全国各地中考数学试卷分类汇编 专项8 新定义型能及高中知识渗透型问题

合集下载

2022年四川各地(成都德阳南充等)中考数学真题按知识点分类汇编 专题08 圆(含详解)

2022年四川各地(成都德阳南充等)中考数学真题按知识点分类汇编 专题08 圆(含详解)

专题08 圆1.(2022·成都)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .232.(2022·自贡)如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,20ABD ∠=,则BCD ∠的度数是( ) A .90° B .100° C .110° D .120°3.(2022·自贡)P 为⊙O 外一点,PT 与⊙O 相切于点T ,10OP =,30OPT ∠=︒,则PT 的长为( )A .B .5C .8D .94.(2022·泸州)如图,AB 是O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O 于点E .若AC =4DE =,则BC 的长是( )A .1B .2C .2D .45.(2022·德阳)如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:⊙BAD CAD ∠=∠;⊙若60BAC ∠=︒,则120∠=︒BEC ;⊙若点G 为BC 的中点,则90BGD ∠=︒;⊙BD DE =.其中一定正确的个数是( )A .1B .2C .3D .46.(2022·四川广元)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若⊙CAB =65°,则⊙ADC 的度数为( )A .25°B .35°C .45°D .65°7.(2022·遂宁)如图,圆锥底面圆半径为7cm ,高为24cm ,则它侧面展开图的面积是( )A .175π3cm 2B .175π2cm 2C .175πcm 2D .350πcm 28.(2022·南充)如图,AB 为O 的直径,弦CD AB ⊥于点E ,OF BC ⊥于点F ,65BOF ∠=︒,则AOD ∠为( )A .70︒B .65︒C .50︒D .45︒9.(2022·眉山)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿PA ,PB 分别相切于点A ,B ,不倒翁的鼻尖正好是圆心O ,若28OAB ∠=°,则APB ∠的度数为( )A .28︒B .50︒C .56︒D .62︒10.(2022·达州)如图所示的曲边三角形可按下述方法作出:作等边ABC ,分别以点A ,B ,C 为圆心,以AB 长为半径作BC ,AC ,AB ,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A .2π23-B .2π3-C .2πD .π3-11.(2022·凉山)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角⊙BAC =90°,则扇形部件的面积为( )A .12π米2B .14π米2 C .18π米2 D .116π米2 12.(2022·自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为____________厘米.13.(2022·泸州)如图,在Rt ABC △中,90C ∠=︒,6AC =,23BC =,半径为1的O 在Rt ABC △内平移(O 可以与该三角形的边相切),则点A 到O 上的点的距离的最大值为________.14.(2022·广元)如图,将⊙O 沿弦AB 折叠,AB 恰经过圆心O ,若AB =23,则阴影部分的面积为 _____.15.(2022·凉山)如图,⊙O 的直径AB 经过弦CD 的中点H ,若cos⊙CDB =45,BD =5,则⊙O 的半径为___.16.(2022·凉山)如图,在边长为1的正方形网格中,⊙O 是⊙ABC 的外接圆,点A ,B ,O 在格点上,则cos⊙ACB 的值是________.17.(2022·成都)如图,在Rt ABC △中,90ACB ∠=︒,以BC 为直径作⊙O ,交AB 边于点D ,在CD 上取一点E ,使BE CD =,连接DE ,作射线CE 交AB 边于点F .(1)求证:A ACF ∠=∠;(2)若8AC =,4cos 5ACF ∠=,求BF 及DE 的长. 18.(2022·泸州)如图,点C 在以AB 为直径的O 上,CD 平分ACB ∠交O 于点D ,交AB 于点E ,过点D 作O 的切线交CO 的延长线于点F .(1)求证:FD AB ∥;(2)若25AC =,5BC =,求FD 的长.19.(2022·德阳)如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD ∠=∠.(1)求证:CF 是O 的切线;(2)如果10AB =,6CD =,⊙求AE 的长;⊙求AEF 的面积.20.(2022·广元)在Rt⊙ABC 中,⊙ACB =90°,以AC 为直径的⊙O 交AB 于点D ,点E 是边BC 的中点,连结DE .(1)求证:DE 是⊙O 的切线;(2)若AD =4,BD =9,求⊙O 的半径.21.(2022·遂宁)如图,O 是ABC 的外接圆,点O 在BC 上,BAC ∠的角平分线交O 于点D ,连接BD ,CD ,过点D 作BC 的平行线与AC 的延长线相交于点P .(1)求证:PD 是O 的切线;(2)求证:ABD △⊙DCP ;(3)若6AB =,8AC =,求点O 到AD 的距离.22.(2022·乐山)如图,线段AC 为⊙O 的直径,点D 、E 在⊙O 上,CD =DE ,过点D 作DF ⊙AC ,垂足为点F .连结CE 交DF 于点G .(1)求证:CG =DG ;(2)已知⊙O 的半径为6,3sin 5ACE ∠=,延长AC 至点B ,使4BC =.求证:BD 是⊙O 的切线. 23.(2022·南充)如图,AB 为O 的直径,点C 是O 上一点,点D 是O 外一点,BCD BAC ∠=∠,连接OD 交BC 于点E .(1)求证:CD 是O 的切线.(2)若4,sin 5CE OA BAC =∠=,求tan CEO ∠的值. 24.(2022·眉山)如图,AB 为O 的直径,点C 是O 上一点,CD 与O 相切于点C ,过点B 作BD DC ⊥,连接AC ,BC .(1)求证:BC 是ABD ∠的角平分线;(2)若3BD =,4AB =,求BC 的长;(3)在(2)的条件下,求阴影部分的面积.25.(2022·达州)如图,在Rt ABC 中,90C ∠=︒,点O 为AB 边上一点,以OA 为半径的⊙O 与BC 相切于点D ,分别交AB ,AC 边于点E ,F .(1)求证:AD 平分BAC ∠;(2)若3BD =,1tan 2CAD ∠=,求⊙O 的半径.26.(2022·凉山)如图,已知半径为5的⊙M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分⊙OAM ,AO +CO =6(1)判断⊙M 与x 轴的位置关系,并说明理由;(2)求AB 的长;(3)连接BM 并延长交圆M 于点D ,连接CD ,求直线CD 的解析式.专题08 圆1.(2022·成都)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .23【答案】C【详解】解:连接OB ,OC ,⊙⊙O 的周长等于6π,⊙⊙O 的半径为:3,⊙⊙BOC 61=⨯360°=60°,⊙OB =OC ,⊙⊙OBC 是等边三角形,⊙BC =OB =3,⊙它的内接正六边形ABCDEF 的边长为3, 故选:C .2.(2022·自贡)如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,20ABD ∠=,则BCD ∠的度数是() A .90° B .100° C .110° D .120°【答案】C【详解】⊙AB 为⊙O 的直径,⊙90ADB ∠=,又⊙20ABD ∠=,⊙90902070DAB ABD ∠=--∠==,又⊙四边形ABCD 内接于⊙O , ⊙180BCD DAB ∠+∠=,⊙01101801870BCD DAB ∠=∠=--=,故答案选:C .3.(2022·自贡)P 为⊙O 外一点,PT 与⊙O 相切于点T ,10OP =,30OPT ∠=︒,则PT 的长为( )A .B .5C .8D .9【答案】A 【详解】解:连接OT ,如下图.⊙PT 与⊙O 相切于点T ,⊙90OTP ∠=︒ .⊙30OPT ∠=︒,10OP =, ⊙1110522OT OP ==⨯=,⊙PT =故选:A .4.(2022·泸州)如图,AB 是O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O 于点E .若AC =4DE =,则BC 的长是( )A .1B .2C .2D .4【答案】C【详解】设OD =x ,则OE =OA =DE -OD =4-x .⊙AB 是O 的直径,OD 垂直于弦AC 于点,AC =⊙12AD DC AC ===⊙OD 是⊙ABC 的中位线⊙BC =2OD⊙222OA OD AD =+⊙222(4)x x -=+,解得1x =⊙BC =2OD =2x =2故选:C5.(2022·德阳)如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:⊙BAD CAD ∠=∠;⊙若60BAC ∠=︒,则120∠=︒BEC ;⊙若点G 为BC 的中点,则90BGD ∠=︒;⊙BD DE =.其中一定正确的个数是( )A .1B .2C .3D .4【答案】D【详解】解:⊙点E 是ABC 的内心,⊙BAD CAD ∠=∠,故⊙正确;如图,连接BE ,CE ,⊙点E 是ABC 的内心,⊙⊙ABC =2⊙CBE ,⊙ACB =2⊙BCE ,⊙⊙ABC +⊙ACB =2(⊙CBE +⊙BCE ),⊙⊙BAC =60°,⊙⊙ABC +⊙ACB =120°,⊙⊙CBE +⊙BCE =60°,⊙⊙BEC =120°,故⊙正确; ⊙点E 是ABC 的内心,⊙BAD CAD ∠=∠,⊙BD CD =,⊙点G 为BC 的中点,⊙线段AD 经过圆心O ,⊙90BGD ∠=︒成立,故⊙正确;⊙点E 是ABC 的内心,⊙11,22BAD CAD BAC ABE CBE ABC ∠=∠=∠∠=∠=∠, ⊙⊙BED =⊙BAD +⊙ABE ,⊙()12BED BAC ABC ∠=∠+∠, ⊙⊙CBD =⊙CAD ,⊙⊙DBE =⊙CBE +⊙CBD =⊙CBE +⊙CAD ,⊙()12DBE BAC ABC ∠=∠+∠,⊙⊙DBE =⊙BED ,⊙BD DE =,故⊙正确;⊙正确的有4个. 