实数和二次根式的基本概念解析

合集下载

(中考数学)实数与二次根式(知识点梳理)(记诵版)

(中考数学)实数与二次根式(知识点梳理)(记诵版)

第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。

2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。

3.平方根的性质:若a x =2,那么a x =-2)(,则x -也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。

二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。

2.算术平方根的表示方法:正数a 的算术平方根可记作a ,读作:根号a 。

3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。

一个正数a 的正的平方根就是它的算术平方根。

三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。

开平方运算是已知指数和幂求底数。

2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。

3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。

考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a的立方根(或三次方根)。

2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。

3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。

5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。

二次根式与实数之间的关系

二次根式与实数之间的关系

二次根式与实数之间的关系根据数学的定义,二次根式是指一个数的平方根,表示为√a,其中a为非负实数。

实数是对现实生活中的数量进行抽象的数学概念,包括有理数和无理数。

二次根式与实数之间存在着密切的关系,本文将探讨这种关系。

1. 二次根式的定义二次根式是指一个实数的平方根。

对于非负实数a,√a表示a的正平方根,即满足b² = a的实数b。

例如,√4 = 2,因为2² = 4。

二次根式可以表示为分数形式或小数形式,如√9 = 3,或√2 ≈ 1.414。

2. 二次根式的性质二次根式具有一些重要的性质,这些性质与实数之间的关系密切相关:- 非负实数的二次根式均为实数。

例如,√9 = 3是一个实数。

- 负实数没有实数的二次根式。

例如,对于-9来说,不存在一个实数b,使得b² = -9。

- 实数的二次根式满足乘法性质。

即若a和b都是非负实数,则√(ab) = √a × √b。

3. 二次根式与有理数的关系有理数是可以表示为两个整数的比值的数,包括整数、分数和小数(有限小数和循环小数)。

二次根式与有理数之间的关系如下:- 若一个非负实数的平方是一个有理数,那么它的二次根式就是一个有理数。

例如,√4 = 2,4是一个有理数,因此2也是一个有理数。

- 若一个非负实数的平方不是一个有理数,那么它的二次根式就是一个无理数。

例如,√2是一个无理数,因为2的平方不是一个有理数。

4. 二次根式与无理数的关系无理数是不能表示为两个整数的比值的数,包括无理代数数和无理超越数。

二次根式与无理数之间的关系如下:- 像√2、√3这样的二次根式是无理数。

它们无法用有限小数或循环小数形式表示。

- 无理数的二次根式仍然是无理数。

例如,√(√2) = (√2)^(1/2) =2^(1/4) 是一个无理数。

综上所述,二次根式与实数之间存在着重要的关系。

实数的二次根式可以是有理数或无理数,具体取决于实数的平方是否是一个有理数。

二次根式总结归纳

二次根式总结归纳

二次根式总结一、引言二次根式是数学中的一个重要概念,也是初等代数中一个基础的内容。

它在解方程、求根、化简表达式等问题中起着重要作用。

本文将对二次根式进行全面、深入的总结,包括重要观点、关键发现和进一步思考。

二、基本概念1. 二次根式的定义二次根式是指形如√a的表达式,其中a为非负实数。

当a为正实数时,√a有两个实数解;当a为零时,√0=0;当a为负实数时,√a没有实数解。

2. 二次根式的性质•非负实数的平方根仍为非负实数;•平方根具有唯一性,即对于任意非负实数a,√a唯一确定。

3. 二次根式的运算•加减法:对于两个二次根式√a和√b,如果它们的被开方数相同,则可以直接相加或相减;如果被开方数不同,则需要化简后再运算。

•乘法:对于两个二次根式√a和√b,它们的乘积可以化简为√ab。

•除法:对于两个二次根式√a和√b,它们的商可以化简为√a√b =√ab,其中b不能为零。

三、重要观点1. 二次根式的化简化简二次根式是解题中常见的操作。

可以利用平方根的性质,将二次根式化简为最简形式。

√8=√4⋅√2=2√2。

2. 二次根式的应用二次根式在解方程、求根、化简表达式等问题中经常出现。

在解关于x的方程时,可能会遇到形如x2=5的方程,需要求得x=±√5。

3. 二次根式与无理数二次根式通常是无理数。

无理数是指不能表示为两个整数的比值的实数。

π和e都是无理数。

而对于正实数a来说,如果其平方不是有理数,则其平方根一定是无理数。

四、关键发现1. 二次根式的图像二次根式的图像是一个开口向上或向下的抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

