蓄热式电锅炉工作原理简介

合集下载

电蓄热蒸汽锅炉工作原理_电蓄热蒸汽锅炉采暖成本计算

电蓄热蒸汽锅炉工作原理_电蓄热蒸汽锅炉采暖成本计算

电蓄热蒸汽锅炉工作原理_电蓄热蒸汽锅炉采暖成本计算电蓄热蒸汽锅炉采暖成本如何计算?利冠佳特蓄热式蒸汽锅炉是众多蓄热电锅炉种类中的一种常见类型,现在在煤改电采暖的政策环境下,越来越多的人关注到电蓄热蒸汽锅炉等蓄热电锅炉这块。

大家都知道低谷电价和高峰电价不同,因此如何更好的利用好低谷电能是很多行业和企业现在关注的一个方面。

下面山东利冠佳特举例说明一下电蓄热蒸汽锅炉采暖成本,下面一起了解一下。

【蓄热式蒸汽锅炉系统工作原理】蓄热式蒸汽锅炉利用晚间廉价低谷电,将电能转化成热能存储起来,蓄热炉内温度可达到800℃,高温热风吹入蒸汽发生器内,可产生100℃-180℃的饱和蒸汽,真正实现环保零排放绿色生产。

【电蓄热蒸汽锅炉采暖成本计算】煤改电采暖的政策环境下,渐渐比较多的人知道有电蓄热蒸汽锅炉等蓄热电锅炉这一供暖设备了。

那蓄热电锅炉究竟是不是节能省电,每天供暖的费用是多少,我们在这里做个计算。

电蓄热蒸汽锅炉适用于有低谷电价的地区,我们以低谷电价3毛钱一度来计算。

以500平层高3米的节能建筑24小时供暖为例,可以满足供暖需求的直热锅炉需要22KW,蓄热电锅炉需要50KW。

直热电锅炉是峰平谷时段的电都要用到,电蓄热蒸汽锅炉只需要利用谷电8小时即可满足24小时供热。

每个地区的电价不一样,我们以峰、平、谷时段均为8小时计算,峰、平、谷电价为1.4元、0.7元、0.3元。

电蓄热蒸汽锅炉采暖成本计算:锅炉类别直热锅炉22KW蓄热电锅炉50KW锅炉购置费(元)1000060000运行电费(元/天)4201201个采暖季成本(设备购置+运行成本)60400744002个采暖季成本(设备购置+运行成本)110800888003个采暖季成本(设备购置+运行成本)161200103200虽然设备一次性购置费电蓄热蒸汽锅炉比直热的贵5倍,但是运行费用是直热的1/3,运行2个采暖季之后蓄热电锅炉的费用优势就显现出来了,加上设备购置费,电蓄热蒸汽锅炉比直热锅炉节省了22000元钱。