故选:D 6.(2022·四川广元)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若⊙CAB =65°,则⊙ADC 的度数为( )A .25°B .35°C .45°D .65°【答案】A【详解】解:⊙AB 是直径,⊙⊙ACB =90°,⊙⊙CAB =65°,⊙⊙ABC =90°-⊙CAB =25°,⊙⊙ADC =⊙ABC =25°,故选:A .7.(2022·遂宁)如图,圆锥底面圆半径为7cm ,高为24cm ,则它侧面展开图的面积是( )A .175π3cm 2B .175π2cm 2C .175πcm 2D .350πcm 2【答案】C【详解】解:在Rt AOC △中,25AC =cm ,⊙它侧面展开图的面积是127251752ππ⨯⨯⨯=cm 2. 故选:C8.(2022·南充)如图,AB 为O 的直径,弦CD AB ⊥于点E ,OF BC ⊥于点F ,65BOF ∠=︒,则AOD ∠为( )A.70︒B.65︒C.50︒D.45︒【答案】C【详解】解:⊙⊙BOF=65°,⊙⊙AOF=180°-65°=115°,⊙CD⊙AB,OF⊙BC,⊙⊙DCB=360°-90°-90°-115°=65°,⊙⊙DOB=2×65°=130°,⊙⊙AOD=180°-130°=50°,故选:C.9.(2022·眉山)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿PA,PB分别相切于点A,B,不倒翁的鼻尖正好是圆心O,若28∠=°,则APBOAB∠的度数为()A.28︒B.50︒C.56︒D.62︒【答案】C【详解】连接OB,⊙OA=OB,⊙⊙OAB=⊙OBA=28°,⊙⊙AOB=124°,⊙P A、PB切⊙O于A、B,⊙OA⊙P A,OP⊙AB,⊙⊙OAP+⊙OBP=180°,⊙⊙APB+⊙AOB=180°;⊙⊙APB=56°.故选:C10.(2022·达州)如图所示的曲边三角形可按下述方法作出:作等边ABC ,分别以点A ,B ,C 为圆心,以AB 长为半径作BC ,AC ,AB ,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A .2π23-B .2π3-C .2πD .π3-【答案】A【详解】解:设等边三角形ABC 的边长为r ,6012,1803r ππ∴⋅⋅=⨯解得2r =,即正三角形的边长为2,∴2226022322360ππ⎛⎫⨯+⨯=- ⎪ ⎪⎝⎭故选A11.(2022·凉山)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角⊙BAC =90°,则扇形部件的面积为( )A .12π米2B .14π米2 C .18π米2 D .116π米2 【答案】C【详解】解:如图,连接BC ,90BAC ∠=︒,BC ∴是O 的直径,1BC ∴=米,又AB AC =,45ABC ACB ∴∠=∠=︒,sin AB AC BC ABC ∴==⋅∠=(米),则扇形部件的面积为290123608ππ⨯=(米2), 故选:C . 12.(2022·自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为____________厘米.【答案】26【详解】解:如图,由题意,得OD 垂直平分AB ,⊙BC =10厘米,令圆O 的半径为OB =r ,则OC =r -2,在Rt⊙BOC 中OC 2+BC 2=OB 2,⊙(r -2)2+102=r 2,解得r =26.故答案为:26.13.(2022·泸州)如图,在Rt ABC △中,90C ∠=︒,6AC =,23BC =,半径为1的O 在Rt ABC △内平移(O 可以与该三角形的边相切),则点A 到O 上的点的距离的最大值为________.【答案】271+【详解】设直线AO 交O 于M 点(M 在O 点右边),则点A 到O 上的点的距离的最大值为AM 的长度 当O 与AB 、BC 相切时,AM 最长设切点分别为D 、F ,连接OB ,如图⊙90C ∠=︒,6AC =,23BC =⊙tan AC BBC==AB =,⊙60B ∠=︒ ⊙O 与AB 、BC 相切,⊙1302OBD B ∠=∠=︒⊙O 的半径为1,⊙1OD OM ==,⊙BD ==⊙AD AB DB =-=⊙OA =⊙1AM OA OM =+=⊙点A 到O 上的点的距离的最大值为1.14.(2022·广元)如图,将⊙O 沿弦AB 折叠,AB 恰经过圆心O ,若AB =则阴影部分的面积为 _____.【答案】23π 【详解】解:过点O 作OD ⊙AB 于点D ,交劣弧AB 于点E ,如图所示:由题意可得:111,3222OD DE OE OB AD BD AB ======,⊙30OBD ∠=︒, ⊙60,tan 301,2cos30BD DOB OD BD OB ∠=︒=⋅︒===︒,⊙弓形AB 的面积为2602142222136023ODB OBE S S ππ⨯⨯⨯-=⨯-⨯=扇形⊙阴影部分的面积为11412122323OBD AB S S ππ⎛+=⨯+= ⎝弓形; 故答案为23π. 15.(2022·凉山)如图,⊙O 的直径AB 经过弦CD 的中点H ,若cos⊙CDB =45,BD =5,则⊙O 的半径为_______.【答案】25 6【详解】解:连接AC,如图,⊙⊙O的直径AB经过弦CD的中点H,⊙CH=DH,AB⊙CD,⊙BC=BD=5,⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙sinA=BC AB,⊙⊙A=⊙D,⊙cosA= cosD=45,⊙sinA=sinD=35⊙535AB,⊙AB=253⊙半径为25616.(2022·凉山)如图,在边长为1的正方形网格中,⊙O是⊙ABC的外接圆,点A,B,O在格点上,则cos⊙ACB的值是________.【答案】213 13【详解】解:取AB 中点D ,如图, 由图可知,AB =6,AD =BD =3,OD =2,⊙OD ⊙AB ,⊙⊙ODB =90°,⊙OB =cos⊙DOB =13OD OB ==, ⊙OA =OB ,⊙⊙BOD =12⊙AOB ,⊙⊙ACB =12⊙AOB ,⊙⊙ACB =⊙DOB ,⊙cos⊙ACB = cos⊙DOB17.(2022·成都)如图,在Rt ABC △中,90ACB ∠=︒,以BC 为直径作⊙O ,交AB 边于点D ,在CD 上取一点E ,使BE CD =,连接DE ,作射线CE 交AB 边于点F .(1)求证:A ACF ∠=∠;(2)若8AC =,4cos 5ACF ∠=,求BF 及DE 的长. 【答案】(1)见解析;(2)BF =5,4225DE =【解析】(1)解:⊙Rt ABC △中,90ACB ∠=︒,⊙⊙A +⊙B =⊙ACF +⊙BCF =90°,⊙BE CD =,⊙⊙B =⊙BCF ,⊙⊙A =⊙ACF ;(2)⊙⊙B =⊙BCF ,⊙A =⊙ACF ,⊙AF =CF ,BF =CF ,⊙AF =BF =12AB ,⊙4cos cos5ACACF AAB∠===,AC=8,⊙AB=10,⊙BF=5,⊙6 BC,⊙3 sin5BCAAB==,连接CD,⊙BC是⊙O的直径,⊙⊙BDC=90°,⊙⊙B+⊙BCD=90°,⊙⊙A=⊙BCD,⊙3sin5BDBCDBC∠==,⊙185BD=,⊙75DF BF BD=-=,⊙⊙FDE=⊙BCE,⊙B=⊙BCE,⊙⊙FDE=⊙B,⊙DE⊙BC,⊙△FDE⊙△FBC,⊙DE DFBC BF=,⊙4225DE=.18.(2022·泸州)如图,点C在以AB为直径的O上,CD平分ACB∠交O于点D,交AB于点E,过点D作O的切线交CO的延长线于点F.(1)求证:FD AB∥;(2)若25AC=,5BC=,求FD的长.【答案】(1)见解析;(2)15 8【解析】(1)证明:连接OD,如图,⊙CD平分⊙ACB,⊙AD BD=,⊙⊙AOD=⊙BOD=90°,⊙DF是⊙O的切线,⊙⊙ODF=90°⊙⊙ODF=⊙BOD,⊙DF⊙AB.(2)解:过C作CM⊙AB于M,如图,⊙AB 是直径,⊙⊙ACB =90°,⊙AB =2222(25)(5)5AC BC .⊙1122AB CM AC BC =, 即11525522CM ,⊙CM =2,⊙2222(5)21BM BC CM , ⊙OM =OB -BM =135122, ⊙DF ⊙AB ,⊙⊙OFD =⊙COM ,又⊙⊙ODF =⊙CMO =90°,⊙⊙DOF ⊙⊙MCO ,⊙CMOM OD FD,即32252FD ,⊙FD =158. 19.(2022·德阳)如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD ∠=∠.(1)求证:CF 是O 的切线;(2)如果10AB =,6CD =,⊙求AE 的长;⊙求AEF 的面积.【答案】(1)证明过程见详解;(2)⊙454;⊙2258 【解析】(1)连接OC 、BC ,如图,⊙AB 是⊙O 的直径,⊙⊙ACB =90°,AO =OB ,⊙AB ⊙CD ,⊙AB 平分弦CD ,AB 平分CD ,⊙CH =HD ,BC BD =,⊙CHA =90°=⊙CHE ,⊙⊙BAD =⊙BAC =⊙DCB , ⊙⊙ECD =2⊙BAD ,⊙⊙ECD =2⊙BAD =2⊙BCD , ⊙⊙ECD=⊙ECB +⊙BCD ,⊙⊙BCE =⊙BCD ,⊙⊙BCE =⊙BAC , ⊙OC =OA ,⊙⊙BAC =⊙OCA ,⊙⊙ECB =⊙OCA , ⊙⊙ACB =90°=⊙OCA +⊙OCB ,⊙⊙ECB +⊙OCB =90°,⊙CO ⊙FC ,⊙CF 是⊙O 的切线;(2)⊙⊙AB =10,CD =6,⊙在(1)的结论中有AO =OB =5,CH =HD =3, ⊙在Rt⊙OCH中,4OH ==,同理利用勾股定理,可求得BC =AC = ⊙BH =OB -OH =5-4=1,HA =OA +OH =4+5=9,即HE =BH +BE , 在Rt⊙ECH 中,222223(1)EC HC HE BE =+=++, ⊙CF 是⊙O 的切线,⊙⊙OCB =90°,⊙在Rt⊙ECO 中,2222222()5(5)5EC OE OC OB BE BE =-=+-=+-, ⊙2222(5)53(1)BE BE =+-++,解得:5BE 4=,⊙5451044AE AB BE =+=+=, ⊙过F 点作FP ⊙AB ,交AE 的延长线于点P ,如图,⊙⊙BAD =⊙CAB ,⊙CHA =90°=⊙P ,⊙⊙P AF ⊙⊙HAC ,⊙PF AP HC HA=,即39PF AP =,⊙3PF AP =, ⊙⊙PEF =⊙CEH ,⊙CHB =90°=⊙P ,⊙⊙PEF ⊙⊙HEC ,⊙PE PF HE HC =,即3PA AE PF HB BE -=+, ⊙HB =1,5BE 4=,454AE =,3PF AP =,⊙45345314PF PF -=+,解得:5PF =,⊙114522552248AEF S AE PF =⨯⨯=⨯⨯=△, 故⊙AEF 的面积为2258. 