图像关于x轴对称。

2. 二次根式的大小比较对于两个非负实数a和b,如果a<b,则√a<√b。

但当a<0时,√a没有实数解。

3. 二次根式的近似值可以使用计算器或牛顿迭代法等方法求得二次根式的近似值。

可以利用牛顿迭代法逼近√2的值。

初二数学二次根式知识点解析

初二数学二次根式知识点解析

二次根式的定义性质和概念如果一个数的平方等于a,那么这个数叫做a的平方根。

a可以是具体的数,也可以是含有字母的代数式。

即:若,则x叫做a的平方根,记作x= 。

其中a叫被开方数。

其中正的平方根被称为算术平方根。

关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。

被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。

二次根式的性质:1.任何一个正数的平方根有两个,它们互为相反数。

如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形势中被开方数不能有分母存在。

2.零的平方根是零,即 ;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。

4.无理数可用有理数形式表示, 如: 。

二次根式的几何意义1、(a≥0)[任何一个非负数都可以写成一个数的平方的形式;利用此性质在实数范围内因式分解];2、都是非负数;当a≥0时, ;而中a取值范围是a≥0,中取值范围是全体实数。

3、c= 表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论;4、逆用可将根号外的非负因式移到括号内,如﹙a>0﹚,﹙a<0﹚﹙a≥0﹚,﹙a<0﹚5、注意: ,即具有双重非负性。

算术平方根正数a的正的平方根和零的平方根统称为算术平方根,用(a≥0)来表示。

0的算术平方根为0.开平方运算求一个非负数的平方根的运算,叫做开平方。

开平方与平方互为逆运算。

化简化简二次根式是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。

最简二次根式定义概要(❶被开方数不含分母❷被开方数中不含能开得尽的因数或因式)二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。

有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式注意﹙①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式④一个二次根式可以与几个二次根式互为有理化因式﹚分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。

初中数学实数与二次根式的基本概念进阶(含解析)

初中数学实数与二次根式的基本概念进阶(含解析)

