析 Final revision by standardization team on December 10, 2020.

固体蓄热产品的发展前景及社会经济效益分析 一、固体蓄热产品的推广有利于电力工业的经济运行 随着我国经济快速发展,作为国民经济的基础产业, 电力工业也得到长足发展。电力装机容量以年平均%的速度高速增长, 发电量更以年平均8%的速度增长。无论电力装机容量还是发电量都进入世界顶级行列。在满足了电力负荷高峰需求之后, 电网的峰谷差也同时拉大, 直接影响了电网的安全经济运行。2016年夏季我国多地出现持续晴热高温高湿天气,以空调为主的制冷负荷大量增加,推动全社会用电负荷快速攀升。在空调制冷需求的推动下,北京、山东、上海、江苏、浙江、安徽、福建、湖北、湖南、江西、蒙东、新疆、重庆、广东等地用电负荷创历史新高,其中多地今年首次创新高。这一负荷加大了电力系统峰谷差, 是导致城市电网负荷率下降的重要原因。而在采暖和制冷系统中推行储能技术, 则是进行电网移峰填谷, 缓解电网高峰供电压力的重要方面。 发展蓄热式电热器(如蓄热式电锅炉、蓄热式电暖器、蓄热式电热水器等),增加电网低谷用电量,使电网负荷趋向均衡,是提高发电机组的运行效率,减少能源浪费的重要途径。 国家电力公司安全运行与发展输电部自1999年就专门发文推广应用蓄热式电锅炉。目前我国多地区和企业用电实行峰谷电价政策,为固体蓄热电锅炉,蓄热电暖器的发展提供了有利条件。 二、改善环境污染、顺应发展趋势

随着经济的发展,燃料的使用量也在大量增加,城市环境污染问题的日益加重,雾霾天气的频繁出现,调整能源结构,高效节能环保使用能源已被提到议事日程上来。 2014年11月6日发改委、能源局、环保部等七部委发布《燃煤锅炉节能环保综合提升工程实施方案》,该《方案》指出工业锅炉容量小、技术落后、污染高、效率低,已经成为大气污染的重要源头,规划到2018年推广高效锅炉50万吨;淘汰落后燃煤锅炉40万吨,完成节能改造40万吨,提高燃煤工业锅炉运营效率6个百分点,节能4000万吨标煤。 我国锅炉以燃煤占比超过80%,截止2012年底,在用工业锅炉达到万台,总量178万蒸吨,年消耗原煤约7亿吨,占全国耗煤量的18%左右;平均容量小、设备落后、运行效率低、污染物排放强度大的现状下,燃煤工业锅炉污染物排放将超过电力行业,已经成为大气污染的重要源头,也是雾霾治理的最重要战场。 据测算燃煤工业锅炉改造市场高达4500亿元,对应运营市场超过3750亿元。重点以燃煤清洁化、替代化为主线。替代化路线中,主要包括生物质、天然气、电能等替代化方案。使用电能无疑是最高效、环保的清洁能源。新兴的固体蓄热式电锅炉是利用电网低谷电运行,节能高效利国利民,市场前景广阔。 三、应用储能技术具有较大的社会效益和明显的经济效益 1、平衡电网峰谷负荷, 缓解电厂和输配电设施的建设投资压力。 2、稳定发电机组负荷, 改善发电机组效率, 减少环境污染。

固体蓄热电锅炉和量子能供热机组有何区别

受冷空气影响,北方出现明显的降温天气,各地供暖工作正陆续展开。不少客户来电咨询固体蓄热电锅炉和量子能供热机组哪种比较好,现今市场上的绿色供暖技术主要有电热供暖、燃气供暖、生物质供暖、空气能供暖、量子能供暖等技术品种。纵观前几类技术,特别是电热与燃气供暖,其实未尝做到绿色环保,也同样具有安全隐患。今天请利冠佳特给大家介绍一下。 (量子能供热机组-图片) 一、两种技术简介 固体蓄热电锅炉:将谷电通过加热管(Ni80Cr20)转化为热量,用固体蓄热材料(MgO)将热存储起来,在白天峰电时段输出热量进行供暖。从而实现电能的“移峰填谷”,达到资源的合理利用,降低用户的使用成本。该设备是电脑全自动控制,可无人值守,加热、蓄热、放热一体,结构简单,便于维护,技术成熟。目前在使用的设备已经有60多年了,且目前还继续在使用。 量子能供热机组:利用电能加热保密配方NWS量子液,量子液在热能作用下可自身发热产生热量,

再经换热器加热储水箱中的热水,以达到供暖。量子液5年需消耗10%(需要补充)。技术较新,还没有运行5年以上的产品。该设备可电脑全自动控制,与直热式电锅炉相比有一定的节能。加热和放热是离分的需要有两套循环系统。管路系统比较复杂。 二、该项目设备选型 固体蓄热电锅炉:按照采暖负荷50w/㎡计算,则需选择一台450kW的蓄热锅炉。 量子能供热机组:依据NWS量子公司的选型推荐,7000㎡的采暖面积需选择至少3台NWS-B90锅炉并配套6m3保温水箱。 (量子能供热机组-图片) 三、运行及建设费用 (一)前期投入费用: 1、固体蓄热电锅炉:锅炉是一体化的所以只有锅炉的设备及安装费约50万; 2、量子能供热机组:量子能供热机组NWS-B90单台价格在36万,三台则需要108万,此价格参