20.(2022·广元)在Rt⊙ABC 中,⊙ACB =90°,以AC 为直径的⊙O 交AB 于点D ,点E 是边BC 的中点,连结DE .(1)求证:DE 是⊙O 的切线;(2)若AD =4,BD =9,求⊙O 的半径.【答案】(1)见详解;【解析】(1)证明:连接OD ,OE ,如图所示:⊙OA OD =,⊙⊙A =⊙ODA ,⊙点E 是边BC 的中点,⊙OE ⊙AB ,⊙⊙DOE =⊙ODA ,⊙A =⊙COE ,⊙⊙DOE =⊙COE ,⊙,OD OC OE OE ==,⊙⊙COE ⊙⊙DOE (SAS ), ⊙⊙ACB =90°,⊙⊙ODE =⊙ACB =90°,⊙DE 是⊙O 的切线;(2)解:连接CD ,如图所示:⊙AC 是⊙O 的直径,⊙⊙ADC =⊙CDB =90°,⊙⊙A +⊙ACD =⊙ACD +⊙DCB =90°,⊙⊙A =⊙DCB ,⊙⊙ADC ⊙⊙CDB , ⊙=CD BD AD CD,即2CD AD BD =, ⊙AD =4,BD =9,⊙236CD =,⊙6CD =,在Rt⊙ADC 中,由勾股定理得:AC⊙⊙O21.(2022·遂宁)如图,O 是ABC 的外接圆,点O 在BC 上,BAC ∠的角平分线交O 于点D ,连接BD ,CD ,过点D 作BC 的平行线与AC 的延长线相交于点P .(1)求证:PD 是O 的切线;(2)求证:ABD △⊙DCP ;(3)若6AB =,8AC =,求点O 到AD 的距离.【答案】(1)见解析;(2)见解析;(3)点O 到AD 【解析】(1)证明:连接OD ,⊙AD 平分BAC ∠,⊙BAD DAC =∠,⊙BD DC =.又⊙BC 为直径,⊙O 为BC 中点,⊙OD BC .⊙BC DP ∥,⊙OD DP ⊥.又⊙OD 为半径,⊙PD 是O 的切线;(2)证明:⊙BC DP ∥,⊙ACB P ∠=∠.⊙ACB ADB ∠=∠,⊙P ADB ∠=∠.⊙四边形ABDC 为圆内接四边形,⊙180ABD ACD ∠+∠=︒.又⊙180∠+∠=︒DCP ACD ,⊙ABD DCP ∠=∠,⊙ABD △⊙DCP .(3)过点O 作OE AD ⊥于点E ,⊙BC 为直径,⊙90BAC ∠=︒.⊙6AB =,8AC =,⊙10BC =.又⊙BD DC =,⊙22222BD DC BD BC +==,⊙BD DC ==由(2)知ABD △⊙DCP ,⊙AB BD DC CP =,⊙502563BD DC CP AB ⋅===,⊙2549833AP AC CP =+=+=. 又⊙ADB ACB P ∠=∠=∠,BAD DAP ∠=∠,⊙BAD ⊙DAP ,⊙AB AD AD AP =,⊙298AD AB AP =⋅=,⊙AD =⊙OE AD ⊥,⊙12ED AD ==在Rt OED 中,OE ==⊙点O 到AD 22.(2022·乐山)如图,线段AC 为⊙O 的直径,点D 、E 在⊙O 上,CD =DE ,过点D 作DF ⊙AC ,垂足为点F .连结CE 交DF 于点G .(1)求证:CG =DG ;(2)已知⊙O 的半径为6,3sin 5ACE ∠=,延长AC 至点B ,使4BC =.求证:BD 是⊙O 的切线.【答案】(1)见解析;(2)见解析【解析】(1)证明:连接AD ,⊙AC 为⊙O 的直径,⊙⊙ADC =90°,则⊙ADF +⊙FDC =90°,⊙DF ⊙AC ,⊙⊙AFD =90°,则⊙ADF +⊙DAF =90°,⊙⊙FDC =⊙DAF ,⊙CD =DE ,⊙⊙DCE =⊙DAC ,⊙⊙DCE =⊙FDC ,⊙CG =DG ;(2)证明:连接OD ,设OD 与CE 相交于点H ,⊙CD =DE ,⊙OD ⊙EC ,⊙DF ⊙AC ,⊙⊙ODF =⊙OCH =⊙ACE , ⊙3sin 5ACE ∠=,⊙sin⊙ODF =sin⊙OCH =35,即OF OH OD OC ==35,⊙OF =185, 由勾股定理得DF =245,FC =OC -OF =125,⊙FB = FC +BC =325, 由勾股定理得DB =405=8,⊙sin⊙B =2458DF BD ==35,⊙⊙B =⊙ACE ,⊙BD ⊙CE , ⊙OD ⊙EC ,⊙OD ⊙BD ,⊙OD 是半径,⊙BD 是⊙O 的切线.23.(2022·南充)如图,AB 为O 的直径,点C 是O 上一点,点D 是O 外一点,BCD BAC ∠=∠,连接OD 交BC 于点E .(1)求证:CD 是O 的切线.(2)若4,sin 5CE OA BAC =∠=,求tan CEO ∠的值. 【答案】(1)见解析;;(2)3【解析】(1)证明:连接OC ,⊙AB 为O 的直径,⊙⊙ACB =90°,⊙⊙ACO +⊙OCB =90°,⊙OA =OC ,⊙⊙A =⊙ACO ,⊙BCD BAC ∠=∠,⊙⊙BCD =⊙ACO ,⊙⊙BCD +⊙OCB =90°,⊙OC ⊙CD ,⊙CD 是O 的切线.(2)解:过点O 作OF ⊙BC 于F , ⊙4,sin 5CE OA BAC =∠=, ⊙设BC =4x ,则AB =5x ,OA =CE =2.5x ,⊙BE =BC -CE =1.5x ,⊙⊙C =90°,⊙AC 3x =,⊙OA =OB ,OF ⊙AC ,⊙1BF OB CF OA==,⊙CF =BF =2x ,EF =CE -CF =0.5x ,⊙OF 为⊙ABC 的中位线,⊙OF =1 1.52AC x =,⊙tan CEO ∠= 1.530.5OF x EF x ==. 24.(2022·眉山)如图,AB 为O 的直径,点C 是O 上一点,CD 与O 相切于点C ,过点B 作BD DC ⊥,连接AC ,BC .(1)求证:BC 是ABD ∠的角平分线;(2)若3BD =,4AB =,求BC 的长;(3)在(2)的条件下,求阴影部分的面积.【答案】(1)见解析;(2)BC =(3)23π【解析】(1)证明:连接OC ,如图 ⊙CD 与O 相切于点C ,⊙OC CD ⊥⊙BD CD ⊥,⊙OC BD ∥⊙OCB DBC ∠=∠.又⊙OC OB =,⊙OCB OBC ∠=∠,⊙DBC OBC ∠=∠,⊙BC 平分ABD ∠.(2)解:根据题意,⊙线段AB 是直径,⊙90ACB D ∠=︒=∠,⊙BC 平分ABD ∠,⊙⊙ABC =⊙CBD ,⊙△ABC ⊙⊙CBD ,⊙AB BC CB BD=,⊙3BD =,4AB =,⊙23412BC =⨯=,⊙BC =(3)解:作CE ⊙AO 于E ,如图:在直角⊙ABC 中,224(23)2AC =-=,⊙2AO AC CO ===,⊙⊙AOC 是等边三角形,⊙60AOC ∠=︒,1OE =,⊙3CE =,⊙阴影部分的面积为:260212236023S ππ⨯⨯=-⨯ 25.(2022·达州)如图,在Rt ABC 中,90C ∠=︒,点O 为AB 边上一点,以OA 为半径的⊙O 与BC 相切于点D ,分别交AB ,AC 边于点E ,F .(1)求证:AD 平分BAC ∠;(2)若3BD =,1tan 2CAD ∠=,求⊙O 的半径.【答案】(1)见解析;(2)94 【解析】(1)连接OD ,90C ∠=︒,以OA 为半径的⊙O 与BC 相切于点D ,90C ODB ∴∠=∠=︒,AC OD ∴∥,CAD ODA ∴∠=∠,OA OD =,ODA OAD ∴∠=∠,CAD OAD ∴∠=∠,∴AD 平分BAC ∠;(2)连接DE ,AE 是直径,90ADE ∴∠=︒,1,,,tan 2BED ADE OAD BDA C CAD CAD OAD CAD ∠=∠+∠∠=∠+∠∠=∠∠=, 1,tan tan 2DE BED BDA CAD OAD AD ∴∠=∠∠===,BED BDA ∴,12BD BE DE AB BD AD ∴===, 3BD =,6AB ∴=,6132BE AB AE AE BD BD --∴===,解得92AE =, 94OA ∴=,∴⊙O 的半径为94. 26.(2022·凉山)如图,已知半径为5的⊙M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分⊙OAM ,AO +CO =6(1)判断⊙M 与x 轴的位置关系,并说明理由;(2)求AB 的长;(3)连接BM 并延长交圆M 于点D ,连接CD ,求直线CD 的解析式.【答案】(1)⊙M 与x 轴相切,理由见解析;(2)6;(3)122y x =-+【解析】(1)解:⊙M与x轴相切,理由如下:连接CM,如图,⊙MC=MA,⊙⊙MCA=⊙MAC,⊙AC平分⊙OAM,⊙⊙MAC=⊙OAC,⊙⊙MCA=⊙OAC,⊙⊙OAC+⊙ACO=90°,⊙⊙MCO=⊙MCA+⊙ACO=⊙OAC+⊙ACO=90°,⊙MC是⊙M的半径,点C在x轴上,⊙⊙M与x轴相切;(2)解:如图,过点M作MN⊙AB于N,由(1)知,⊙MCO=90°,⊙MN⊙AB于N,⊙⊙MNO=90°,AB=2AN,⊙⊙CON=90°,⊙⊙CMN=90°,⊙四边形OCMN是矩形,⊙MN=OC,ON=C M=5,⊙OA+OC=6,设AN=x,⊙OA=5-x,MN=OC=6-(5-x)=1+x,在Rt⊙MNA中,⊙MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合题意,舍去),⊙AN=3,⊙AB=2AN=6;(3)解:如图,连接BC,CM,过点D作DP⊙CM于P,由(2)知:AB=6,OA=2,OC=4,⊙OB=8,C(4,0)在Rt⊙BOC中,⊙BOC=90°,由勾股定理,得BC==⊙BD 是⊙M 的直径,⊙⊙BCD =90°,BD =10,在Rt ⊙BCD 中,⊙BCD =90°,由勾股定理,得CD==CD 2=20,在Rt ⊙CPD 中,由勾股定理,得PD 2=CD 2-CP 2=20-CP 2,在Rt ⊙MPD 中,由勾股定理,得PD 2=MD 2-MP 2=MD 2-(MC -CP )2=52-(5-CP )2=10CP -CP 2, ⊙20-CP 2=10CP -CP 2,⊙CP =2,⊙PD 2=20-CP 2=20-4=16,⊙PD =4,即D 点横坐标为OC +PD =4+4=8,⊙D (8,-2),设直线CD 解析式为y =kx +b ,把C (4,0),D (8,-2)代入,得4082k b k b +=⎧⎨+=-⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ⊙直线CD 的解析式为:122y x =-+.。