初中数学实数与二次根式的基本概念进阶考试要求:重难点:1.平方根、立方根的有关概念以及其区别和联系;2.能进行实数的运算3.二次根式(0)a≥的内涵,(0)a≥是一个非负数;2a=(0)a≥;a=(0)a≥ 及其运用.4.二次根式乘除法的规定及其运用.5.二次根式的加减运算.例题精讲:实数模块一实数的概念及分类1.实数的概念实数:有理数和无理数的统称.2.实数的分类0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数 注意:(1)实数还可按正数,零,负数分类.(2)整数可分为奇数,偶数,零是偶数,偶数一般用2n (n 为整数)表示;奇数一般用2n 1- 或2n 1+ (n 为整数)表示. (3)正数和零常称为非负数.(4)带根号的数不一定是无理数,如9.【例1】 下列实数317,π-,3.1415921中无理数有( ). A .个B .个C .个D .个【难度】1星【解析】是不是有理数,要看化简之后的结果,所以无理数有π-【答案】A【巩固】有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确的说法的个数是( )A . 1B . 2C . 3D . 4【难度】1星 【解析】略. 【答案】C模块二 数轴、相反数、倒数、绝对值数轴:规定了原点、正方向和单位长度的一条直线叫数轴. 相反数:只有符号不同的两个数互为相反数,0的相反数是0.(1)实数a 的相反数是a -.(2)实数a 和b 互为相反数,则a+b =0.(3)从数轴上看,互为相反数的两个数所对应的点关于原点对称.倒数:乘积为1的两个有理数互为倒数;0没有倒数. 倒数等于它本身的数是±1.(1)实数a (a ≠0)的倒数是1a. 2345(2)a 和b 互为倒数,则ab =1. 绝对值:(1)绝对值的含义与性质:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(2)几何意义:实数的绝对值是一个非负数,在数轴上,表示数的点到原点的距离.注意:实数和数轴上的点一一对应,平面直角坐标系内的点与一对有序实数一一对应,对二者要加以区分,不能混淆.【例2】 若直径为2个单位长度的圆上的点A圆上这一点到达另一点B ,则B 点表示的实数是( ) A .2π B .4π C .2π D4π【难度】2星 【解析】略. 【答案】D【例3】2的相反数是 . 【难度】1星【解析】一个数a 的相反数是a -;同样一个式子A 的相反式是-A .【答案】2【例4】的倒数是 .【难度】1星 【解析】略.【答案】【例5】2的绝对值是 . 【难度】1星【解析】关键是判断原数(原式)的正负.2【巩固】的相反数是 ;倒数是 ;绝对值是 .【难度】1星 【解析】略.;.模块三 实数的大小比较1 利用数轴比较大小因为数轴上右边的点表示的数,总是比左边的点表示的数大,所以负数小于0,0小于正数,负数小于正数. 2 利用绝对值比较大小两个正数比较大小,绝对值大的较大;两个负数比较大小,绝对值大的反而小. 3 利用作差法比较大小设a 、b 是任意两实数,若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <. 4 利用作商法比较大小设a 、b 是任意两同号实数,当a ,b 都为负数时,若1a b >,则a b <;若1ab<,则a b >.【例6】 如果a b a b -= . 【难度】2星【解析】91516<<,34∴<,3,3a b ∴==,33)6a b ∴-=-=-【答案】6-.)A .在4.5和5.0之间B .在5.0和5.5之间C .在5.5和6.0之间D .在6.0和6.5之间【难度】2星 【解析】同上. 【答案】B【巩固】已知a b ,为两个连续整数,且a b <,则a b +=_______. 【难度】2星【解析】由已知可知3,47a b a b ==∴+=. 【答案】7【例7】 若01b <<则2b ,b ,1b这四个数有下列关系( )A. 2b <b <<1bB. 2b <<1b <bC.1b<<b <2b D. <1b<2b <b 【难度】1星【解析】采用特殊值法,此题可令14b =. 【答案】A【巩固】15三个数的大小关系是()A. <15<B. <15<C. <<15D. <<15【难度】2星【解析】利用平方法比较大小,2224=,2226=,215225=224225226,15<<∴<【答案】A模块四实数的运算1.运算律加法交换律a+b=b+a加法结合律()()a b c a b c++=++乘法交换律ab=ba乘法结合律()()ab c a bc=分配律a(b+c)=ab+ac注意:关于有理数的运算律和运算性质,在进行实数运算时仍然成立.2. 混合运算的运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.