实数和二次根式知识点梳理
八年级数学实数之二次根式知识点总结

一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。
例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。
② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。
③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。
④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。
注:对于商的算术平方根,最后结果一定要进行分母有理化。
⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。
⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。
判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。
⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。
二次根式知识点总结

二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。
以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。
•平方性:对于任何非负实数a,(√a)2=a。
•唯一性:每个非负实数都有唯一的平方根。
2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。
下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。
•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。
•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。
•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。
3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。
以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。
•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。
•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。
•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。
4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。
以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。
•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。
5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。
以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。
(中考数学)实数与二次根式(知识点梳理)(记诵版)

第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。
2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。
3.平方根的性质:若a x =2,那么a x =-2)(,则x -也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。
二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。
2.算术平方根的表示方法:正数a 的算术平方根可记作a ,读作:根号a 。
3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。
一个正数a 的正的平方根就是它的算术平方根。
三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。
开平方运算是已知指数和幂求底数。
2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。
3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。
考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a的立方根(或三次方根)。
2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。
3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。
5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。
二次根式知识点总结

二次根式知识点总结二次根式是数学中的一种常见的根式表达式,它可以表示为$\sqrt{a}$ 的形式,其中 $a$ 是一个非负实数。
在学习二次根式时,常常会涉及到以下几个方面的知识点。
一、二次根式的性质:1. 非负性:对于任何非负实数 $a$,二次根式 $\sqrt{a}$ 都是非负实数。
2. 平方性:相对应的,对于任何非负实数 $a$,二次根式$\sqrt{a}$ 的平方等于 $a$,即 $(\sqrt{a})^2=a$。
3. 两个二次根式可以相等:如果两个二次根式 $\sqrt{a}$ 和$\sqrt{b}$ 相等,那么 $a$ 和 $b$ 必须相等,即$\sqrt{a}=\sqrt{b}$ 可推出 $a=b$。
二、二次根式的运算:1. 加减运算:两个二次根式可以进行加减运算,只要它们的被开方数相同即可。
即 $\sqrt{a} \pm \sqrt{b}=\sqrt{a \pm b}$。
2. 乘法运算:两个二次根式相乘,可以将它们的被开方数相乘并开方。
即 $\sqrt{a} \cdot \sqrt{b}=\sqrt{ab}$。
3. 除法运算:两个二次根式相除,可以将它们的被开方数相除并开方。
即 $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$。
4. 有理化分母:当二次根式的分母不含二次根式时,可以通过有理化分母的方法将其转化为含有二次根式的形式。
有理化分母的基本方法是将分母有理化,即乘以一个适当的形式为 $\sqrt{x}$ 的分子与分母相等的有理数,从而使得分母成为没有二次根式的有理数。
三、二次根式的化简:1.合并同类项:当二次根式相加或相减时,可以合并同类项,即将其中具有相同被开方数的二次根式相加或相减,并保持其他二次根式不变。
2.分解因式:当一个二次根式的被开方数可以分解成互质因子的乘积时,可以利用分解因式的方法进行化简。
3.化简根式:当二次根式的被开方数可以开方时,可以进行化简,即将其转化为整数、分数或者更简单的二次根式的形式。
二次根式知识点

二次根式知识点二次根式是初中数学中一个重要的知识点。
在学习二次根式之前,我们首先来了解一下根式的定义。
一、根式的概念根式是代表求根运算的一种表示方法。
其中,被开方数叫做被开方数,开方的次数叫做指数,开方的运算叫做根号运算。
开方的基本性质有三个:非负性、唯一性、封闭性。
1. 非负性:对于任意的实数a,当a≥0时,a的平方根存在且唯一。
2. 唯一性:对于任意的实数a,其平方根是唯一的。
3. 封闭性:平方根的运算封闭在非负实数集合内。
二、二次根式的定义二次根式是指指数为2的根式,也即平方根。
如果a≥0,那么二次根式√a就是等于非负实数b的平方根。
例如,√9 = 3,√16 = 4,√25 = 5等。
三、二次根式的化简在计算二次根式时,有时需要对二次根式进行化简。
化简的目的是为了得到最简形式的二次根式。
二次根式的化简原则如下:1. 提出因式:如果二次根式中有完全平方因子,可以将其提出根号外部。
2. 合并同类项:如果根式中有相同的根号,则可以将其合并并进行运算。
3. 分解质因数:如果根式中的被开方数可以分解为质因数的乘积,那么可以在根号内部进行分解。
化简二次根式的过程需要掌握一定的分解质因数的技巧,并且需要熟练掌握平方数的求法。
四、二次根式的运算规则在二次根式的运算过程中,需要掌握以下几个基本的运算规则。
1. 加减运算:二次根式之间可以进行加减运算,但要求被开方数、指数相同。
2. 乘法运算:二次根式之间可以进行乘法运算,运算后仍然是二次根式。
3. 除法运算:二次根式之间可以进行除法运算,运算后仍然是二次根式。
4. 有理化:如果二次根式中含有分母,可以通过有理化的方法将其变为无理数的形式。
掌握了这些运算规则,我们可以在计算中利用它们进行简化和优化,使得计算更加方便和高效。
五、二次根式的应用二次根式在数学中有广泛应用,在解决实际问题时也经常会用到。
1. 几何应用:在几何中,二次根式常常用来表示长度、距离等概念。
(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
八年级数学知识点梳理