2023年中考数学分类汇编

2023年中考数学分类汇编

2023年中考数学分类汇编
本文档是对2023年中考数学考试可能出现的题型进行的分类
汇编,旨在帮助学生有效准备数学考试。

以下是本文档的内容概要:选择题
中考数学选择题主要考察学生对数学知识点的掌握程度和运用
能力,以下是可能出现的选择题类型:
1. 填空选择题:给定一道数学问题,提供若干个选项,要求学
生选出一个正确答案。

2. 判断选择题:给定一个数学命题,要求学生判断其真假性。

3. 逻辑选择题:给定一组数学命题,要求学生通过分析关系,
选出正确的答案。

解答题
中考数学解答题主要考察学生对数学知识点的掌握情况和解决
实际问题的能力,以下是可能出现的解答题类型:
1. 运算解答题:给定一组数学题目,要求学生运用所学知识进行运算解答。

2. 应用解答题:给定一个实际问题,要求学生分析问题、提出解决方案并进行求解。

算法题
中考数学算法题主要考察学生运用所学知识,综合应用解决问题的能力,以下是可能出现的算法题类型:
1. 线性方程组求解:给定若干个线性方程组,要求学生运用消元法或其他方法求解方程组。

2. 函数解析式求解:给定一个函数的一些性质,要求学生求解其解析式。

综合题
中考数学综合题目主要考察学生对所学知识的理解和综合运用能力,以下是可能出现的综合题类型:
1. 综合运用题:综合考察数学各个知识点的应用能力,要求学生分析问题并寻找最佳解决方案。

2. 探究题:给定一个问题,要求学生通过研究和探究,提出自己的见解和想法。

希望本文档能够帮助学生有效准备数学考试,顺利通过中考。

祝所有参加2023年中考的学生能够取得满意的成绩。

2021-2022全国各地中考数学试卷分考点解析汇编-新定义和跨学科问题

2021-2022全国各地中考数学试卷分考点解析汇编-新定义和跨学科问题

2021-2022全国各地中考数学试卷分考点解析汇编-新定义和跨学科问题新定义和跨学科问题一、选择题1.(2011广东台山3分)假如一个定值电阻R两端所加电压为5伏时,通过它的电流为1安培,那么通过这一电阻的电流I随它的两端电压U变化的图像是【答案】D。

【考点】正比例函数的图象。

【分析】依照电流电压电阻三者关系:VIR,其中R为定值,电流I随它的两端电压U变化是正比例函数的关系,因此它的图象为过原点的直线。

故选C。

2.(2011山西省2分)如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是A.35°B.70°C.110°D.120°【答案】B。

【考点】平行线的性质,入射角与反射角的关系,三角形内角和定理,等腰三角形的性质。

【分析】过点D作DF⊥AO交OB于点F,则DF是法线,依照入射角等于反射角的关系,得∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等)。

∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°。

故选B。

4.(2011湖南岳阳3分)下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是A、上海自来水来自海上B、有志者事竞成C、清水池里池水清D、蜜蜂酿蜂蜜【答案】B。

【考点】生活中的对称现象。

【分析】依照四个选项的特点,分析出与其它三个不同的即为正确选项:A、上海自来水来自海上,可将“水”明白得为对称轴,对折后重合的字相同,故本选项错误;B、有志者事竞成,五字均不相同,因此不对称,故本选项正确;C、清水池里池水清,可将“里”明白得为对称轴,对折后重合的字相同,故本选项错误;D、蜜蜂酿蜂蜜,可将“酿”明白得为对称轴,对折后重合的字相同,故本选项错误。

中考数学中“新定义”问题的类型及教学策略

中考数学中“新定义”问题的类型及教学策略

中考数学中“新定义”问题的类型及教学策略摘要:近几年嘉兴中考对于“新定义”类型的问题要求较高,而学生往往对于这类问题感到畏惧。

本文以“新定义”问题的概念以及特征为出发点,把这类题型分为四种类型。

教学时从概念中提取信息→加工信息→转化迁移→建立模型→解决问题。

这类问题主要考查学生现学现用的能力,以及类比和转化思想。

关键词:“新定义”;策略;迁移;阅读理解“新定义”问题是近几年嘉兴中考试题中的热点题型,它是基于学生必须掌握的知识及应该具备的能力,通过新定义的方式隐藏问题本源,要求学生在理解新定义的基础上进行拓展,从而灵活运用新知解决问题,主要考查学生现学现用的能力。

“新定义”问题的重要意义在于它不仅改变了学生解题的思维方式,而且对教师的课堂教学也起到了良好的导向作用,由于突出了理解定义的内在含义、问题迁移转化等重要环节,所以学生往往遇到“新定义”问题感到畏惧,故教师在教学“新定义”问题的时候要注意教学策略。

一、“新定义”问题阐释1.“新定义”问题的概念“新定义”问题是指命题者按照一定的规则,呈现给学生没有见过的新运算、新符号、新图形、新变换、新函数等,或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,要求学生现学现用,它全面地考查了学生的阅读理解能力、知识迁移能力和创新能力。

2.“新定义”问题的特征“新定义”题型特点突出、取材广泛,材料源于课本又有创新,不仅可以考查学生的阅读理解能力、分析综合能力、辨别判断能力以及生活经验是否丰富等,而且可以综合考查学生的数学思维能力和创新意识,此类问题能够帮助学生实现从模仿到创造的思维过程,达到从预设到生成的跨越,符合学生的认知规律,既实现了对学生知识与能力考查的结合,又体现了素质教育的本质,还为学生进入高一级学校的学习做了良好的铺垫。

新定义与阅读理解创新型问题(共31题)(解析版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(共31题)(解析版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(31题)一、单选题1(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S=N+12L-1,其中N,L分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A0,30,B20,10,O0,0,则△ABO内部的格点个数是()A.266B.270C.271D.285【答案】C【分析】首先根据题意画出图形,然后求出△ABO的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,∵A0,30,B20,10,O0,0,∴S△ABO=12×30×20=300,∵OA上有31个格点,OB上的格点有2,1,4,2,6,3,8,4,10,5,12,6,14,7,16,8,18,9,20,10,共10个格点,AB上的格点有1,29,2,28,3,27,4,26,5,25,6,24,7,23,8,22,9,21,10,20,11,19,12,18,13,17,16,14,15,15,16,14,17,13,18,12,19,11,共19个格点,∴边界上的格点个数L=31+10+19=60,∵S=N+12L-1,∴300=N+12×60-1,∴解得N=271.∴△ABO内部的格点个数是271.故选:C.【点睛】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思想.2(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π-3【答案】B【分析】根据等边三角形的性质及弧长公式l =n πr180求解即可.【详解】解:∵等边三角形ABC 的边长为3,∠ABC =∠ACB =∠BAC =60°,∴AB =BC =AC =60π⋅3180=π,∴该“莱洛三角形”的周长=3×π=3π,故选:B .【点睛】本题考查了等边三角形的性质,弧长公式,熟练掌握等边三角形的性质和弧长公式是解题的关键.3(2023·重庆·统考中考真题)在多项式x -y -z -m -n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x -y -|z -m |-n =x -y -z +m -n ,x -y -z -m -n =x -y -z -m +n ,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0 B.1C.2D.3【答案】C【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:x -y -z -m -n =x -y -z -m -n ,故说法①正确.若使其运算结果与原多项式之和为0,必须出现-x ,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x -y -z -m -n =x -y -z -m -n ;x -y -z -m -n =x -y +z -m -n ;x -y -|z -m |-n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n .当添加两个绝对值时,共有3种情况,分别是x -y -z -m -n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n ;x -y -z -m -n =x -y +z -m +n .共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.4(2023·湖南岳阳·统考中考真题)若一个点的坐标满足k ,2k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数y =t +1 x 2+t +2 x +s (s ,t 为常数,t ≠-1)总有两个不同的倍值点,则s 的取值范围是()A.s<-1B.s<0C.0<s<1D.-1<s<0【答案】D【分析】利用“倍值点”的定义得到方程t+1x2+tx+s=0,则方程的Δ>0,可得t2-4ts-4s>0,利用对于任意的实数s总成立,可得不等式的判别式小于0,解不等式可得出s的取值范围.【详解】解:由“倍值点”的定义可得:2x=t+1x2+t+2x+s,整理得,t+1x2+tx+s=0∵关于x的二次函数y=t+1x2+t+2x+s(s,t为常数,t≠-1)总有两个不同的倍值点,∴Δ=t2-4t+1s=t2-4ts-4s>0,∵对于任意实数s总成立,∴-4s2-4×-4s<0,整理得,16s2+16s<0,∴s2+s<0,∴s s+1<0,∴s<0s+1>0,或s>0s+1<0,当s<0s+1>0时,解得-1<s<0,当s>0s+1<0时,此不等式组无解,∴-1<s<0,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.5(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:A(1, 3),B(-2,-6),C(0,0)等都是三倍点”,在-3<x<1的范围内,若二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,则c的取值范围是()A.-14≤c<1 B.-4≤c<-3 C.-14<c<5 D.-4≤c<5【答案】D【分析】由题意可得:三倍点所在的直线为y=3x,根据二次函数y=-x2-x+c的图象上至少存在一个“三倍点”转化为y=-x2-x+c和y=3x至少有一个交点,求Δ≥0,再根据x=-3和x=1时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为y=3x,在-3<x<1的范围内,二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,即在-3<x<1的范围内,y=-x2-x+c和y=3x至少有一个交点,令3x=-x2-x+c,整理得:-x2-4x+c=0,则Δ=b2-4ac=-42-4×-1×c=16+4c≥0,解得c≥-4,x=--4±-42-4×-1c2×-1=-4±16+4c2,∴x1=-2+4+c,x2=-2-4+c∴-3<-2+4+c<1或-3<-2-4+c<1当-3<-2+4+c <1时,-1<4+c <3,即0≤4+c <3,解得-4≤c <5,当-3<-2-4+c <1时,-3<4+c <1,即0≤4+c <1,解得-4≤c <-3,综上,c 的取值范围是-4≤c <5,故选:D .【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.6(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.二、填空题7(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150°上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是米.(结果保留π)【答案】5π【分析】把半径和圆心角代入弧长公式即可;【详解】l =n πr 180=150×π×6180=5π故填:5π.【点睛】本题考查弧长公式的应用,准确记忆公式,并正确代入公式是解题的关键.8(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,⋯⋯,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,⋯⋯丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.9(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.AB是以O 为圆心,OA 为半径的圆弧,C 是弦AB 的中点,D 在AB上,CD ⊥AB .“会圆术”给出AB 长l 的近似值s 计算公式:s =AB +CD 2OA,当OA =2,∠AOB =90°时,l -s =.(结果保留一位小数)【答案】0.1【分析】由已知求得AB 与CD 的值,代入s =AB +CD 2OA得弧长的近似值,利用弧长公式可求弧长的值,进而即可得解.【详解】∵OA =OB =2,∠AOB =90°,∴AB =22,∵C 是弦AB 的中点,D 在AB上,CD ⊥AB ,∴延长DC 可得O 在DC 上,OC =12AB =2∴CD =OD -OC =2-2,∴s =AB +CD 2OA=22+2-2 22=3,l =90×2×2π360=π,∴l -s =π-3 ≈0.1.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