【例8】化简:(1)21(2)34(3)12011+【难度】1星【解析】(1)2121)211=-==-;(2)34341=+=;(3)12011+1201211+=【答案】(1)1-;(2)1;(3)1.【例9】已知等腰三角形一边长为a,一边长b,且22(2)90a b b-+-=.求它的周长.【难度】2星【解析】a,b为三角形的边长,0,0a b∴>>,又22(2)90a b b-+-=,220,90a b b∴-=-=,33,2b a∴==,故三角形的三边长为3,3,32 或33,,322(舍去),故三角形的周长为3133722++=.【答案】172模块五 近似数、有效数字和科学记数法1. 近似数:将一个数四舍五入所得到的数.2. 有效数字:一个近似数从左边第一个不是零的数字起,到精确的数位为止,所有的数字都叫做这个近似数的有效数字. 3. 科学记数法:把一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数.注意:用科学计数法表示的数10n a ⨯,其有效数字只与a 有关,就是a 的有效数字;精确度却和a 、10n有关,是a 的精确度乘10n 所得的结果.如54.3010⨯有三个有效数字,分别是4,3,0;4.30精确到0.01,60.011010000⨯=,故54.3010⨯精确到千位.【例10】 我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .B .C .D .【难度】1星 【解析】略 【答案】C【例11】 指出下列各近似值精确到哪一位:(1)56.3;(2)5.630;(3) 65.6310⨯;(4) 5.630万【难度】1星 【解析】略 【答案】(1)十分位;(2)千分位;(3)万位;(4) 十位.【例12】 指出下列近似数有几个有效数字:(1)0.319;(2)0.0170;(3) 4.46万;(4) 85.2910⨯【难度】1星 【解析】略 【答案】(1)3个;(2)3个;(3) 3个;(4) 3个.模块六 平方根、算术平方根、立方根平方根:如果一个数的平方等于a ,那么这个数叫做a的平方根,记作766.610⨯80.66610⨯86.6610⨯76.6610⨯方根,负数没有平方根,0的平方根是0.算术平方根:正数a 的算术平方根为0.立方根:如果一个数的立方等于a ,那么这个数叫做a 正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.注意:(1)当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥). (2)平方根和算术平方根与被开方数之间的关系:若0a ≥,则2a =; 不管a (0)||(0)a a a a a ≥⎧=⎨-<⎩(3)若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<时,它的算术平方根也之间,即:0≤<<算一个非负数的算术平方根的大致范围.【例13】 )A .81B .3±C .3D .3-【难度】2星 【解析】略 【答案】B 【例14】 若24m -与31m -是同一个正数的平方根,则m 为( )A .3-B .1C .-1D .3-或1【难度】2星【解析】由于一个正数的平方根有两个,且互为相反数,由此即可得到2m -4与3m -1相等或互为相反数,然后列方程即可解决问题. 24m -与31m -是同一个正数的平方根, ∴24m -=31m -或24(31)m m -=--, 解得:3m =-,或1m =. 故选D .【答案】D2,则(25)x +的平方根是 ;若5=,则x = .【难度】2星【解析】考察的是数的开方 【答案】3±;5±.【例15】 一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( ).A .1a +B . 21a +C . 22a +D【难度】2星 【解析】首先根据算术平方根的定义求出自然数,然后即可求出这个自然数相邻的下一个自然数.一个自然数的算术平方根为a , ∴这个自然数是2a .∴和这个自然数相邻的下一个自然数是21a +. 故选B .【答案】B【巩固】设a a 的值是 . 【难度】3星【解析】201222503.503a =⨯⨯∴=. 【答案】503【例16】 1.22== _____.【难度】2星 【解析】略 【答案】122-【例17】 已知2a -的平方根是2±,27a b ++的立方根是3,求22a b +的算数平方根. 【难度】2星【解析】22(2),6a a -=±∴=;3273a b ++=且6a =,8b ∴=,10=. 