固体材料蓄热式电锅炉的研究

———————————————————————————————————————————— 固体材料蓄热式电锅炉的研究(大正节能技术开发中心) 摘要:固体蓄热式电锅炉使用低谷电作能源,对电网日益严重的峰谷差削峰填谷有积极贡献它采用固体蓄热材料,较目前已有的热水蓄热电锅炉有显著优点、可自动运行,是一种新型清洁供热设备。 关键词:蓄热式电锅炉、固体材料、电网削峰填谷、清洁能源。 随着国民经济的发展,我国的电力事业有了长足的进步,1999 年底装机总容量达到12300 kWh。1997 年以来每年投产的大中型机组容量都在10 GW 以上。民用负荷逐年增大这就使供电曲线的峰谷差加大,给发电机组的安全、高效运行带来了困难,迫使电网建设蓄调谷峰及燃汽轮机调峰电站。而且为了使很多机组在低负荷下运行,降低了运行效率及可靠性,因而也降低了经济的发展,燃料的使用量也在大量增加全年的燃煤达非常大,燃煤产生了大量灰尘、SO2。如果能用蓄热式电锅炉代替部分小锅炉供给的取暖设备,用蓄热式电锅炉代替普通燃煤锅炉,用蓄热式电锅炉代替燃煤锅炉对改善环境,削峰填谷的作用肯定是显著的,是促进我国经济可持续发展的有力措施,我中心在成功开发蓄热式电锅炉的基础上又开发了固体材料蓄热式电暖器,已在某些工程中得到了成功应用,对改善环境,降低运行费用起到了显著作用。国家电力公司安全运行与发展输电部1998 年专门发文推广应用蓄热式电锅炉目前市场上销售的蓄热电锅炉多是利用常压固体蓄热方式蓄热,在常压下将热水加热1997年全国烟尘排放量达1873 10 95,假设回水温度为45 kcal。因此蓄热水箱体积庞大。 以目前市售最大容量民用全谷式蓄热式电锅炉为例,该类电锅炉容量为7875kW台,采暖面积排放量达2346 10 ,62%的大城市大气SO2,浓度超过国家三级标准,全国酸雨区面积已占国土面积的30 ,华中酸雨区酸雨频率高达90 %以上其中燃煤对环境污染占的份额最大。随着公众对改善环境的要求日益强烈,人们开始寻找污染少、运行费用也能承受的热能转换方式。随着城市环境污染问题的日益加重,燃用清洁能源的取暖锅炉已被提到议事日程上来。 目前包括首都北京在内的北方许多大城市环保部门已作出强制性规定,城市近郊区严禁再上任何燃煤锅炉新项目,现有锅炉也要限期全部更改为燃用清洁能源锅炉。根据我国电力市场的实际情况以及环境污染的状况,我国有必要发展蓄热式电热器,增加电网低谷用电量,使电网负荷趋向均衡,提高发电机组的运行效率。这里所说的蓄热式电锅炉包括蓄热式电锅炉、电暖器。我国城镇的采暖用热除部分由热电厂供应外,其余部分是由燃煤、燃油锅炉及电热供给的。燃煤燃油锅炉都有有害气体及烟尘排放,污染环境,普通的电暖器及电热水器常常是在用电高峰时间使用,增加热水箱容积900m ,若该水箱为一正方体,其边长接10m,仅此一座蓄热水箱的体积就相当于一座三层楼房,并且出于保温的考虑,水箱必须设置在有暖气设施的室内,建造这样一座锅炉房,连同其内部所有设备在内,其总投资将突破3000 万元。并且由于该蓄热水箱外表面积

电锅炉蓄热技术在北方地区的应用分析

电锅炉蓄热技术在北方地区的应用分析 蓄热2009-05-06 13:54:20 阅读63 评论0字号:大中小订阅 ?摘要:介绍了电锅炉固体蓄热技术应用的现状、设计原理、蓄热载体的选择、高温蓄热系统以及自控系统等,并以北京住宅为例分析了蓄热技术应用和运行费用的可行性。 ?? 1.引言?固体蓄热式电锅炉,不仅可以享受到峰谷电价和国家的优惠政策,而对于能量的有效利用和节能也非常有意义。?根据国家“十·五”计划,今后五年我国能源消费年均增长约3.26%,煤炭将下降3.88%,发电量年均增长约5.08%,水电、核电、天然气等清洁能源的比重达到17.88%,提高5.6%。根据国际能源机构预测,到2007年全球新能源和可再生能源的比例,将发展到世界能源构成的54%以上。可以说电做为热源比油、气、煤有着更广阔的前景。 根据目前了解到的可靠信息,在山东乳山、荣城等城市国家正在建设核发电站。青岛、威海、烟台、日照、南京、上海等很多的城市投入巨资建设风力发电站。国家投入巨资建设的长江三峡,黄河小浪底等大型水力发电站,以及现在正在全球讨论和研发的太阳能蓄能技术。这些都在意味着国家对洁净、环保、节能等电力的开发和利用。电力作为最环保的能源在各国家都在使用。 中国针对这些电能的开发,是为了有效利用再生能源和控制稀有资源,相对出台了《中华人民共和国可再生能源法》。相对电力能源的开发和建设,电力能源的使用同时也出现了浪费现象。这就是低谷电的使用。在国外低谷电有效的进行了使用。我们国家针对低谷电的使用相对比较晚,主要原因是在技术方面和国家政策方面的滞后。现在通过国家发改委和电业部门及环保部门的大力支持和政策方面的落实,对于蓄能的使用起到了很大的促进作用。市场前景一片光明。? 资源蓄热技术能够使能源得到合理有效的利用,通过控制技术,它可以按照系统所需要的热