八年级数学知识点梳理一、数与式1.实数•实数的概念:理解实数包括有理数和无理数,其中无理数不能表示为两个整数的商。
•实数的性质:掌握实数的四则运算性质,了解实数的顺序关系,会进行实数的大小比较。
•实数的运算:熟练进行实数的加、减、乘、除四则运算,理解运算顺序(先乘除后加减,同级运算从左到右)。
2.二次根式•二次根式的概念:理解二次根式是形如√a(a≥0)的数学表达式,知道它表示a的非负平方根。
•二次根式的性质:掌握二次根式的性质,如√a² = |a|,√ab = √a * √b(a≥0, b≥0)等。
•二次根式的运算:学会进行二次根式的加、减、乘、除运算,理解运算规则。
3.分式•分式的概念:理解分式是两个整式的商,其中分母不为零。
•分式的基本性质:掌握分式的基本性质,如分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
•分式的运算:熟练进行分式的加、减、乘、除运算,理解运算顺序和运算法则。
二、方程与不等式1.一元二次方程•一元二次方程的概念:理解一元二次方程是只含有一个未知数,且未知数的最高次数为2的方程。
•一元二次方程的解法:学习一元二次方程的解法,如因式分解法、配方法、公式法等。
•一元二次方程的应用:理解一元二次方程在实际问题中的应用,如面积、速度、时间等问题。
2.分式方程•分式方程的概念:理解分式方程是含有分式的方程。
•分式方程的解法:学习分式方程的解法,如去分母法、换元法等。
•分式方程的应用:理解分式方程在实际问题中的应用,如比例、百分比等问题。
3.不等式与不等式组•不等式的概念:理解不等式是表示两个数之间大小关系的数学式子,用不等号连接。
•一元一次不等式的解法:学习一元一次不等式的解法,包括移项、合并同类项、化系数为1等步骤。
•不等式组:理解不等式组是由几个一元一次不等式组成的,学习不等式组的解法。
三、函数及其图像1.函数的概念•函数的定义:理解函数是一种特殊的对应关系,其中每一个输入值(自变量)只对应一个输出值(因变量)。
二次根式知识点归纳

二次根式知识点归纳二次根式是数学中的一个重要概念,也是我们在中学阶段学习的数学知识之一、学好二次根式的知识,不仅可以提高我们的数学实力,还能够帮助我们更好地理解和应用数学。
下面是对二次根式的知识点进行归纳总结。
一、二次根式的定义与性质1.二次根式的定义:如果一个数x的平方等于一个有理数a,那么称x是a的二次根,记作√a=x。
其中,a是被开方数,x是二次根。
2.二次根式的性质:二次根式具有以下基本性质:-非负性:对于所有的a≥0,√a≥0。
-唯一性:对于任意一个正数a,二次根√a是唯一确定的。
-传递性:对于任意的a≥0和b≥0,如果√a=√b,那么a=b。
-加减性:对于任意的a≥0和b≥0,有√a±√b=√(a±b)。
-乘除性:对于任意的a≥0和b≥0,有√(a×b)=√a×√b,√(a/b)=√a/√b(其中,b不为零)。
二、二次根式的化简1.因式分解法:将二次根式的被开方数进行因式分解,然后利用乘除性质化简。
2.合并同类项法:将二次根式中相同的根号项合并,然后根据加减性质化简。
三、二次根式的比较大小1.当被开方数相同时,二次根式相等,即√a=√b,当且仅当a=b。
2.当被开方数不同时,可以通过平方的方式来比较大小。
即对于a≥b≥0,有√a≥√b。
四、二次根式的运算1.加减运算:对于任意的a≥0和b≥0,可以进行二次根式的加减运算。
-加法:√a+√b=√(a+b)。
-减法:√a-√b=√(a-b)(需要满足a≥b)。
2.乘法运算:对于任意的a≥0和b≥0,可以进行二次根式的乘法运算。
-乘法:√a×√b=√(a×b)。
3.除法运算:对于任意的a≥0和b>0,可以进行二次根式的除法运算。
-除法:√a/√b=√(a/b)(需要满足b≠0)。
五、二次根式的应用二次根式在实际问题中的应用非常广泛1.几何问题:二次根式可以用来表示长度、面积、体积等物理量,例如计算一个正方形的对角线长度、一个圆的半径等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数和二次根式知识点梳理
1.平方根的定义:若x2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:
(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算.
2.平方根的性质:
(1)正数的平方根是一对相反数;
(2)0的平方根还是0;
(3)负数没有平方根.
3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.
4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0.
5.三个重要非负数: a2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0.
6.两个重要公式:
(1) ()
a a 2=; (a ≥0)
(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .
7.立方根的定义:若x3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:
(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方.
8.立方根的性质:
(1)正数的立方根是一个正数;
(2)0的立方根还是0;
(3)负数的立方根是一个负数.
9.立方根的特性:33a a -=-.
10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数.
11.实数:有理数和无理数统称实数.
12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)
⎪⎩⎪⎨⎧负实数正实数实数0
.
13.数轴的性质:数轴上的点与实数一一对应.
14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.。