【答案】10【巩固】已知A =是3n m -+的算术平方根,2m B -=7m n +的立方根,求B +A 的平方根.【难度】2星【解析】由题可知3233m n m n -=⎧⎨-+=⎩,解得63m n =⎧⎨=⎩,0A ∴==,3B ===,∴【答案】a =,2yb =(0y <)8(4b a >)18=,求xy 的值.【难度】2星 【解析】2(4)8,48,4,48a b a b b a b a -=∴-=>∴-=;又33()18,18a b a b +=∴+=,解得2,16a b == 8,4,32x y xy ∴=-=-=.【答案】32【例18】 若11a b ++=,求23ab c +-的值. 【难度】2星【解析】原式可变为(1)10a b -++=,2(1)10,1,1,1a b a b c -+++=∴==-=2312(1)314a b c ∴+-=+--⨯=-. 【答案】4-【例19】 已b ,求4321237620b b b b+++-. 【难度】3星【解析】本题采用了整体代入的数学思想.91416<<,34,<的整数部分为3,小数部分为3b =,3b =+,左右平方可得21496b b =++,256b b ∴=-, 4321237620b b b b +++-=22(56)12(56)37620b b b b b -+-++- 222225366060723762025620255662010b b b b b b b b b b =+-+-++-=++-=+-+-=【答案】10.模块七 二次根式的基本概念及化简二次根式概念0a ≥)的式子叫做二次根式. 二次根式的基本性质:0≥(0a ≥)双重非负性; 2a =(0a ≥);(0)(0)a a a a a ≥⎧==⎨-<⎩【例20】 设y =,求使y 有意义的x 的取值范围.【难度】2星【解析】对二次根式定义的考察20210x x -≥⎧⎨+>⎩,解得122x -<≤. 【答案】122x -<≤【巩固】当x 时,.【难度】2星【解析】对二次根式定义的考察,通过观察可以发现2223(1)220,x x x -+=-+≥>∴要使22023xx x -≥-+,20x -≥即可,2x ∴≤.【答案】2x ≤【例21在实数范围成立,那么x y z +的值是多少? 【难度】2星0a ≥)的考察.由题可知20110,20110,2011z z z -≥-≥∴=,0,260,20,3,2x y x y ∴-=+=∴==-321201*********x y z +-∴===.【答案】2011【巩固】若m =定m 的值. 【难度】3星0a ≥)的考察,但是如果能观察出199x y -+与199x y --互为相反数此题会更直接.1990,1990,1990,199x y x y x y x y -+≥--≥∴--=∴+=,0,3520230x y m x y m +--=⎧∴⎨+-=⎩,解得264x m y m=-⎧⎨=-⎩,2642x y m m m ∴+=-+-=-,2199m ∴-=201m ∴=.【答案】201总结: 0a ≥0≥重非负性.【例22】 化112a ≤≤) 【难度】2星a =,去绝对值时,一定要注意a 的正负.211a a =---, 112a ≤≤,∴原式=21(1)21132a a a a a ---=--+=-. 【答案】32a -【巩固】设012x y <<<<,则=__________.【难度】3星【解析】012x y <<<<, ∴原式=2122(1)(2)21221x y x y x y x y x y x yx ==-+----=-+----=-+-+-+=+【答案】21x +总结:a ,而不是直接化简成a ,因为去绝对值时,a 的正负不同结果是不同的.二次根式的乘除最简二次根式:0a ≥)中的a 称为被开方数.满足下面条件的二次根式我们称为最简二次根式:被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式)被开方数中不含能开得尽方的因数或因式分母中不含二次根式二次根式的计算结果要写成最简根式的形式.=0a ≥,0b ≥)=0a ≥,0b >) 利用这两个法则时注意a 、b 的取值范围,=,a 、b 都非负,否则不成立,≠【例23】 已知0xy >,化简二次根式 ) ABC. D.【难度】2星【解析】解题的关键是确定被开放式字母的符号.由题可知20x >,且20,0y y x -≥∴≤,又0xy >,0x ∴<,∴原式=. 【答案】D【巩固】化简二次根式的结果是 . 【难度】2星【解析】解题的关键是确定被开放式字母的符号.【答案】【例24】) A . 1111n n +++ B . 1111n n-++ C . 1111n n +-+ D . 1111n n--+ 【难度】3星【解析】原式1111n n ===+-+.【答案】C22010的结果是 .