蓄热式加热炉的工作原理

蓄热式加热炉的工作原理

蓄热式加热炉的工作原理蓄热式加热炉是一种利用热量积蓄和释放的加热设备。

其主要工作原理是通过蓄热材料的吸热和释热过程,实现能源的稳定供应。

蓄热式加热炉由燃烧室、蓄热室和排烟系统等组成。

燃烧室中燃烧燃料产生的高温燃烧气体经过烟道进入蓄热室,与其中的蓄热材料热交换,使其温度升高。

蓄热材料是蓄热式加热炉的关键部件,通常采用高热容量和高热传导性的材料,如陶瓷、耐火材料等。

当燃烧室中的燃料燃烧完毕或加热系统需要热量时,通过调整控制系统,蓄热室中的高温蓄热材料开始释放热能。

蓄热材料的吸热过程是指在燃烧室中,当燃料燃烧产生高温燃烧气体时,蓄热材料吸收燃烧气体中的热能并升温。

蓄热材料内部的微观孔隙结构能够有效地吸附和储存大量的热能,从而使得燃烧室内的高温烟气得到充分利用,提高燃烧效率。

蓄热材料的释热过程是指在燃烧室和加热系统需要热量时,蓄热材料开始释放其储存的热能。

控制系统通过调整燃烧室的气流方向和蓄热材料的温度,确保蓄热材料释放的热能能够有效地传递给加热系统。

蓄热材料的释热过程是一个持续而稳定的过程。

通过合理地设计蓄热室的结构和材料,以及控制系统的精确控制,蓄热式加热炉可以实现能量的高效利用和稳定供应。

蓄热式加热炉相对于传统的加热设备具有一系列的优点。

首先,蓄热式加热炉能够充分利用燃料的热能,提高热利用率。

其次,由于蓄热材料的热容量较大,热能的释放相对稳定,能够实现加热过程的均匀和稳定。

此外,蓄热式加热炉还能够实现节能和减少排放,对环境友好。

总之,蓄热式加热炉通过蓄热材料吸热和释热的过程,实现能量的稳定供应。

其工作原理主要包括燃烧室中烟气与蓄热材料的热交换和蓄热材料的热能释放。

通过合理设计和优化控制系统,蓄热式加热炉能够提高能量利用效率,实现高效、稳定和环保的加热过程。

蓄热式加热炉的工作原理

蓄热式加热炉的工作原理

蓄热式加热炉的工作原理
蓄热式加热炉是一种利用热储存材料的热容和热传导特性来进行加热的设备。

其工作原理如下:
1. 热储存材料:蓄热式加热炉内部放置着一种称为热储存材料的物质。

这种材料具有较高的比热容和热传导率,能够吸收和存储大量的热量。

2. 加热源:蓄热式加热炉内部有一个或多个加热源,常见的有电加热元件、燃气或液体燃料的燃烧器等。

加热源将热量传递给热储存材料。

3. 热能储存:当加热源工作时,热能被传递给热储存材料,材料内部的温度升高,吸收大量热量。

这些热量会在材料中被储存起来,并逐渐释放出来。

4. 热能释放:当需要加热时,蓄热式加热炉关闭加热源,热储存材料开始释放储存的热能。

热能通过热传导或辐射的方式传递给需要加热的物体或空气,使其温度升高。

5. 加热循环:蓄热式加热炉通过循环工作,实现了热能的储存和释放。

加热源在需要加热时提供热量,而在热储存材料释放热能时,加热源则处于关闭状态。

蓄热式加热炉的工作原理可以有效地利用电能或燃料,提供持续稳定的加热效果。

在一定程度上,它也可以实现能源的节约和环境保护。

固体蓄热电锅炉原理

固体蓄热电锅炉原理

固体蓄热电锅炉原理固体蓄热电锅炉是一种利用固体材料蓄热并将其释放作为热能的电锅炉。

它是一种高效、环保的供暖设备,被广泛应用于家庭供暖、工业加热等领域。

固体蓄热电锅炉的原理是利用固体材料的蓄热性能,将电能转化为热能,并通过蓄热材料的吸热和释热过程,实现热能的存储和供应。

固体蓄热电锅炉的主要部件包括电热元件、蓄热器、热交换器和控制系统等。

电热元件是将电能转化为热能的核心部件,通常采用电阻丝或电热管。

蓄热器是存储热能的设备,通常采用高热容量的固体材料,如陶瓷、石墨等。

热交换器用于将蓄热器中储存的热能传递给供暖系统或热水系统。

控制系统则负责监测和调节固体蓄热电锅炉的运行状态,以确保其安全高效地工作。

固体蓄热电锅炉的工作原理如下:首先,当电热元件工作时,电能被转化为热能,使蓄热器中的固体材料升温。

随着固体材料温度的升高,其内部结构发生变化,吸收热量并将其储存起来。

当需要供暖或热水时,控制系统会启动热交换器,将蓄热器中储存的热能传递给供暖系统或热水系统。

同时,固体材料会释放储存的热量,使其温度下降。

当固体材料温度降至一定程度时,电热元件将再次启动,将电能转化为热能,使固体材料重新升温,完成一个完整的循环过程。

固体蓄热电锅炉相比传统的电锅炉具有显著的优势。

首先,固体蓄热电锅炉利用固体材料的蓄热性能,可以高效地储存和释放热能,使其能耗更低。

其次,固体蓄热电锅炉采用闭路循环供暖,避免了水质问题和结垢等常见问题,延长了设备的使用寿命。

此外,固体蓄热电锅炉无需烟囱和燃料储存设施,安装和维护成本较低。

同时,固体蓄热电锅炉的排放物少,对环境污染较小,符合环保要求。

然而,固体蓄热电锅炉也存在一些局限性。

首先,固体材料的蓄热能力有限,其储存和释放的热量有一定的限制。

因此,在极端寒冷或极端炎热的环境下,固体蓄热电锅炉可能无法满足用户的供暖需求。

其次,固体蓄热电锅炉的启动和停止需要一定的时间,无法实现即时供暖。

此外,固体蓄热电锅炉的初始投资较高,需要考虑其经济性和实际需求。

固体蓄热电锅炉工作原理及优势

固体蓄热电锅炉工作原理及优势

高温固体蓄热供热机组是利用夜间低谷电(23:00-7:00共计8小时)将储热介质加热到800度高温储存热量,在用电高峰时段通过自控装置将热量按需释放,以达到移峰填谷降低采暖成本的效果。