蓄热式电锅炉供暖工程设计介绍

蓄热式电锅炉供暖工程设计介绍北京国电华北电力工程有限公司徐新举m 摘要该工程采用直热式和蓄热式电热锅炉联合供暖方式,介绍了方案选择,设备选型, 锅炉运行方式,锅炉房工艺布置和供暖负荷计算。该工程可以充分利用低谷电蓄热供暖,实际运行效果良好。 关键词蓄热电锅炉供暖设计 Design of an electric boiler heating system with heat storage B y Xu X inju n Abs t r act Us es di r e c t-hea t i ng and s t or a ge heat i ng e l ec t r i c a l boi l e r s a s t he heat s our c e. P r es ent s t he s c heme s el ec t i on,e qui pm e nt s t y pe,ope r at i ng m o de o f el e c t r i c al boi l er s,d es i gn of boi l er pl a nt and hea t i ng l oa d c a l c ul at i on.T he pr oj ec t c an f ul l y us e t he l ower pr i c e el e c t r i c i t y f or hea t s t or a ge,and t he sy s t em ope r at e s we l l. Keywor ds hea t s t or a ge e l ec t r i c b oi l e r,hea t i ng,des i g n n North China Pow er Engineering(Beij ing)C o.,Ltd 1工程概况 本工程为燃煤锅炉房改造工程,采用直热式电锅炉加蓄热式电锅炉的供暖方式。总供暖面积为140800m2,其中生活区建筑面积77000m2,办公区建筑面积40000m2,科研楼建筑面积17000m2,国电宾馆建筑面积6800m2。由于科研楼高度近50m,结合原燃煤锅炉的运行方式,将供暖系统分为高压区和低压区两个系统。 高压区选用1台HW30D-720B-380型直热式电锅炉,锅炉容量为720kW;1台T X1-158-F704-H449型蓄热式电锅炉,锅炉容量为704kW,为科研楼提供供暖热源。总用电负荷为1424kW。 低压区选用2台HW48D-2400B-380型直热式电锅炉,单台锅炉容量为2400kW;2台T X1-396-F1728-H528型蓄热式电锅炉,单台锅炉容量为1728kW;2台T X1-275-F1216-H485型蓄热式电锅炉,单台锅炉容量为1216kW,为生活区、办公区和国电宾馆提供供暖热源。总用电负荷为10688kW。 2热源方案比较 根据现场实际情况,原燃煤锅炉房基本没有扩建的可能性,在不拆除原燃煤锅炉房的基础上进行部分改建,可节约大量土建投资。下面结合本工程实际情况,对燃油锅炉、燃气锅炉和电锅炉供暖方式进行比较。 a)燃油锅炉:初投资低,运行费用高,由于场地限制,无贮油罐布置场地,达不到防火要求,锅炉运行噪声大,对环境有一定污染; b)燃气锅炉:初投资低,运行费用高,气源接入困难,有可能影响供暖期供暖,锅炉运行噪声大,对环境污染甚微; c)电锅炉(直供式):初投资低,运行费用高,无污染,锅炉运行安全可靠,便于维修,布置灵活; d)电锅炉(直热式加蓄热式):初投资高,运行费用低,无污染,锅炉运行安全可靠,便于维修,蓄热锅炉占地面积较大。 随着近几年电力市场的转变,为了调整用电结构,开拓低谷电市场,华北电力集团公司(华北电管局)对京津唐电网区域内电力用户新报装蓄能用电设备的电贴实行优惠,用电设备全部低谷时段运行并蓄能,高峰、非高峰时段全部或部分用电设备停运,其停运部分设备用电容量全部免收增容费,主要包括蓄热电锅炉、蓄热水泵等。采用电锅炉蓄热式供暖方式,避开高峰电价时间段,可以大大降低运行费用。经过与业主讨论,决定采用蓄热式电锅炉的供暖方式。 # 94 #技术交流园地暖通空调HV&AC2003年第33卷第2期 1m徐新举,男,1968年5月生,大学,工程师 100011北京市西城区黄寺大街甲24号暖通室 (010)822811882583 收稿日期:20020813 修回日期:02

量子化学计算实验详解

量子化学计算方法及应用 吴景恒 实验目的: (1)掌握Gaussian03W的基本操作 (2)掌握 Gaussian03W进行小分子计算的方法,比较不同方法与基组对计算结果的影响,并比较同分异构体的稳定性(3)通过运用量子力学方法计算分子的总电子密度,自旋密度,分子轨道及静电势 实验注意: (1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格 (2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作 (3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片 (4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备! (5)HyperChem里面截图时候可以用工具栏以下几个工具调整视图: Rotate out-of-plane:平面外旋转工具,转换视角用 Mgnify/Shrink:放大镜工具,转换视角用 Gaussian03W使用介绍:(注意,下面只是界面示意图,实验時切勿按下图设置) 输入文件:Gaussian输入文件,以GJF为文件后缀名 联系命令行:设定中间信息文件(以CHK为后缀名)存放的位置、计算所需的内存、CPU数量等 作业行:指定计算的方法,基组,工作类型,如:#P HF/6-31G(d) Scf=tight Opt Pop=full #作业行开始标记 P 计算结果显示方式为详细, 选择还有T(简单)和 N(常规,默认) HF/6-31G(d) 方法/基组 Opt对分子做几何优化 Pop=full进行轨道布居分析,详尽输出轨道信息和能量 电荷 多重态:分子总电荷及自旋多重态(2S+1, S=n/2, n为成单电子数) 分子结构的表示 1、直角坐标:元素符号X坐标Y坐标Z坐标(如上图所示) 2、Z矩阵(参考后附内容):元素符号(原子一)原子二键长原子三键角原子四二面角