【难度】3星【解析】解本题时注意完全平方公式的应用.原式2201022010=2222222201020102010200920093120102009201060271401960282009====+⨯+-=-++=-+=.【答案】2009【例25】 计算(1)02321(3)()(1)2π------ (2) (3)2(4+ (4)22⨯【难度】2星【解析】(1)02321(3)()(1)2π------11141222=-+-=- ; (2)=2212186-=-=- ;(3)2(4+164561=+++;(4)22⨯=22(52)9⨯=-=.【答案】(1)122-;(2)6-;(3)61+(4)9.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.0.【例26】 若最简根式2m -是同类二次根式,则m = ,n= ..【难度】2星【解析】判断是同类二次根式首先必须是最简二次根式,然后被开方数完全相同即可.由题可知212252726m n m n m n -+=⎧⎨+-=+-⎩,解得94m n =⎧⎨=⎩. 【答案】9 , 4【例27】 =的整数解有 组.【难度】3星【解析】,,x y ,∴=, ∴=,m n 为0或正整数),2m n ∴+=,0,1,2m ∴=.【答案】3【例28】 当m =2422m m m +--的值是 . 【难度】1星【解析】2422m m m +--=22442222m m m m m m --==+---,m =2)2-=,原式=22+=.【答案】课堂检测:【练习1】若4m ,则估计m 的取值范围 .【难度】2星【解析】67,243<<∴<<【答案】243<<【练习2】阅读下面数学领域的滑稽短剧,你觉得结果2=3荒谬吗?找出它们错误的根源吗?第一幕:410915-=- 第二幕:等式两边同时加164,1410691564-+=-+14第三幕:上式变形,得22225555222()323()2222-⨯⨯+=-⨯⨯+ 第四幕:利用2222()a ab b a b -+=-,得到:2255(2)(3)22-=- 第五幕:两边开平方,得552322-=- 第六幕:两边加上52,得到等式23=! 【难度】2星【解析】荒谬.第五幕时出了错误.开方时,没有分类讨论. 第五幕:两边开平方,得552322-=-(舍去)或552322-=- 第六幕:移项得,5232,2+=⨯即55= . 【答案】荒谬.第五幕时出了错误.开方时,没有分类讨论.【练习3】b =,求a ,b 的值. 【难度】2星【解析】考察二次根式非负性.【答案】11,2a b =-=-.【练习4】阅读下列解题过程:(1=== (2== 请回答下列问题:(1)观察上面解题过程,的结果为__________________.(2)利用上面所提供的解法,请化简:2010+ 【难度】2星【解析】对原式的每一项进行分母有理化,原式12011+1.【答案】(1(21【练习5】当n是一个整数.【难度】3星231n n =====++n为整数,∴231n n ++为整数.=231n n ++.课后作业:1. 把根号外的因式移到根号内得 () AB .C . D【难度】2星【解析】略【答案】 C2. 已知整数x 、y=x ,y )的个数是( )A . 0B . 1C . 2D . 3【难度】2星【解析】略【答案】D3. 设a b ,都是实数,且0a a +=,ab ab =,0c c -=,那么化简b ac -为( )A .2c b -B .22b a -C .b - D.b【难度】2星 【解析】0,0,a a a +=∴≤,0.0.0.ab ab b c c c =∴≤-=∴≥∴原式=b a b c b c a b -++-++-=,故选D .【答案】D4.设a 、ba =,求222ab -++的值【难度】2星【解析】由已知可得2a b ==,∴222a b -++=222(224a -+=+=. 【答案】45. 化简下列各式(1)0x >,0y >) (2)(0a >,0b >) 【难度】2星【解析】(1(0x >,0y >)2x y ==(2(0a >,0b >)==【答案】(1(26. 请你观察、思考下列计算过程2211121,11;11112321,111;==== .【难度】2星=111111111.【答案】1111111117.计算:【难度】3星a b c ==,把二次根式转化成分式计算.原式=()()()()()()a b c a b a c b a b c c a c b ++------()()()()()()()()()0()()()0a b c b a c c a b a b a c b c ab ac ba bc ac bc a b a c b c a b a c b c ---+-=-----++-=---=---= 【答案】0。