为用户专业提供所需的高温热风(400℃以下)、热油(300℃以下)、热水(85℃以下)。

并且可以为中央空调提供热源,用于夏季制冷。

工作原理使用夜间低谷时段的廉价电能或风能所发电力,将电能转化为高温热能储存在设备的蓄热体中。

当用热时,风机运转,使空气流动通过蓄热体,将蓄热体中的热量换出成为高温空气,高温空气经过管式换热器后加热水,供暖单位利用热水实现供暖。

产品优点1.高温蓄热:我们的固体蓄热供热机组能够将储热介质加热至800度高温,突破了高温蓄热的温度极限,同时确保在安全稳定的状态下进行高温储存。

2.热效率高:采用先进的保温材料,结合精密的散热系统,使得我们的综合热效率达到95%以上。

3.占地体积小:产品体积仅为一般电蓄水锅炉的10%~15%,有效地减少了占地面积,方便安装和施工。

4.运行成本低:同等热量的运营成本是直热式电锅炉运营成本的20~40%,降低了运行成本。

5.全自动控制:我们的固体蓄热供热机组采用全自动控制方式,操作简便,无需人员看管。

在夜间低谷期自动加热,需要时可以任意时段、任意温度放热,实现更高效能的利用。

6.环保:我们的产品采用零排放、零污染的电阻加热方式,不会对环境造成影响。

同时,我们的产品也不受气候变化的影响,能够确保供暖的稳定性。

固体电蓄热锅炉功率选择供热时长:T1(h)。

即每天供热时间是几个小时,一般默认的是24小时全天供暖。

办公楼、厂房这些场合是非24小时供热。

当地夜间低谷电时长:T2(h)。

有些省份是8个小时低谷电,有些省份是10个小时低谷电,低谷电时长会直接影响蓄热锅炉型号的计算。

为了满足不同客户的需求,我们不仅提供标准功率的固体蓄热供热机组,还可根据客户的特殊要求,为您量身定制不同功率和型号的产品。

蓄热器的工作原理

蓄热器的工作原理

蓄热器的工作原理一、引言蓄热器是一种用于储存和释放热能的设备,广泛应用于工业生产、建筑供暖、太阳能利用等领域。

本文将详细介绍蓄热器的工作原理,包括其基本原理、结构特点以及工作过程。

二、蓄热器的基本原理蓄热器的基本原理是利用物质的热容量和相变潜热来储存和释放热能。

当蓄热器处于低温状态时,通过外部热源向蓄热器输入热量,使其内部物质的温度升高。

当需要释放热能时,蓄热器内部物质的温度下降,释放出之前储存的热能。

三、蓄热器的结构特点1. 蓄热材料:蓄热器的核心部分是蓄热材料,常见的蓄热材料包括水、油、盐等。

这些材料具有较高的热容量和相变潜热,能够有效地储存和释放热能。

2. 导热管道:蓄热器内部设置有导热管道,用于传导热量。

导热管道通常采用高导热性能的材料制成,如铜、铝等,以确保热量能够快速传导到蓄热材料中。

3. 绝热层:为了减少热量的损失,蓄热器外部覆盖有绝热层,通常采用聚苯乙烯、岩棉等材料制成,以提高蓄热器的热效率。

四、蓄热器的工作过程1. 充热过程:当蓄热器处于低温状态时,通过外部热源向蓄热器输入热量。

热量通过导热管道传导到蓄热材料中,使其温度逐渐升高。

在这个过程中,蓄热材料吸收了热量并储存起来。

2. 蓄热过程:当外部热源停止供热时,蓄热器处于蓄热状态。

在这个阶段,蓄热材料的温度保持在较高水平,储存的热能得以保持。

3. 释热过程:当需要释放热能时,蓄热器内部物质的温度开始下降。

热量通过导热管道传导到周围环境中,从而实现热能的释放。

在这个过程中,蓄热材料释放了之前储存的热能。

4. 循环过程:蓄热器可以通过循环系统实现多次充热和释热的循环。

这样可以提高蓄热器的热效率,使其更加稳定和持久地提供热能。

五、蓄热器的应用领域1. 工业生产:蓄热器广泛应用于工业生产中的热能储存和利用。

例如,钢铁行业可以利用蓄热器储存高温热能,用于冶炼过程中的加热和热处理。

2. 建筑供暖:蓄热器在建筑供暖领域也有重要应用。

通过利用夜间低谷电能或太阳能等热源,将热量储存到蓄热器中,白天释放热能供暖,提高能源利用效率。

蓄热式电锅炉工作原理

蓄热式电锅炉工作原理

蓄热式电锅炉工作原理
蓄热式电锅炉的本质为电热转换的电负荷,是一种高效、清洁的电加热设备。

在电力系统中,蓄热式电锅炉负荷低谷时通过风电进行制热蓄热,提高电网低谷时段的用电负荷,消纳供暖期的电网无法利用的风电出力,同时在负荷高峰时利用储蓄的热能进行供热,降低热电联产机组的负荷,实现能量的时段转移,打破“以热定电”的限制,稳定电力系统的安全运行。