量子化学计算

物理化学专业博士研究生课程 教学大纲 课程名称:量子化学计算(Computational Quantum Chemistry) 课程编号:B07030411 学分:3 总学时数:72 开课学期:第2学期 考核方式:学习论文 课程说明:(课程性质、地位及要求的描述)。 《量子化学计算》是在学习了《结构化学》、《量子化学》之后,为物理化学专业博士研究生开设的一门方向课,在每学年第二学期讲授。 如果说《结构化学》、《量子化学》还有更多的抽象,那么《量子化学计算》则直接对各研究体系进行可与实验对比的计算机模拟。近二十年来,随着计算机硬件和软件水平的迅速发展,计算化学已成为理论化学的重要分支,主要通过量子化学方法、分子力学方法以及分子动力学模拟来解决与化学相关的问题。目前,计算化学已广泛应用于化学及相关交叉学科的各个领域,迅速成为定量预测分子的结构、性质以及反应性能的有力工具。 本课程计划安排72个学时。采用授课与上机演习相结合的教学方法,使学生在较短时间内掌握当今国际流行的常用计算软件的原理、使用方法及技巧,着重培养同学们解决化学实际问题的能力。要求同学们通过本课程的学习,能对计算化学的原理和方法有一个初步的了解,并能够在化学合成、反应机理、生物、材料等各个领域中得到应用。 教学内容、要求及学时分配: 第一章绪论 内容: 1.1量子力学历史背景 1.221世纪的理论化学计算机模拟

要求:了解量子化学的背景知识、国际国内发展现状及其未来方向学时:4 第二章从头计算法的基本原理和概念 内容: 2.1量子力学基本假设2.2定态近似 2.3从头计算法的“头” 2.4自洽场方法2.5变分法和LCAO-MO近似 2.6量子化学中的一些基本原理和 概念 2.7量子化学中的基本近似 要求:了解从头计算法的基础知识、计算化学中的一些基本原理、概念和近似。 学时:12 第三章布居分析和基组专题 内容: 3.1布居分析 3.2基组专题 要求:理解基组概念及选择的原则,掌握布居分析的计算方法和基组的计数,了解Mulliken布居分析的优缺点及改进的思路。 学时:6 第四章计算方法简介 内容: 4.1半经验方法 4.2HF方法 4.3Post-HF方法 4.4DFT方法 4.5SCF-X 方法 4.6精确模型化学理论方法——Gn 和CBS 4.7赝势价轨道从头计算法 4.8激发态的计算——CIS和CAS 4.9溶剂效应 4.10分子力学和分子动力学基础 要求:了解一些常用计算方法的基本原理及优缺点,重点掌握AM1、INDO、MNDO/PM3、HF、MP、CI、CC、DFT、CAS、溶剂效应等方法的原理,掌握选择计算方法的思路和原则。

蓄热式电锅炉运行成本如何计算

我们前面介绍了很多蓄热式电锅炉的基本原理和知识,介绍很多关于蓄热式电锅炉优缺点的内容,也一直在强调蓄热式电锅炉是非常节能的,那么,很多比较理性的客户就会问我们,你们锅炉的运行成本和使用费用到底是如何计算的,为什么说你们的锅炉可能是较好的煤改电锅炉?下面就请群利机械张总给大家针对这个问题作如下解答。 (蓄热式电锅炉-图片) 【蓄热式电锅炉运行成本计算方法】 蓄热式电锅炉运行成本——粗略计算方法 蓄热式电锅炉的使用费用主要就是电费,因为蓄热式电锅炉不需要专门的人工维护,只需要人员监管即可,人工费用是几乎可以忽略不计的。 蓄热式电锅炉的运行成本=【供暖面积(㎡)*设计热负荷指标(w/㎡)*供热天数*每天低谷电时长/1000】*当地低谷电价 举例来讲,某个公司采用蓄热式电锅炉为3000平米厂房供暖,设计热负荷指标是60w/㎡,1个采暖季是120天,每天的低谷电时长是8小时,当地低谷电价是0.3元,则,该公司1个采暖季的锅炉运行成本是:

蓄热式电锅炉的运行成本=【3000(㎡)*60(w/㎡)*120天*8h/天/1000】*0.3元/kw?h=51840元,平均每平方米的采暖成本是17.28元(不含锅炉折旧费用) 蓄热式电锅炉运行成本——精准计算方法 上面介绍的蓄热式电锅炉运行成本的计算方法是粗略计算的方法,该方法把每个时间段的热负荷指标都笼统的概括为同一个数值,而实际上,每个时间段实际消耗的热负荷指标是完全不同的,准确的计算方法,是需要考虑到这一点的。 (蓄热式电锅炉-图片) 如果您想知道自己使用蓄热式电锅炉的成本到底是多少,请来电将您的需求告诉我们,我们的工程师会根据情况为您出具具体的设计方案。 【蓄热电锅炉供暖优缺点解析】 蓄热电锅炉的优点和缺点各是什么?这是很多客户在购买蓄热电锅炉之前必定会了解的问题。那么,本文将对这两大问题进行回答。 节能省钱,是蓄热电锅炉较大的优点。 利冠佳特生产的蓄热式电锅炉,是非常理想的燃煤锅炉替换品,无环保压力,运行费用比传统电锅炉