二次根式的基本概念

二次根式的基本概念

二次根式的基本概念
二次根式是指一个数的平方根形式表示的数,一般形式为√a,其中a为非负实数,称为被开方数。

二次根式中的根号√表示平方根,它是求平方根的数学符号。

二次根式的基本概念包括以下几个方面:
1. 二次根式的定义:二次根式是指形如√a的数,其中a为非负实数。

2. 被开方数:二次根式中的a被称为被开方数,它表示要进行开方的数。

3. 平方根:二次根式中的√表示平方根,它代表被开方数的非负平方根,即√a的平方等于a。

4. 化简:二次根式的化简是指将二次根式表示为最简形式,即去除根号下的平方因子,并将不能再提取平方根的因子提取出来。

5. 运算规则:二次根式的运算遵循一些规则,如同底数相同就可以直接合并,当两个二次根式相互乘除时,可以将根号下的因子相乘或相除。

二次根式在数学中经常出现,它具有广泛的应用,例如在平面几何中用于求解长度、面积等问题,在代数中用于求解方程、求解二次函数的根等。

掌握二次根式的基本概念能够帮助我们更好地理解和应用相关的数学知识。

第05讲 实数与二次根式(易错点梳理+微练习)(解析版)

第05讲 实数与二次根式(易错点梳理+微练习)(解析版)

第05讲实数与二次根式易错点梳理易错点梳理易错点01混淆平方根与算术平方根对于正数a 来说,a ±表示a 的平方根,a 表示a 的算术平方根。

易错点02混淆平方根与立方根的性质正数的平方根有两个,它们互为相反数;负数没有平方根,实数a 的立方根只有一个,无论a 是正数、负数还是0。

易错点03二次根式概念理解错误对二次根式的定义理解不透,认为只要带二次根号即为二次根式,忽视了二次根式a 中0≥a 的条件,所以在平时做题中必须特别注意理解二次根式的被开方数是非负数。