中考数学新定义型试题整理汇集(有)

中考数学新定义型试题整理汇集(有)

中考数学新定义型试题整理汇集(有)以下是中国教师范文吧()为您推荐的中考数学新定义型试题整理汇集,希望本篇对您学习有所帮助。

中考数学新定义型试题整理汇集8.定义:,,例如,,则等于分析:由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.解答:解:∵f=,∴g[f]=g=,故选A.点评:本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.6.对于非零的两个实数a、b,规定,若,则x的值为:【解析】本题考查的新运算的理解和应用以及分式方程的解法.根据得到.因为所以解得,经检验是原分式方程的解【答案】A【点评】本题考查的新运算的理解和应用以及分式方程的解法。

解决此类问题的关键是理清并运用“新概念”的含义,并能够运用新运算解决问题。

如本题的观念把转化为.23、)阅读材料:对于任何实数,我们规定符号ac bd的意义是ac bd=ad-bc.例如:=1×4-2×3=-2=×5-4×3=-22按照这个规定请你计算57 68的值;按照这个规定请你计算:当x2-4x+4=0时,的值.【分析】认真阅读材料,按照所给方法计算即可.【解答】………………4分由得………………8分【点评】解决这类问题的关键是正确领会所给运算,将其转化为常规运算求解.9.一列数a1,a2,a3,…,其中a1=12,an=11+an-1,则a4=【】解析:根据题目所给公式,可直接求出a2==,a3==,a4==,选A答案:A.点评:本题在于考察体验数列的变化规律以及学生基本的计算能力,解题时可根据题意逐步计算,难度中等.17.新定义:[a,b]为一次函数y=ax+b的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程+=1的解为__▲__.【解析】本题属于常见的“新定义”题型。

中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)

中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)

中考数学新定义创新型综合压轴问题【方法归纳】新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。

它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。

解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。

在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。

解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。

【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(−2,0),点Q为点P的“对应点”.①在图中画出点Q;OM;②连接PQ,交线段ON于点T.求证:NT=12(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(1<t<1),若P为⊙O外2一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O 的以点A为中心的“关联线段”是______________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC长.【真题再现】1.(2020·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2(2019·北京·中考真题)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE⌢上的所有点都在△ABC 的内部或边上,则称DE⌢为△ABC 的中内弧.例如,下图中DE ⌢是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点.画出△ABC 的最长的中内弧DE⌢,并直接写出此时DE ⌢的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE⌢所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE⌢,使得DE ⌢所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.3.(2018·北京·中考真题)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (−2,6),B (−2,−2),C (6,−2).(1)求d (点O ,△ABC );(2)记函数y =kx (−1≤x ≤1,k ≠0)的图象为图形G ,若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围. 4.(2017·北京·中考真题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0) 中,⊙O 的关联点是_______________. ②点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.5.(2016·北京·中考真题)在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.6.(2015·北京·中考真题)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.,0),T(1,√3)关于⊙O的反称点是否存在?若存在,求①分别判断点M(2,1),N(32其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;x+2√3与x轴、y轴分别交于点A,B,若(2)⊙C的圆心在x轴上,半径为1,直线y=﹣√33线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.7.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足348.(2013·北京·中考真题)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB=60°,则称P 为⊙C 的关联点.已知点D (,),E (0,-2),F (,0)(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是 ;②过点F 作直线交y 轴正半轴于点G ,使∠GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.【模拟精练】一、解答题1.(2022·北京朝阳二模)在平面直角坐标系xOy 中,⊙O 的半径为1,AB =1,且A ,B 两点中至少有一点在⊙O 外.给出如下定义:平移线段AB ,得到线段A ′B ′(A ′,B ′分别为点A ,B 的对应点),若线段A ′B ′上所有的点都在⊙O 的内部或⊙O 上,则线段AA ′长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图1,点A 1,B 1的坐标分别为(-3,0),(-2,0),线段A 1B 1到⊙O 的“平移距离”为___,点A 2,B 2的坐标分别为(-12,√3),(12,√3),线段A 2B 2到⊙O 的“平移距离”为___;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,√3),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).2.(2022·北京北京·二模)在平面直角坐标系xOy中,⊙O的半径为1.对于线段PQ给出如下定义:若线段PQ与⊙O有两个交点M,N,且PM=MN=NQ,则称线段PQ是⊙O的“倍弦线”.(1)如图,点A,B,C,D的横、纵坐标都是整数.在线段AB,AD,CB,CD中,⊙O的“倍弦线”是_____________;(2)⊙O的“倍弦线”PQ与直线x=2交于点E,求点E纵坐标y E的取值范围;(3)若⊙O的“倍弦线”PQ过点(1,0),直线y=x+b与线段PQ有公共点,直接写出b的取值范围.3.(2022·北京大兴·二模)在平面直角坐标系xOy中,对于点P和直线y=1,给出如下定义:若点P在直线y=1上,且以点P为顶点的角是45°,则称点P为直线y=1的“关联点”.(1)若在直线x=1上存在直线y=1的“关联点”P.则点P的坐标为_____;(2)过点P(2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y=1的“关联点”.则点P的横坐标a的取值范围是________.4.(2022·北京东城·二模)在平面直角坐标系xOy中,对于图形G及过定点P(3,0)的直线l,有如下定义:过图形G上任意一点Q作QH⊥l于点H,若QH+PH有最大值,那么称这个最大值为图形G关于直线l的最佳射影距离,记作d(G,l),此时点Q称为图形G关于直线l的最佳射影点.(1)如图1,已知A(2,2),B(3,3),写出线段AB关于x轴的最佳射影距离d(AB,x轴)=____________;(2)已知点C(3,2),⊙C的半径为√2,求⊙C关于x轴的最佳射影距离d(⊙C,x轴),并写出此时⊙C关于x轴的最佳射影点Q的坐标;(3)直接写出点D(0,√3)关于直线l的最佳射影距离d(点D,l)的最大值.5.(2022·北京·清华附中一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3);①设点O与线段AB上一点的距离为d,则d的最小值是______,最大值是______;,0),P2(1,4),P3(−3,0)这三个点中,与点O是线段AB的一对平衡点的是______.②在P1(32(2)如图2,已知⊙O的半径为1,点D的坐标为(5,0).若点E(x,2)在第一象限,且点D 与点E是⊙O的一对平衡点,求x的取值范围;(3)如图3,已知点H(−3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,⊙C是以点C为圆心,半径为2的圆,若HK上的任意两个点都是⊙C的一对平衡点,直接写出b的取值范围.6.(2022·北京丰台·一模)在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CP的值.OQ 7.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,√3),⊙C与y轴相切于点D,若⊙E的半径为3,圆心E在直线2l:y=−√3x+4√3上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.8.(2022·北京市第五中学分校模拟预测)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”,已知O(0,0),A(1,√2),B (m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2√2,n=√2时,如图1,线段BC与线段OA的“冰雪距离”是;②当m=2√2时,线段BC与线段OA的“冰雪距离”是√2,则n的取值范围是;(2)如图2,若点B落在圆心为A,半径为√2的圆上,当n≥√2时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为√2,线段BC的中点为M.直接写出点M随线段BC运动所走过的路径长.9.(2022·北京市师达中学模拟预测)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少..一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2√3)的圆为∠EMO的角内相切圆,直接写出∠EOM的取值范围.10.(2021·北京朝阳·二模)在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.(1)已知点N(2,0),在点M1(0,2√3),M2(1,√3),M3(2,3)中,对线段ON的可视度为360º的点是______.(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).①直接写出点E对四边形ABCD的可视度为______°;②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.11.(2022·北京四中模拟预测)在平面内,对点组A1,A2,...,An和点P给出如下定义:点P与点A1,A2,...,An的距离分别记作d1,d2,...,dn,数组d1,d2,...,dn的中位数称为点P对点组A1,A2,...,An的中位距离.例如,对点组A1(0,0),A2(0,3),A3(4,1)和点P(4,3),有d1=5,d2=4,d3=2,故点P对点组A1,A2,A3的中位距离为4.(1)设Z1(0,0),Z2(4,0),Z304),Y(0,3),直接写出点Y对点组Z1,Z2,Z3的中位距离;(2)设C1(0,0),C2(8,0),C3(6,6),则点Q1(7,3),Q2(3,3),Q3(4,0),Q4(4,2)中,对点组C1,C2,C3的中位距离最小的点是,该点对点组C1,C2,C3的中位距离为;(3)设M(1,0),N(0,√3),T1(t,0),T2(t+2,0),T3(t,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.12.(2020·北京·人大附中模拟预测)在平面直角坐标系xOy中,对于平面中的点P,Q和图形M,若图形M上存在一点C,使∠PQC=90°,则称点Q为点P关于图形M的“折转点”,称△PCQ为点P关于图形M的“折转三角形”(1)已知点A(4,0),B(2,0)①在点Q1(2,2),Q2(1,−√3),Q3(4,−1)中,点O关于点A的“折转点”是______;②点D在直线y=−x上,若点D是点O关于线段AB的“折转点”,求点D的横坐标x D的取值范围;(2)⊙T的圆心为(t,0),半径为3,直线y=x+2与x,y轴分别交于E,F两点,点P为⊙T 上一点,若线段EF上存在点P关于⊙T的“折转点”,且对应的“折转三角形”是底边长为2的等腰三角形,直接写出t的取值范围.13.(2020·北京市陈经纶中学分校三模)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(−12,0),P4(−12,−√32)中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABC D是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(−2,2),H(2,2),J(2,−2),K(−2,−2),一次函数y=√3x+b图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.14.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形G和点Q,给出如下定义:将图形G绕点Q顺时针旋转90°得到图形N,图形N称为图形G关于点Q的“垂直图形”,例如,图1中线段OD为线段OC关于点O的“垂直图形”.(1)线段MN关于点M(1,1)的“垂直图形”为线段MP.①若点N的坐标为(1,2),则点P的坐标为__________;②若点P的坐标为(4,1),则点N的坐标为__________;(2)E(−3,3),F(−2,3),H(a,0).线段EF关于点H的“垂直图形”记为E′F′,点E的对应点为E′,点的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的EE′的长度的最大值.15.(2022·北京丰台·xOy中,⊙O的半径为1,A为任意一点,B 为⊙O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把p+q的值称为点A与⊙O的“关联距离”,记作d(A,2⊙O)(1)如图,点D,E,F的横、纵坐标都是整数①d(D,⊙O)=__________;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=√3x+2√3上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为√10,直接写出m的最小值和最大值.16.(2022·北京平谷·二模)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.17.(2022·北京密云·二模)对于平面直角坐标系xOy中的点P(2,3)与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2,且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为______;⊙O关于点P的“宽距”为______.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上,且⊙C的半径为1.若线段DE上的任意一点K都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.18.(2022·北京门头沟·二模)我们规定:如图,点H在直线MN上,点P和点P′均在直线MN的上方,如果HP=HP′,∠PHM=∠P′HN,点P′就是点P关于直线MN的“反射点”,其中点H为“V点”,射线HP与射线HP′组成的图形为“V形”.在平面直角坐标系xOy中,(1)如果点P(0,3) ,H(1.5,0),那么点P关于x轴的反射点P′的坐标为;(2)已知点A(0,a) ,过点A作平行于x轴的直线l.①如果点B(5,3) 关于直线l的反射点B′和“V点”都在直线y=−x+4上,求点B′的坐标和a的值;②⊙W是以(3,2) 为圆心,1为半径的圆,如果某点关于直线l的反射点和“V点”都在直线y=−x+4上,且形成的“V形”恰好与⊙W有且只有两个交点,求a的取值范围.19.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.20.(2022·北京顺义·二模)在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”.(1)已知点A(5,0).①在点B1(−3,4),B2(1,5),B3(4,−3),B4(3,6)中,线段OA的“等距点”是______;②若点C在直线y=2x+5上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点D(1,0),点E(0,−1),图形W是以点T(t,0)为圆心,1为半径的⊙T位于x轴及x 轴上方的部分.若图形W上存在线段DE的“等距点”,直接写出t的取值范围.21.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)已知,点A(−4√2,2),B(2√2,2).①原点O到线段AB上一点的最大距离为_______,最小距离为_______;②当点C的坐标为(0,m)时,且△ABC的“全距”为4,求m的取值范围;(2)已知OM=7,等边△DEF的三个顶点均在半径为3的⊙M上.求△DEF的“全距”d的取值范围.22.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M、N 可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(√3,0),D(0,−1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为__________,最大值为__________;线段DP的取值范围是__________;②在点O,点D中,点__________与线段EC满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.23.(2022·北京昌平·二模)在平面直角坐标系xOy中,⊙O的半径为1,对于△ABC和直线l给出如下定义:若△ABC的一条边关于直线l的对称线段PQ是⊙O的弦,则称△ABC是⊙O 的关于直线l的“关联三角形”“关联轴”.(1)如图1,若△ABC是⊙O的关于直线l的“关联三角形”,请画出△ABC与⊙O的“关联轴”(至少画两条);(2)若△ABC中,点A坐标为(2,3),点B坐标为(4,1),点C在直线y=−x+3的图像上,存在“关联轴l”使△ABC是⊙O的关联三角形,求点C横坐标的取值范围;(3)已知A(√3,1),将点A向上平移2个单位得到点M,以M为圆心MA为半径画圆,B,C为⊙M 上的两点,且AB=2(点B在点A右侧),若△ABC与⊙O的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC最大时AC的长.24.(2022·北京市十一学校二模)对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(5,0),Q2(−2,4),Q3(9,5)中,________是点A的“直角点”;(2)已知点B(-4,4),C(3,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(m-1,0),E(m,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,求m的取值范围.25.(2022·北京通州·一模)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意―点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P 到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)如图,点A(−√3,1),B(√3,1).①原点O到线段AB上一点的最大距离为______,最小距离为______;②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d 的取值范围.26.(2022·北京石景山·一模)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x 轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T 有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.27.(2022·北京一七一中一模)已知平面直角坐标系xOy中,对于线段MN及P、Q,若∠MPN= 45°且线段MN关于点P的中心对称线段M′N′恰好经过点Q,则称Q是点P的线段MN−45°对经点.(1)设点A(0,2),①Q1(4,0),Q2(2,2),Q3(2+√7,1),其中为某点P的线段OA−45°对经点的是___________.②选出①中一个符合题意的点Q,则此时所对应的对称中心P的坐标为.③已知B(0,1),设⊙B的半径是r,若⊙B上存在某点P的线段OA−45°对经点,求r的取值范围.(2)已知C(0,t),D(0,−t)(t>0),若点Q(4,0)同时是相异两点P1,P2的线段CD−45°对经点,直接写出t的取值范围.28.(2022·北京大兴·一模)在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A 作直线MN.对于点A和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“______的值为______;关联直线”(填“双”或“单”);ACAD(2)如图2,点A为直线y=−3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.29.(2022·北京市燕山教研中心一模)对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ 的“等幂点”.(1)已知A(2,0).①在点P1(2,4),P2(1,2),P3(−4,1),P4(1,−4)中,线段OA的“等幂点”是____________;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,−1),点D在直线y=x−3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE 为锐角三角形,直接写出点D的横坐标x D的取值范围.30.(2022·北京平谷·一模)在平面直角坐标系xOy中,⊙O的半径为r,对于平面上任一点P,我们定义:若在⊙O上存在一点A,使得点P关于点A的对称点点B在⊙O内,我们就称点P为⊙O的友好点.(1)如图1,若r为1.①已知点P1(0,0),P2(﹣1,1),P3(2,0)中,是⊙O的友好点的是;②若点P(t,0)为⊙O的友好点,求t的取值范围;(2)已知M(0,3),N(3,0),线段MN上所有的点都是⊙O的友好点,求r取值范围.。