电极式电锅炉蓄热系统概述

电极式电锅炉蓄热系统 一、产品简介 工作电压:一般采用中压电压(≥6 kV); 大功率锅炉电压(可达13.5 kV); 控制电压380/220V 。 保护措施:1)、过流保护; 2)、缺相保护; 3)、短路保护; 4)、三相不平衡保护。 加热原理:一般采用电厂除盐水,加入一定电解质,使炉水具有一定电阻。利用水的高热阻特性,直接将电能转换为热能并产生蒸汽的一种装置,装置包含高电阻绝缘的压力容器和三相电级。 结构形式:

功率调整范围:调整范围是1%-100%. 在10%-100%的范围内可以做到无级调节。 优点: ?锅炉利用水的电阻性直接加热,电能100%转化成热量,基本无热损失。当锅炉缺水时,电极间的电流通道被切断,不存在类似常规锅炉干烧的现象。 ?体积小巧,启动速度快,从冷态启动到满负荷只需要几十分钟,从热态到满负荷只需1分钟。 ?在节能领域,电极热水锅炉结合大型蓄能设备,在低谷电价时间段把蓄能装置内热水加温,在高电价时使用,能够起到平衡电网负荷的作用。 图一:电极式电锅炉蓄热系统示意图

二、国内外同类产品水平综述 电极锅炉的应用在国外由来已久,世界上第一台电极锅炉于1905年诞生于欧洲。国内针对电极锅炉的研究始于20世纪80年代,主要是电热水锅炉技术,通常使用的是380V动力电,常压水箱作为蓄热体,此设备占地面积大、系统热效率低。20世纪80年代,承压蓄热一体化锅炉能有效减小设备占地面积,缺点是承压蓄热电锅炉技术的单台设备不能适用于高于100 m3的蓄热体积。20世纪90年代,喷射式电极锅炉通过美国西屋公司进入中国,开始了长达十余年的价格垄断阶段。目前,国内的少数企业通过吸收欧洲技术并经过改造升级,形成了常压电极锅炉。

量子化学-重要概念

(1)开壳层,闭壳层 指电子的自旋状态,对于闭壳层,采用限制性计算方法,在方法关键词前面加R 对于开壳层,采用非限制性计算方法,在方法关键词前面加U.比如开壳层的HF就是UHF.对于不加的,程序默认为是闭壳层. 一般采用开壳层的可能性是 1. 存在奇数个电子,如自由基,一些离子 2. 激发态 3. 有多个单电子的体系 4. 描述键的分裂过程 (2) 核磁是单点能计算中另外一个可以提供的数据,在计算的工作设置部分,就是以#开头的一行里,加入NMR关键词就可以了,如 #T RHF/6-31G(d) NMR Test 在输出文件中,寻找如下信息 GIAO Magnetic shielding tensor (ppm) 1 C Isotropic = Anisotropy = 这是采用上面的设置计算的甲烷的核磁结果,所采用的甲烷构形是用B3LYP密度泛函方法优化得到的. 一般的,核磁数据是以TMS为零点的,下面是用同样的方法计算的TMS(四甲基硅烷)的结果1 C Isotropic = Anisotropy = 这样,计算所得的甲烷的核磁共振数据就是,与实验值相比,还是很接近的. (3) 标准几何坐标. 找到输出文件中Standard Orientation一行,下面的坐标值就是输入分子的标准几何坐标. (4) stable 本例中采用SCF方法分析分子的稳定性.对于未知的体系,SCF稳定性是必须要做的.当分子本身不稳定的时候,所得到的SCF结果以及波函数等信息就没有

化学意义. (5)势能面 分子几何构型的变化对能量有很大的影响.由于分子几何构型而产生的能量的变化,被称为势能面.势能面是连接几何构型和能量的数学关系.对于双原子分子,能量的变化与两原子间的距离相关,这样得到势能曲线,对于大的体系,势能面是多维的,其维数取决与分子的自由度. (6)opt Opt=ReadFC 从频率分析(往往是采用低等级的计算得到的)所得到的heckpoint文件中读取初始力矩阵,这一选项需要在设置行之前加入%Chk= filename 一句,说明文件的名称. Opt=CalCFC 采用优化方法同样的基组来计算力矩阵的初始值. Opt=CalcAll 在优化的每一步都计算力矩阵.这是非常昂贵的计算方法,只在非常极端的条件下使用. 有时候,优化往往只需要更多的次数就可以达到好的结果,这可以通过设置MaxCycle来实现.如果在优化中保存了Checkpoint文件,那么使用Opt=Restart可以继续所进行的优化.当优化没有达到效果的时候,不要盲目的加大优化次数.这是注意观察每一步优化的区别,寻找没有得到优化结果的原因,判断体系是否收敛,如果体系能量有越来越小的趋势,那么增加优化次数是可能得到结果的,如果体系能量变化没有什么规律,或者,离最小点越来越远,那么就要改变优化的方法. (7) 频率分析的计算要采用能量对原子位置的二阶导数.HF方法,密度泛函方法(如B3LYP),二阶Moller-Plesset方法(MP2)和CASSCF方法(CASSCF)都可以提供解析二阶导数.对于其他方法,可以提供数值二阶导数. 一般的,对于HF方法,采用计算的频率乘以矫正因子, 方法频率矫正因子零点能矫正因子 HF/3-21G HF/6-31G(d) MP2(Full)/6-31G(d) MP2(FC)/6-31G(d) SVWN/6-31G(d)