相对于传统的煤炭锅炉,在利用风电场冬季采暖期弃风供热的同时,把传统的化石燃料和灰渣输送变为电力输送,改变了我国北方地区传统的热电机组和燃煤锅炉构成的集中供热模式,不仅有效降低了区域内的环境污染,节约了投资成本和残渣的处理成本,而且蓄热式电锅炉具有灵活可控性,不需要时刻保持运行状态。

蓄热式加热炉工作原理

蓄热式加热炉工作原理

蓄热式加热炉工作原理蓄热式加热炉是一种利用热能储存技术进行加热的设备,其工作原理是利用热能储存材料在低温条件下吸收热能,然后在需要加热时释放储存的热能,从而实现加热的目的。

蓄热式加热炉广泛应用于工业生产中的热处理、烧结、热解等领域,具有节能、环保、高效的特点。

蓄热式加热炉的工作原理主要包括热能吸收、储存和释放三个过程。

首先是热能吸收过程,当加热炉处于工作状态时,热能储存材料开始吸收热能。

这些热能储存材料通常是高热容量的材料,如陶瓷、石墨等,能够在低温条件下有效地吸收热能。

其次是热能储存过程,一旦热能储存材料吸收了足够的热能,它们就会将热能储存在自身的结构中,形成热能储存状态。

在这个过程中,热能储存材料的温度会升高,但并不会立即释放热能。

最后是热能释放过程,当需要加热时,加热炉会通过控制系统使热能储存材料释放储存的热能,从而实现加热的目的。

这种释放热能的过程通常会持续一段时间,使加热炉能够稳定地提供热能。

蓄热式加热炉的工作原理使其具有许多优点。

首先,它能够充分利用低温热能,将其转化为高温热能,从而提高能源利用率。

其次,由于热能储存材料能够稳定地释放热能,加热过程更加稳定,可以减少能源浪费。

此外,蓄热式加热炉还具有较高的加热效率和较低的排放,能够满足环保要求。

因此,蓄热式加热炉在工业生产中得到了广泛的应用。

在实际应用中,蓄热式加热炉的工作原理还需要与控制系统相结合,以实现精确的温度控制和加热过程的自动化。

控制系统可以根据加热需求调节热能储存材料的释放速度,从而实现加热过程的精确控制。

同时,控制系统还可以监测加热炉的工作状态,保证其安全稳定地运行。

总之,蓄热式加热炉通过热能储存技术实现了低温热能向高温热能的转化,其工作原理包括热能吸收、储存和释放三个过程。

蓄热式加热炉具有节能、环保、高效的特点,在工业生产中得到了广泛的应用。

通过与控制系统相结合,蓄热式加热炉能够实现精确的温度控制和自动化加热过程,为工业生产提供了可靠的加热设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蓄热式电锅炉工作原理简介
蓄热式电锅炉由电壁挂炉主机、储水罐、恒温调速控制器(带水泵)三大部分组成。

电壁挂炉主机负责发热,通过电壁挂炉内的定时设置,利用晚上谷峰电,全负荷加热(温度设置为最高值),通过内置循环水泵把介质(水)热量储存储水罐内。

其余时段可把定时温度设置为45度(参考值),只要储水罐内水温高于此温度,电壁挂炉均不启动加热。

储水罐负责储存热量,罐内蓄热介质为普通自来水,内衬为SUS304不锈钢板,中间50mm发泡聚氨酯保温层,外层为SUS201不锈钢板。

内置浮球,当系统内水量减少时自动补水。

恒温调速控制器(带水泵)负责把储水罐的热水往供暖系统内的暖气片或者地暖管输送,然后通过供暖系统末端管路返回到储水罐内。

当恒温调速控制器上的温度探头检测到供暖系统末端水温<45度(默认值,可通过上下按键改变参数)控制器会让副水泵全负荷运转,尽快把整个供暖系统水加热起来。

当室内温度达到18-22度后,供暖系统末端水温上升,恒温调速控制器上的温度探头检测到供暖系统末端水温≥45度,控制器会让副水泵半负荷或小负荷运转,降慢供暖系统的散热速度,有效节约储水罐内热量。

室内温度将趋于稳定。

如当天不想供暖,则按恒温调速控制器上的OF键,副水泵停止工作。

蓄热系统照常进行晚上蓄热工作(只需小量加热,补充热能损耗),等待下一次供暖使用。

相关文档
最新文档