人教版2023中考专题复习 解答题压轴题新定义题型

人教版2023中考专题复习 解答题压轴题新定义题型

专题17 解答题压轴题新定义题型(原卷版)模块一 2022中考真题集训类型一 函数中的新定义问题1.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(13,13)是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x 图象的“2阶方点”. (1)在①(﹣2,−12);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y =1x 图象的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数y =ax ﹣3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =﹣(x ﹣n )2﹣2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.2.(2022•湘西州)定义:由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C 1:y =x 2+2x ﹣3与抛物线C 2:y =ax 2+2ax +c 组成一个开口向上的“月牙线”,抛物线C 1和抛物线C 2与x 轴有着相同的交点A (﹣3,0)、B (点B 在点A 右侧),与y 轴的交点分别为G 、H (0,﹣1).(1)求抛物线C 2的解析式和点G 的坐标.(2)点M 是x 轴下方抛物线C 1上的点,过点M 作MN ⊥x 轴于点N ,交抛物线C 2于点D ,求线段MN 与线段DM 的长度的比值.(3)如图②,点E 是点H 关于抛物线对称轴的对称点,连接EG ,在x 轴上是否存在点F ,使得△EFG 是以EG 为腰的等腰三角形?若存在,请求出点F 的坐标;若不存在,请说明理由.3.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=ab和k2=ba两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<√3,请直接写出a的取值范围.4.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.5.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|=;②min|−√14,﹣4|=.(2)如图,已知反比例函数y1=kx和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|kx,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.6.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc ≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.类型二几何图形中的新定义问题7.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则△ABC 和△A'B'C'是等高三角形.【性质探究】如图①,用S△ABC,S△A'B'C′分别表示△ABC和△A′B′C′的面积,则S△ABC=12BC•AD,S△A'B'C′=12B′C′•A′D′,∵AD=A′D′∴S△ABC:S△A'B'C′=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=;(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=,S△CDE=;(3)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=.8.(2022•北京)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移|a |个单位长度,再向上(b ≥0)或向下(b <0)平移|b |个单位长度,得到点P ′,点P ′关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上.若点P (﹣2,0),点Q 为点P 的“对应点”. ①在图中画出点Q ;②连接PQ ,交线段ON 于点T ,求证:NT =12OM ;(2)⊙O 的半径为1,M 是⊙O 上一点,点N 在线段OM 上,且ON =t (12<t <1),若P 为⊙O 外一点,点Q 为点P 的“对应点”,连接PQ .当点M 在⊙O 上运动时,直接写出PQ 长的最大值与最小值的差(用含t 的式子表示).模块二 2023中考押题预测9.(2023•义乌市校级模拟)定义:在平面直角坐标系中,有一条直线x =m ,对于任意一个函数,作该函数自变量大于m 的部分关于直线x =m 的轴对称图形,与原函数中自变量大于或等于m 的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x =m 的“镜面函数”.例如:图①是函数y =x +1的图象,则它关于直线x =0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为y ={x +1(x ≥0)−x +1(x <0),也可以写成y =|x |+1.(1)在图③中画出函数y =﹣2x +1关于直线x =1的“镜面函数”的图象.(2)函数y =x 2﹣2x +2关于直线x =﹣1的“镜面函数”与直线y =﹣x +m 有三个公共点,求m 的值.(3)已知A (﹣1,0),B (3,0),C (3,﹣2),D (﹣1,﹣2),函数y =x 2﹣2nx +2(n >0)关于直线x =0的“镜面函数”图象与矩形ABCD 的边恰好有4个交点,求n 的取值范围.10.(2023•秦皇岛一模)定义:如果二次函数y=a1x2+b1x+c1,(a1≠0,a1、b1、c1是常数)与y=a2x2+ b2x+c2a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函致互为“旋转函数”.例如:求函数y=2x2﹣3x+1的“旋转函数”,由函数y=2x2﹣3x+1可知,a1=2,b1=3,c1=1.根据a1+a2=0,b1=b2,c1+c2=0求出a2、b2、c2就能确定这个函数的“旋转函数”.请思考并解决下面问题:(1)写出函数y=x2﹣4x+3的“旋转函数”;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2023的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.11.(2022•滨海县校级三模)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”,例如,点(﹣1,1)是函数y=x+2的图象的“好点”.(1)在函数①y=﹣x+5,②y=6x,③y=x2+2x+1的图象上,存在“好点”的函数是(填序号).(2)设函数y=4x(x<0)与y=kx﹣1的图象的“好点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求k的值;(3)若将函数y=2x2+4x的图象在直线y=m下方的部分沿直线y=m翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m的值.12.(2022•婺城区模拟)定义:在平面直角坐标系中,对于任意一个函数,作该函数y轴右侧部分关于y 轴的轴对称图形,与原函数y轴的交点及y轴右侧部分共同构成一个新函数的图象,则这个新函数叫做原函数的“新生函数“例如:图①是函数y=x+l的图象,则它的“新生函数“的图象如图②所示,且它的“新生函数“的解析式为y={x+1(x≥0)−x+1(x<0),也可以写成y=|x|+1.(1)在图③中画出函数y=﹣2x+l的“新生函数“的图象.(2)函数y=x2﹣2x+2的“新生函数“与直线y=﹣x+m有三个公共点,求m的值.(3)已知A(﹣1,0),B(3,0),C(3,﹣2),D(﹣1,﹣2),函数y=x2﹣2nx+2(n>0)的“新生函数“图象与矩形ABCD的边恰好有4个交点,求n的取值范围.13.(2022•宁南县模拟)新定义:在平面直角坐标系xOy中,若一条直线与二次函数图象抛物线有且仅有一个公共点,且抛物线位于这条直线同侧,则称该直线与此抛物线相切,公共点为切点.现有一次函数y=﹣4x﹣1与二次函数y=x2+mx图象相切于第二象限的点A.(1)求二次函数的解析式及切点A的坐标;(2)当0<x<3时,求二次函数函数值的取值范围;(3)记二次函数图象与x轴正半轴交于点B,问在抛物线上是否存在点C(异于A)使∠OBC=∠OBA,若有则求出C坐标,若无则说明理由.14.(2022•天宁区校级二模)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(t,0)与(t+6,0).对于坐标平面内的一动点P,给出如下定义:若∠APB=45°,则称点P为线段AB的“等角点”.(1)当t=1时,①若点P为线段AB在第一象限的“等角点”,且在直线x=4上,则点P的坐标为;②若点P为线段AB的“等角点”,并且在y轴上,则点P的坐标为;(2)已知直线y=﹣0.5x+4上总存在线段AB的“等角点”,则t的范围是.15.(2022•零陵区模拟)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的“旋转函数”.小组同学是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y=x2﹣4x+3的“旋转函数”是;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2022的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试求证:经过点A1,B1,C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.16.(2022•甘井子区校级模拟)定义:将函数C1的图象绕点P(m,0)旋转180o,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数.例如:当m=1时,函数y=(x﹣3)2+9关于点P(1,0)的相关函数为y=﹣(x+1)2﹣9.(1)当m=0时,①一次函数y=﹣x+7关于点P的相关函数为.②点A(5,﹣6)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣2)2+6关于点P的相关函数是y=﹣(x﹣10)2﹣6,则m=.(3)当m﹣1≤x≤m+2时,函数y=x2﹣6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.17.(2022•庐阳区校级三模)定义:对于给定的两个函数,任取自变量x的一个值;当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为关联函数.例如:一次函数y=x﹣1,它的关联函数为y={−x+1(x<0)x−1(x≥0).已知二次函数y=﹣x2+4x−12.(1)当第二象限点B(m,32)在这个函数的关联函数的图象上时,求m的值;(2)当﹣3≤x≤﹣1时求函数y=﹣x2+4x−12的关联函数的最大值和最小值.18.(2022•江都区二模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“梅岭点”.(1)若点P (3,p )是一次函数y =mx +6的图象上的“梅岭点”,则m = ; 若点P (m ,m )是函数y =3x−2的图象上的“梅岭点”,则m = ;(2)若点P (p ,﹣2)是二次函数y =x 2+bx +c 的图象上唯一的“梅岭点”,求这个二次函数的表达式; (3)若二次函数y =ax 2+bx +c (a ,b 是常数,a >0)的图象过点(0,2),且图象上存在两个不同的“梅岭点”A (x 1,x 1),B (x 2,x 2),且满足﹣1<x 1<1,|x 1﹣x 2|=2,如果k =﹣b 2+2b +2,请直接写出k 的取值范围.19.