量子技术简介 花66

量子技术简介花66 一、前言 2016年8月16日中国发射了世界第一颗量子卫星,这是一个划时代的标志。 量子技术从公开报道的文章来看,可以说乱花渐欲迷人眼。让我们避开纷繁复杂的技术细节和深奥的理论运算,去看看后面到底有什么样的事实和假设。 科学上所有进入殿堂的理论,后面都有无数事实所验证和支撑。当然我们也知道,历史上,无数的“事实”在后来都被发现,它们都不是事实,或者仅仅是更大范围内事实的一部分。 绝对真理就是没有真理,所有理论最终都会被证明是错误的,不过它们有的很有用,抱着这样的观点比较好,不要被任何理论洗脑。 二、量子技术的基石:量子力学和相对论的基本假设 量子技术不等于量子力学,实际它综合了最前沿的科学、哲学的实践探索。现在教科书里的量子力学和相对论理论,在量子技术的地位大概相当于四则运算在数学中的地位,它是基础,但远远不能涵盖全部。不过量子技术的起点确实是量子力学和相对论,前者在微观领域(激光、电子显微镜、晶体管等),后者在宏观领域(GPS)都进入民用领域,各自都很成功。 这里来看看量子力学和相对论各自的三大假设,这里不用“基本原理”、“公理”、“定律”等的说法,是为了避免被洗脑。除了上面六个假设,还有一个奥卡姆剃刀律(也是一个假设),符合事实的情况下假设越少越好。 量子力学第一个假设是概率解释,浅白的说就是“世事无绝对”。凡有科学素养的读者,赌徒或者炒股票的,都或多或少能够理解。 量子力学第二个假设是互补性原理,这就是哲学上的对立统一律。 所谓对立统一律,用掷硬币来解释比较容易。如果有人一直在掷硬币,任何时刻的结果都只出现正面或者反面其中之一,那么,可以断言他掷的只有一个硬币。对立统一律是奥卡姆剃刀定律的一个表现形式。对立统一律或者互补性原理的一个例子,物质的波粒二象性,由于任何时刻只能观测到这对立(或者互斥)两面中的一个,对立统一律指出那么它们在更高层次就是一个整体。 对立统一律有很多更朴素、更广为流传的版本。阴阳,乾坤,塞翁失马焉知非福,福祸相倚,中华传统文化植根于此。 量子力学第三个假设是不确定原理,浅白的说我们对于微观世界的认知是有极限的,到了某个微观层次想再提升分辨率是不可能的。 相对论第一个假设是相对性原理,客观的物理规律在宇宙中任意坐标系中有效,浅白的说就是有那么一组(或者至少一个)真理在宇宙中处处适用,换句话说存在至少一个绝对真理。

固体蓄热式电锅炉是理想的煤改电锅炉类型

蓄热式电锅炉节能省钱效果显著,是理想的煤改电锅炉。利冠佳特生产的固体蓄热式电锅炉,是非常理想的燃煤锅炉替换品,无环保压力,运行费用比传统电锅炉可降低40%——50%,在低谷电政策执行较好的地区,该锅炉运行成本无限贴近燃煤锅炉。蓄热式电锅炉工作原理系列文章中,我们提到过很多蓄热式电锅炉的优势特点,本文,我们将系统的阐述一下蓄热式电锅炉的优势。 (蓄热式电锅炉-图片) 【煤改电采用蓄热式电锅炉优势一】 蓄热式电锅炉省钱原理: 1.利用峰、谷、平电价差,在夜间低谷电时段,将蓄热体加热到850℃储存起来,并以热能形式储存在蓄热体器内;在需要热量的时候将低谷电时间段的储存的热量释放出来,满足供暖需热量。这样,在耗电量一致的情况下,我们的电锅炉每度电电费仅为其他电锅炉的1/3——1/4. 2.先进智能的控制策略,使得我们的电锅炉可以根据各时段供热需求、天气条件、用电负荷等因素进行分时分温控制,为您节省运行成本。 3.我们的电锅炉,除了可以降低您供热方面的成本,还可以在夏天和中央空调等制冷系统配套,提高

制冷系统的能效比,降低制冷方面的能耗。 【煤改电采用蓄热式电锅炉优势二】 用于大面积供暖时,采用蓄热式电锅炉可实现多方受益。 政府: 1.治理雾霾措施之一。 2.替代燃煤锅炉,减少PM2.5排放 3.削峰填谷,科学用电,城市电网更安全。 (蓄热式电锅炉-图片) 开发商: 1.供暖方式更多选择。电蓄热锅炉可以一机两用,提供集中供暖和24小时生活热水,降低设备成本,提升楼盘品质 2.新增投资小。采用高压入柜技术,电蓄热错峰用电不需增容。 3.常压系统,安全性高。不需独立机房,可直接安装在建筑物内部,减少建筑初投资。