(2022•海淀区校级模拟)在平面直角坐标系xOy 中,⊙O 的半径为1,对于线段AB ,给出如下定义:若将线段AB 沿着某条直线l 对称可以得到⊙O 的弦A ′B ′(A ′,B ′分别为A ,B 的对应点),则称线段AB 是⊙O 的以直线l 为对称轴的对称的“反射线段”,直线l 称为“反射轴”.(1)如图1,线段CD 、EF 、GH 中是⊙O 的以直线l 为对称轴的“反射线段”有 ;(2)已知A 点的坐标为(0,2),B 点坐标为(1,1).①如图2,若线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,画出图形,反射轴l 与y 轴的交点M 的坐标是 .②若将“反射线段”AB 沿直线y =x 的方向向上平移一段距离S ,其反射轴l 与y 轴的交点的纵坐标y M 的取值范围为12≤y M ≤136,求S 的取值范围.(3)已知点M 、N 是在以(2,0)为圆心,半径为√13的圆上的两个动点,且满足MN =√2,若MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,反射轴l 与y 轴的交点的纵坐标的取值范围是 .20.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.21.(2022•寻乌县二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,∠B=∠C,则四边形ABCD为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形得是.①平行四边形②矩形③菱形④等腰梯形(2)深入探究:①已知四边形ABCD为“等邻角四边形”,且∠A=120°,∠B=100°,则∠D=°.②如图②,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC,求证:四边形ABDE为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD中,∠B=∠C,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,PM+PN的值是否会发生变化?请说明理由.22.(2022•东胜区二模)【概念理解】定义:我们把对角线互相垂直的四边形叫做垂美四边形如图①.我们学习过的四边形中是垂美四边形的是;(写出一种即可)【性质探究】利用图①,垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系是;【性质应用】(1)如图②,在△ABC中,BC=6,AC=8,D,E分别是AB,BC的中点,连接AE,CD,若AE⊥CD,则AB的长为;(2)如图③,等腰Rt△BCE和等腰Rt△ADE中,∠BEC=∠AED=90°,AC与BD交于O点,BD与CE交于点F,AC与DE交于点G.若BE=6,AE=8,AB=12,求CD的长;【拓展应用】如图④,在▱ABCD中,点E、F、G分别是AD、AB、CD的中点,EF⊥CF,AD=6,AB =8,求BG的长.23.(2022•修水县一模)定义:有一组对角互补的四边形叫做“对补四边形”.例如:在四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.概念理解.(1)如图1,已知四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D的度数为;②若∠B=90°,且AB=3,AD=2,则CD2﹣CB2=.拓展延伸.(2)如图2,已知四边形ABCD是“对补四边形”.当AB=CB,且∠EBF=12∠ABC时,试猜想AE,CF,EF之间的数量关系,并证明.24.(2022•盐城一模)对于平面内的两点K、L,作出如下定义:若点Q是点L绕点K旋转所得到的点,则称点Q是点L关于点K的旋转点;若旋转角小于90°,则称点Q是点L关于点K的锐角旋转点.如图1,点Q是点L关于点K的锐角旋转点.(1)已知点A(4,0),在点Q1(0,4),Q2(2,2√3),Q3(﹣2,2√3),Q4(2√2,﹣2√2)中,是点A关于点O的锐角旋转点的是.(2)已知点B(5,0),点C在直线y=2x+b上,若点C是点B关于点O的锐角旋转点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣3,0),点F(m,n)是以D为圆心,3为半径的圆上一个动点,且满足n≥0.若直线y=2x+6上存在点F关于点E的锐角旋转点,请直接写出t的取值范围.25.(2022•寿阳县模拟)所谓“新定义”试题指给出一个从未接触过的新规定,源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等.在解决它们的过程中又可产生了许多新方法、新观念,增强了学生创新意识.主要包括以下类型:①概念的“新定义”;②运算的“新定义”;③新规则的“新定义”;④实验操作的“新定义”;⑤几何图形的新定义.如果我们新定义一种四边形:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,请你利用所学知识求出∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA 于点E,连接DE并延长交AC于点F,若∠AFE=2∠EAF.请你判断四边形DBCF是不是半对角四边形?并说明理由.26.(2022•泗洪三模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)选择:下列四边形中,一定是圆美四边形的是A.平行四边形B.矩形C.菱形D.正方形(2)如图1,在等腰Rt△ABC中,∠BAC=90°,AB=1,经过点A,B的⊙O交AC边于点D,交BC 于点E,连接DE,若四边形ABED为圆美四边形,求DE的长;(3)如图2,AD是△ABC外接圆⊙O的直径,交BC于点E,点P在AD上,延长BP交⊙O于点F,已知PB2=PE•P A.问四边形ABFC是圆美四边形吗?为什么?27.(2022•淮阴区校级一模)定义:在平行四边形中,若有一条对角线长是一边长的两倍,则称这个平行四边形叫做和谐四边形,其中这条对角线叫做和谐对角线,这条边叫做和谐边.【概念理解】(1)如图1,四边形ABCD是和谐四边形,对角线AC与BD交于点G,BD是和谐对角线,AD是和谐边.①△ADG与△BCG的形状是三角形.②若AD=4,则BD=.【问题探究】(2)如图2,四边形ABCD是矩形,过点B作BE∥AC交DC的延长线于点E,连接AE交BC于点F,AD=4,AB=k.①当k=2时,请说明四边形ABEC是和谐四边形;②是否存在值k,使得四边形ABCD是和谐四边形,若存在,求出k的值,若不存在,请说明理由.【应用拓展】(3)如图3,四边形ABCD与四边形ABEC都是和谐四边形,其中BD与AE分别是和谐对角线,AD与AC分别是和谐边,AB=4,AD=k,请直接写出k的值.28.(2022•亭湖区校级模拟)问题:A4纸给我们矩形的印象,这个矩形是特殊矩形吗?思考:通过度量、上网查阅资料,小丽同学发现A4纸的长与宽的比是一个特殊值“√2”定义:如图1,点C把线段AB分成两部分,如果ACBC=√2,那么点C为线段AB的“白银分割点”如图2,矩形ABCD中,BCAB=√2,那么矩形ABCD叫做白银矩形.应用:(1)如图3,矩形ABCD是白银矩形,AD>AB,将矩形沿着EF对折,求证:矩形ABFE也是白银矩形.(2)如图4,矩形ABCD中,AB=1,BC=√2,E为CD上一点,将矩形ABCD沿BE折叠,使得点C 落在AD边上的点F处,延长BF交CD的延长线于点G,说明点E为线段GC的”白银分制点”.(3)已知线段AB(如图5),作线段AB的一个“白银分割点”.(要求:尺规作图,保留作图痕迹,不写作法)29.(2022•盐田区二模)定义:将图形M绕点P顺时针旋转90°得到图形N,则图形N称为图形M关于点P的“垂直图形”.例如:在图中,点D为点C关于点P的“垂直图形”.(1)点A关于原点O的“垂直图形”为点B.①若点A的坐标为(0,2),直接写出点B的坐标;②若点B的坐标为(2,1),直接写出点A的坐标;(2)已知E(﹣3,3),F(﹣2,3),G(a,0).线段EF关于点G的“垂直图形”记为E'F',点E的对应点为E',点F的对应点为F'.①求点E'的坐标;②当点G运动时,求FF'的最小值.30.(2022•高新区校级二模)在数学课上,当老师讲到直线与圆的位置关系时,张明同学突发奇想,特殊线与圆在不同的位置情况下会有怎样的数量关系呢?于是在课下他查阅了老师推荐他的《几何原本》,这本书是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.其中第三卷命题36﹣2圆幂定理(切割线定理)内容如下:切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(比例中项的定义:如果a、b、c三个量成连比例即a:b=b:c,则b叫做a和c的比例中项)(1)为了说明材料中定理的正确性,需要对其进行证明,下面已经写了不完整的“已知”和“求证”,请补充完整,并写出证明过程.已知:如图,A是圆O外一点,AB是圆O的切线,直线ACD为圆O的割线.求证:证明:(2)如图,已知AC=2,CD=4,则AB的长度是.31.(2022•江北区模拟)定义:若连结三角形一个顶点及其对边上一点的线段将该三角形分割成的两个小三角形中,有一个与原三角形相似,则称该线段为三角形的相似分割线;若分割成的两个小三角形都与原三角形相似,则称该线段为全相似分割线.(1)如图1,在△ABC中,∠ABC为钝角,相似分割线AD是BC边上的中线,求证:BC=√2AB.(2)如图2,在△ABC中,AD是△ABC的全相似分割线,求证:1AD2=1AB2+1AC2;(3)在△ABC中,AD是△ABC的全相似分割线,将△BAD绕B点顺时针旋转,D点旋转到E点,A点旋转到F点,当旋转到如图3的位置时,E,F,C三点共线,BF恰好是△BEC的相似分割线,求CDBD值.32.(2022•巢湖市二模)定义:如果一个三角形中有一个角是另一个角的2倍,那么我们称这样的三角形为倍角三角形.根据上述定义可知倍角三角形中有一个角是另一个角的2倍,所以我们就可以通过作出其中的2倍角的角平分线,得出一对相似三角形,再利用我们学过的相似三角形的性质解决相关问题.请通过这种方法解答下列问题:(1)如图1,△ABC中,AD是角平分线,且AB2=BD•BC,求证:△ABC是倍角三角形;(2)如图2,已知△ABC是倍角三角形,且∠A=2∠C,AB=8,BC=10,求AC的长;(3)如图3,已知△ABC中,∠A=3∠C,AB=8,BC=10,求AC的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年全国各地中考数学试卷分类汇编专项8 新定义型以及高中知识渗透型问题8.(2012贵州六盘水,8,3分)定义:(,)(,)f a b b a =,(,)(,)g m n m n =--,例如(2,3)(3,2)f =,(1,4)(1,4)g --=,则((5,6))g f -等于( ▲ )A .(6,5)-B .(5,6)--C .(6,5)-3D .(5,6)-分析:由题意应先进行f 方式的运算,再进行g 方式的运算,注意运算顺序及坐标的符号变化.解答:解:∵f (﹣5,6)=(6,﹣5),∴g[f(﹣5,6)]=g (6,﹣5)=(-6,5),故选A .点评:本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.6. (2012山东莱芜, 6,3分)对于非零的两个实数a 、b ,规定ab b a 11-=⊕,若()1122=-⊕x ,则x 的值为:A .65 B . 45 C . 23 D .61- 【解析】本题考查的新运算的理解和应用以及分式方程的解法. 根据ab b a 11-=⊕得到 ()21121122--=-⊕x x .因为()1122=-⊕x 所以121121=--x 解得65=x ,经检验65=x是原分式方程的解 【答案】A【点评】本题考查的新运算的理解和应用以及分式方程的解法。

解决此类问题的关键是理清并运用“新概念”的含义,并能够运用新运算解决问题。

如本题的观念把()1122=-⊕x 转化为121121=--x . 23、((2012·湖南省张家界市·23题·8分))阅读材料:对于任何实数,我们规定符号⎪⎪⎪ a c⎪⎪⎪b d 的意义是⎪⎪⎪ ac⎪⎪⎪b d =ad -bc . 例如:31 42=1×4-2×3=-2 32- 54=(-2)×5-4×3=-22(1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值;(2)按照这个规定请你计算:当x 2-4x +4=0时,11-+x x 322-x x的值. 【分析】认真阅读材料,按照所给方法计算即可. 【解答】(1)758626785-=⨯-⨯= ………………4分(2)由0442=+-x x 得2=x11-+x x 322-x x 13= 1411413-=⨯-⨯= ………………8分 【点评】解决这类问题的关键是正确领会所给运算,将其转化为常规运算求解. 9.(2012湖北武汉,9,3分)一列数a 1,a 2,a 3,…,其中a 1= 1 2,a n = 11+a n -1 (n 为不小于2的整数),则a 4=【 】A . 5 8B . 8 5C . 13 8D . 813解析:根据题目所给公式,可直接求出a 2=2111+=32,a 3=3211+=53, a 4=5311+=85,选A答案:A.点评:本题在于考察体验数列的变化规律以及学生基本的计算能力,解题时可根据题意逐步计算,难度中等.17.(2012湖北荆州,17,3分)新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程11x -+1m=1的解为__▲__. 【解析】本题属于常见的“新定义”题型。

根据题目的信息得02,1=-=m a ,所以2=m . 原方程可以化为11x -+21=1,所以11x -=21,所以21=-x ,所以x =3。

经检验,x =3是原分式方程的解. 【答案】x =3【点评】解决“新定义”题型,关键在于理解题目的新定义并运用新定义。

本题巧妙的结合了函数和分式方程,考察全面。

(2012陕西24,10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.【解析】(1)因为抛物线的顶点必在它与x 轴两个交点连线段的中垂线上,所以“抛物线三角形”一定是等腰三角形.(2)由条件得抛物线的顶点在第一象限,用b 的代数式表示出顶点坐标,当“抛物线三角形”是等腰直角三角形时,顶点的横纵坐标相等,列出方程求出b. (3)由题意若存在,则△OAB 为等边三角形,同(2)的办法求出'b .求出A 、B 两点坐标后得到C 、D 两点坐标,再由待定系数法求解.【答案】解:(1)等腰(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b .∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形.又∵=AO AB ,∴△OAB 为等边三角形.作AE OB ⊥,垂足为E .∴=AE .∴()2'''>042b b b .∴b∴)A,()B .∴()C,()D . 设过点O C D 、、三点的抛物线2=+y mx nx ,则12=03=-3.m m ⎧⎪⎨⎪⎩,解之,得=1m n ⎧⎪⎨⎪⎩,∴所求抛物线的表达式为2=y x .【点评】本题是一道二次函数和三角形、四边形的综合题.采用“新定义”的形式,综合考查二次函数的性质及其解析式的确定、等腰三角形的性质和判定、矩形的性质和判定等知识,计算难道不小,综合难度稍大.27.(2012南京市,27,10)如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A,B 重合),我们称∠APB 是⊙O 上关于A 、B 的滑动角. (1)已知∠APB 是⊙O 上关于A 、B 的滑动角.①若AB 是⊙O 的直径,则∠APB= ;②若⊙O 的半径是1,AB=2,求∠APB 的度数.(2)已知O 2是⊙O 1外一点,以O 2为圆心做一个圆与⊙O 1相交于A 、B 两点,∠APB 是⊙O 1上关于A 、B 的滑动角,直线PA 、PB 分别交⊙O 2于点M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系. 解析:题目中的滑动角就是弦AB 所对的圆周角,则∠APB=21∠AOB, 求得角度;答案:(1)①∵AB 是⊙O 的直径,∴∠APB=900. ②∵OA=OB=1, AB=2∴OA 2+OB 2=1+1=2=AB2∴△AOB 是直角三角形∴∠AOB=900. ∴∠APB=21∠AOB=450(2)当P 在优弧AB 上时,如图1,这时∠MAN 是△PAN 的外角,因而∠APB=∠MAN-∠ANB ;当P 在劣弧AB 上时,如图2,这时∠APB 是△PAN 的外角,因而∠APB=∠MAN+∠ANB ;点评:本题以新概念入手,有一种新BAPN意,但其知识点就是圆周角与圆心角之间的关系,只是说法不同而已,还用到直径所对圆周角为直角,勾股定理等知识;第二问主要看考生能否周全考虑,自己要画出图形来帮助分析,结合图形很容易得到正确结论.专项十三 新定义型与高中知识渗透型问题(43)7.(2012湖南湘潭,7,3分)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小,若输入7,则输出的结果为 A. 5 B. 6 C. 7 D. 8【解析】输入一个数后,输出的数比输入的数的平方小,若输入7,61)7(2=-,则输出的结果为6。

【答案】选B 。

【点评】新的运算程序,要求按程序进行运算。

9.(2012湖北随州,9,3分)定义:平面内的直线1l 与2l 相较于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”。

根据上述定义,距离坐标为(2,3)的点的个数是( )A .2B .1C .4D .3 解析:根据定义,“距离坐标”是(1,2)的点,说明M 到直线l1和l2的距离分别是1和2,这样的点在平面被直线l1和l2的四个区域,各有一个点,即可求出答案.答案:C点评:此题考查了坐标确定位置;解题的关键是要注意两条直线相交时有四个区域。

解答此类新定义类问题,关键是要理解题意,根据新定义来解决问题.13.(2012山东省荷泽市,13,3)将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线段记成a b c d ,定义a b c d =ad-bc ,上述记号就叫做二阶行列式,若1111x x x x +--+=8,则x=_____.【解析】由题意得,(x+1)2-(1-x)2=8,整理,得4x=8,所以x=2.【答案】2【点评】由题目中所提供的条件,把问题转化为完全平方公式及方程,通过解方程求未知数的值.1. (2012年四川省德阳市,第7题、3分.)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c ,d 对应密文,b a 2+,c b +2,d c 32+,d 4.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 A. 4,6,1,7 B. 4,1,6,7 C.6,4,1,7 D.1,6,4,7【解析】根据对应关系,4d=28可以求得d=7;代入2c+3d=23得c=1;在代入2b+c=9得b=4;代入a+2b=14得a=6. 【答案】C. 【点评】本题的实质是考查多元方程组的解法.从简单的一元一次方程入手,通过代入消元,求出各个未知量,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.21. (2012浙江省绍兴,21,10分)联想三角形外心的概念,我们可引入如下概念:定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA =PB ,则点P 为△ABC 的准外心. 应用:如图2,CD 为等边三角形ABC 的高,准外心P 在高CD上,且PD =AB 21,求∠APB 的度数. 探究:已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P在AC 边上,试探究PA 的长.【解析】应用:先根据准外心的概念可知,等边三角形的准外心位置应分三种不同的情况来分析:①PB=PC ;②PA=PC ;③PA=PB ,经过计算按来确定哪种情况符合题意,然后在符合题意的条件下求出∠APB 的度数;探究:先根据准外心的概念可知,直角三角形的准外心位置应分三种不同的情况来分析:①PB=PC ;②PA=PC ;③PA=PB ,经过计算按来确定哪种情况符合题意,然后在符合题意的条件下求出AP 的长.【答案】应用:解:若PB =PC ,连结PB ,则∠PCB =∠PBC .∵CD 为等边三角形的高. ∴AD =BD ,∠PCB =30°,∴∠PBD =∠PBC =30°,∴PD =33DB =63AB. 与已知PD =21AB 矛盾,∴PB ≠PC . 若PA =PC ,连结PA ,同理可得PA ≠PC . 若PA =PB ,由PD =21AB ,得PD =BD ,∴∠ADB =60°. 故∠APB =90°.探究:解:若PB =PC ,设PA =x ,则 ∴x =87,即PA =87. 若PA =PC ,则PA =2.若PA =PB ,由图知,在Rt △PAB 中,不可能, 故PA =2或87. 【点评】这事一道新概念试题,解答本题的关键是理解新概念的含义,然后结合有关图形性质分情况进行计算验证.。

相关文档
最新文档