固体蓄热锅炉优势和劣势对比分析

利冠佳特蓄热式电锅炉是非常理想的燃煤锅炉替换品,无环保压力,运行费用比传统电锅炉可降低40%——50%,在低谷电政策执行较好的地区,该锅炉运行成本无限贴近燃煤锅炉。固体蓄热锅炉可以为企业节省大量的人力物力和财力,其主要工作原理是通过将低谷电充分利用的方式达到节能省电的效果。固体蓄热锅炉因使用清洁能源,运行污染小,符合国家环保要求,因此得到了广泛的应用。 (蓄热式电锅炉-图片) 【固体蓄热锅炉省钱原理】 1.利用峰、谷、平电价差,在夜间低谷电时段,将蓄热体加热到850℃储存起来,并以热能形式储存在蓄热体器内;在需要热量的时候将低谷电时间段的储存的热量释放出来,满足供暖需热量。这样,在耗电量一致的情况下,固体蓄热锅炉每度电电费仅为其他电锅炉的1/3——1/4。 2.先进智能的控制策略,使得我们的电锅炉可以根据各时段供热需求、天气条件、用电负荷等因素进行分时分温控制,尽可能为您节省运行成本。 3.我们的电锅炉,除了可以降低您供热方面的成本,还可以在夏天和中央空调等制冷系统配套,提高制冷系统的能效比,降低制冷方面的能耗。 【固体蓄热锅炉省钱原理的7大优势】

1.集中蓄热,按需提供,热效率高。 2.因使用清洁能源,运行污染小,符合国家环保要求,不产生污染、噪音,属于所在地区0排放,环保意义大。 (蓄热式电锅炉-图片) 3.平衡国家电网安全运行,削峰填谷,提高发、变、配电设备的使用率,减少同类设备的投资。 4.可根据场地不同灵活放置,不需单独的锅炉房也可以,如地下室、广场地下、操场地下、屋顶等闲置地方,减少有效占地 5.全自动运行,无需专人操作,只需配备巡检人员即可。 6.无明火,安全装置齐全,运行可靠,消防要求低。 7.占地面积小:本体体积小,结构紧凑,不需要烟囱和燃料堆放场地。 【固体蓄热锅炉有哪些不足】 固体蓄热式电锅炉明显的缺点,就是要求用户留有充足的变压器负荷。变压器负荷不足的用户,可能会面临变压器增容的问题,对于部分用户来讲,这意味着不小的额外资金压力。相比于传统电锅炉,

电极式电锅炉蓄热系统简介

电极式电锅炉蓄热系统简 介 Last revision on 21 December 2020

电极式电锅炉蓄热系统 一、产品简介 工作电压:一般采用中压电压(≥ 6 kV); 大功率锅炉电压(可达 kV); 控制电压380/220V 。 保护措施:1)、过流保护; 2)、缺相保护; 3)、短路保护; 4)、三相不平衡保护。 加热原理:一般采用电厂除盐水,加入一定电解质,使炉水具有一定电阻。利用水的高热阻特性,直接将电能转换为热能并产生蒸汽的一种装置,装置包含高电阻绝缘的压力容器和三相电级。 结构形式:

功率调整范围:调整范围是1%-100%. 在 10%-100%的范围内可以做到无级调节。 优点: ?锅炉利用水的电阻性直接加热,电能100%转化成热量,基本无热损失。 当锅炉缺水时,电极间的电流通道被切断,不存在类似常规锅炉干烧的现象。 ?体积小巧,启动速度快,从冷态启动到满负荷只需要几十分钟,从热态到满负荷只需1分钟。 ?在节能领域,电极热水锅炉结合大型蓄能设备,在低谷电价时间段把蓄能装置内热水加温,在高电价时使用,能够起到平衡电网负荷的作用。 图一:电极式电锅炉蓄热系统示意图 二、国内外同类产品水平综述 电极锅炉的应用在国外由来已久,世界上第一台电极锅炉于1905年诞生于欧洲。国内针对电极锅炉的研究始于20世纪80年代,主要是电热水锅炉技术,通常使用的是380V动力电,常压水箱作为蓄热体,此设备占地面积大、系统热效率低。20世纪80年代,承压蓄热一体化锅炉能有效减小设备占地面积,缺点是承压蓄热电锅炉技术的单台设备不能适用于高于100 m3的蓄热体积。20世纪90年代,喷射式电极锅炉通过美国西屋公司进入中国,开始了长达十余年的价格垄断阶段。目前,国内的少数企业通过吸收欧洲技术并经过改造升级,形成了常压电极锅炉。

量子通信

热词摘录 编者按:科技不断改变着我们的生活,科技术语也以日新月异的面貌悄然发生着变化。本刊致力于科技术 语的规范,同时也关注媒体中出现的科技热词。这些热词可能是早就规范了的科技术语,因某一科技事件 而频繁出镜;也可能还不具备明确的内涵,只是展现科技灵感的昙花一现,抑或会在经过时间的沉淀与凝 练后成为规范科技术语中的一分子。本刊特辟“热词摘录”这个小栏目,摘录媒体中出现的热词,透过语境 解读内涵,同读者一起聆听当下媒体的新声音。 第八大洲 日前,多名科学家在美国地质学会发表的研究报告宣称,发现了地球“第八大洲”,“新大洲”位于澳大 利亚以东,面积为490万平方公里,94%的面积在太平洋海水以下。他们建议“第八大洲”沿用“西兰蒂亚 洲”(Zealandia)这一名称。“第八大洲西兰蒂亚”如果能够得到世界公认,这一新的地理名词将改变人们的 地理认知,教科书也将被改写。 荫据英国《每日电讯报》2月16日报道,多名科学家在美国地质学会发表研究报告宣称,他们在澳大利亚东部发现了世 界“第八大洲”西兰蒂亚(Zealandia)。----《世界“第八大洲”藏在水下?》(《信息时报》,2017-02-18A16版)荫这不是突然发现,而是渐进发现的结果。“西兰蒂亚洲”这个名称是地质学家布鲁斯.卢因迪克于1995年提出的。 当时它被认为拥有大陆所需四大属性中的三种,近来利用卫星技术和海底重力图,科学家发现这块大陆是统一的区 域,完全满足了成为独立大陆所需要的条件。—《第八大洲?》(中央电视台新闻频道(CCTV13),2017-02-18)荫在新西兰底下有一片大陆的理论,存在有些年头。1995年,一位地质学家给它起名叫“西兰蒂亚(Zealandia)”。不过,当时科学家们掌握的证据并不完整。如今这个说法再次被提出,是因为有一个最新证据“浮出水面”。研究人员 利用“俯瞰地球”的卫星,再加上“海底重力图”技术发现,这里是一块统一的区域。这一点被认为是成为独立大陆的 最后一个必要条件。据此,他们呼吁国际社会,承认这块大陆为世界第八个大洲,并且沿用“西兰蒂亚”这个20多年 前就已经提出来的名字。—《科学家宣称发现世界第八块大陆具备大陆所需特征》(央广网,2017-02-18)荫人们往往会认为,“在水面之上”才是定义“大陆”的关键性条件,不过这群研究者重新调整了大陆的“准入条件”,主 要有四个方面:高于它周边的地理区域;存在大范围的硅酸火成岩、变质岩和沉淀岩;其地壳相比通常意义上大洋地 壳要更厚,而且有着更低的地震波速;要有一块面积足够大的,能和大陆群岛、大陆碎块,或者碎条的集合有清晰边 界区隔的区域。这份研究报告指出,前三点是教科书对大陆的经典定义,而第四点则学界研究较少或者仍有争议。 —《某地质学家团队宣称Zealandia符合“大陆”的新定义》(观察者,2017-02-17) 量子通信 量子通信(quantum com m unication)是指利用量子纠缠效应进行信息传递的一种通信方式,是量子论和 信息论相结合的新的研究领域,主要涉及量子密钥分配、量子隐形传态和量子密集编码等技术。量子通信 因其高效、安全的信息传输特性而成为量子物理和信息科学的研究热点。从1993年量子通信概念和量子 隐形传送方案的提出,到1997年未知量子态远程传输的首次实现,到2006年超100公里诱骗态量子密钥 分发实验的成功,再到2009年实时语音量子保密通信的告捷,量子通信正从理论步人实验,迈向实际应用。而2016年8月16日,世界首颗量子科学实验卫星一中国的“墨子号”成功发射,将助力于中国广域量子 通信网络的构建,国人为之振奋,“量子通信”再次成为媒体报道的焦点。 荫在量子纠缠理论的基础上,1993年,美国科学家C.H.Bennett提出了量子通信的概念。量子通信是由量子态携带信 息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。 —《量子通信——以实验驳倒爱因斯坦》(中国科普网,2013-05-21) 79

量子通信简介

量子通信 一.经典通信系统模型 经典通信系统可以用下图所示的模型描述。 信源(Information source):指产生消息的源泉。信息总是一个物理系统,其形态随空间坐标或时间变化。 空间信源(space source):系统随时间改变形态,它生产在空间传输的信号,这样的物理系统称为空间信源。 时间信源(time source):系统空间各部分有不随时间变化的不同的分布,它可能引起信号在时间中传输,这样的系统称为时间信源。编码(Encoding):对信源进行处理,以提高信源传输的有效性和可靠性。 信道(Channel):传输消息的媒介称为信道。 噪声(Noise):在传输过程中,由于干扰使编码的物态发生畸变。引起编码物理态畸变的各种因素称为噪声。 译码(Decoding):由信道输出物态恢复信源输出的消息的过程叫译码。 信宿(Destination):是消息传输的归宿和的地,即接收消息的人或仪器。

量子信息通信简介 量子信息科学是物理学与信息科学交叉融合产生的新兴学科领域,涉及物理、计算机、通信、数学等多个学科,对带动这些学科的发展具有重要意义。量子信息学为未来信息科学的革命性变革提供了可靠的物理基础。量子信息技术在运算速度、信息安全、信息容量等方面可突破传统信息系统的极限。 一.量子信息通信物理基础 1. 量子位(Quantum Bit: qubit ) 在经典信息理论中,信息量的基本单位是比特(bit),一个比特是给 出经典二值系统一个取值的信息量. 例如,{0,1} 在量子信息理论中,量子信息的基本单位是量子比特(qubit)。一个 qubit 是一个双态量子系统,即两个线性独立的态,常记为:|0>和 |1>。以这两个独立态为基矢,张成一个二维复矢量空间,即二维Hilbert 空间。 量子位的物理载体: 光子: ()()>+>->=>+>>=y i x L y i x R ||21 | ,||21 | |R>: 右圆极化偏振光, |L>: 左圆极化偏振光。 自旋1/2的粒子: |0>,|1> 二能级原子: |g >,|e > 迭加态: >+>>=1|0||b a ψ |a|2, |b|2分别为测量时得到|0>,|1>的几率。 n 个qubit 态:张成一个2n 的Hilbert 空间,有2n 个相互正交的态:>i | , i 是一个n 位二进制数。 例如:3个量子位有8个量子态: |0>, |1>, |2>, |3>, |4>, |5>, |6>, |7> |000>, |001>, |010>, |011>, |100>, |101>, |110>, |111>

相关文档
最新文档