易错点04二次根式运算顺序出错由于乘除是同一级运算,因此按顺序哪个在前,要先算哪个运算。

易错点05错用二次根式的性质二次根式的性质有)0,0(≥≥∙=b a b a ab ;)0,0(>≥=b a ba ba ,切记不存在b a b a ±=±。

易错点06解题时忽视限制条件应用二次根式的运算性质)0,0(≥≥∙=b a b a ab ,)0,0(>≥=b a ba ba 时,必须要满足括号里的条件。

考向01平方根例题1:(2021·四川凉山·)A .9B .9和﹣9C .3D .3和﹣3【答案】D【思路分析】先化简,再根据平方根的地红衣求解.3±,故选D .【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±.例题2:(2021·黑龙江齐齐哈尔·中考真题)下列计算正确的是()A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y-=【答案】A【思路分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【解析】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点拨】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.考向02立方根例题3:(2021·辽宁大连·中考真题)下列计算正确的是()A .2(3=-B=C1=D .1)3+=【答案】B【思路分析】根据二次根式的运算及立方根可直接进行排除选项.【解析】解:A 、(23=,错误,故不符合题意;B =,正确,故符合题意;C 1=-,例题4:(2021·江苏南京·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是()A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n为奇数时,2的n 次方根随n 的增大而增大【答案】C【思路分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【解析】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232= ,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y =则155153232,28,x y ====1515,x y ∴>且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点拨】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.考向03实数例题5:(2021·山东日照·中考真题)在下列四个实数中,最大的实数是()A .-2BC .12D .0【答案】B【思路分析】根据实数的大小比较方法进行比较即可.【解析】解: 正数大于0,负数小于0,正数大于负数,∴1022>>>-,故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.例题6:(2021·贵州毕节·中考真题)下列各数中,为无理数的是()A .πB .227C .0D .2-【答案】A【思路分析】根据无理数的定义逐项判断即可.【解析】A 、π是无理数,符合题意;B 、223.1428577= 小数点后的142857是无限循环的,则227是有理考向04二次根式的概念与性质例题7:(2021·湖北襄阳·中考真题)x 的取值范围是()A .3x ≥-B .3x ≥C .3x ≤-D .3x >-【答案】A【思路分析】根据二次根式有意义的条件,列出不等式,即可求解.在实数范围内有意义,∴x +3≥0,即:3x ≥-,故选A .【点拨】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键.例题8:(2021·浙江杭州·中考真题)下列计算正确的是()A2=B 2=-C 2±D 2=±【答案】A【思路分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2=,故B 、D 错误;故选:A .【点拨】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.考向05二次根式的乘除例题9:(2021·湖南株洲·中考真题)计算:4-=()A .-B .-2C .D .【答案】A化简,然后根据乘法法则运算即可.【解析】解:()44--⨯-A .【点拨】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.例题10:(2021·广西桂林·中考真题)下列根式中,是最简二次根式的是()AB C D 【答案】D【思路分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方最简二次根式,故本选项不符合题意;C |a ,不是最简二次根式,故本选项不符合题意;D 、符合最简二次根式的定义,是最简二次根式,故本选项正确.故选:D .【点拨】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.考向06二次根式的加减例题11:(2021·广西梧州·中考真题)下列计算正确的是()A=B =C .2=D .2=2【答案】D【思路分析】根据二次根式的性质和二次根式的加法法则和除法法则逐一进行计算,从而得出答案;=A B=选项C 错误;)2=2,选项D 正确;故选:D【点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键例题12:(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()ABC D 【答案】D【思路分析】把每个选项中的不是最简二次根式化为最简二次根式即可作出判断.【解析】A =B =与类二次根式,故此选项错误;C 故此选项错误;D ==,D .【点拨】本题考查了二次根式的化简,同类二次根式的识别等知识,注意二次根式必须化成最简二次根式.微练习一、单选题【答案】B<<∴56<,∴30的算术平方根介于5与6之间.故选:B .2.(2021·江苏·连云港市新海实验中学二模)下列计算:①222+=a a a ,②(1)x y x xy +=+,③46,④236() mn mn =,正确的有()A .1个B .2个C .3个D .4个【答案】B【分析】解:①23a a a +=,故①错误;②(1)x y x xy +=+,故②正确;③446+,故③正确;④2336() mn m n =,故④错误;故正确的有②,③,共2个,故选:B .3.(2021·湖南师大附中博才实验中学一模))A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】B∴56,5和6之间;故选B .4.(2021·广东·珠海市紫荆中学三模)下列四个实数中,最小的数是()A .5-B .14C .0D 【答案】A【分析】解:∵-5<0<14,A .227B C .3.1415926D 【答案】B【分析】解:A .227是分数,属于有理数;B 是无理数;C .3.1415926是有限小数,属于有理数;D 3=是整数,属于有理数;故选:B .6.(2021·重庆·西南大学附中模拟预测)在函数2y x =-中,自变量x 的取值范围是()A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠【答案】C【分析】解:根据题意得:1020x x +≥⎧⎨-≠⎩,解得:x ≥−1且x ≠2.故选:C .7.(2021·山东兰陵·一模)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是()A .2a b -+B .2a b -C .b -D .b【答案】A【分析】解:由数轴可知,a <0<b ,∴a -b <0∴2a a b a b a =-+-=-;故选:A8.(2021·江苏建邺·二模)2b =-,则b 满足的条件是()A .2b >B .2b <C .2b ≥D .2b ≤【答案】D2b =-∴20b -≥∴2b ≤故选:D .9.(2021·内蒙古包头·三模)下列说法中,真命题有()有意义,则1x >;②已知27α∠=︒,则α∠的补角是153︒;③已知2x =是方程260x x c -+=的一个实数根,则c 的值为8;1≥x ,故错误;②已知27α∠=︒,则α∠的补角是153︒,故正确;③已知2x =是方程260x x c -+=的一个实数根,则22-12+c =0,解得c =8,故正确;④在反比例函数2k y x-=中,若0x >时,y 随x 的增大而增大,则k -2<0,则k 的取值范围是2k <,故错误;故选:B .10.(2021·重庆·字水中学三模))A .5和6之间B .6和7之间C .7和8之间D .8和9之间.【答案】C【分析】解:===== 78∴<介于7和8之间,故选:C .11.(2021·广西·南宁十四中三模)下列属于最简二次根式的是()AB C D 【答案】B【分析】A.3=开方数是分数,不是最简二次根式,故此选项不符合题意;B.是最简二次根式,故此选项符合题意;3=含有能开得尽方的因数,不是最简二次根式,故此选项不符合题意;D.10=被开方数是分数,不是最简二次根式,故此选项不符合题意;故选B 12.(2021·甘肃庆阳·二模))A B .3C .D .【答案】D【分析】解:S =D13.(2021·福建·厦门市第九中学二模))AB C .3D合题意;C.3 D.=故选D.14.(2021·广东·江门市第二中学二模)下列运算正确的是()B.AC.x5•x6=11x D.(x2)5=7x【答案】C【分析】解:A不是同类二次根式,不能合并,故A选项错误;B、12a,故B选项错误;C、x5•x6=11x,故C选项正确;D、(x2)5=10x,故D选项错误,故选:C.15.(2021·福建南平·二模)下列运算正确的是()A=B=C2=D=【答案】A【分析】解:A=B:选项错误,不符合题意;C:选项错误,不符合题意;D:选项错误,不符合题意;故答案选A.二、填空题16.(2021·陕西·交大附中分校模拟预测)______.【答案】1或2.【分析】解:∵23=∴23<<,1,2,故答案为:1或2.17.(2021·江苏·连云港市新海实验中学二模)______________.【答案】2【分析】解:原式=2,故答案为:2.|=__.18.(2021·宁夏·银川唐徕回民中学一模)30+|﹣119.(2021·陕西·西安市铁一中学模拟预测)112-⎛⎫= ⎪⎝⎭____________.【答案】2-【分析】解:原式2=2=.故答案为2-.20.(2021·黑龙江·哈尔滨市萧红中学三模)=_______.【答案】32【分析】解:原式=32=.故答案为:32.21.(2021·浙江·杭州市采荷中学二模)=______.【答案】22=,故答案为:2.22.(2021·山东·济宁学院附属中学三模)已知1y ==_______.【答案】2【分析】 1y =,2020x x -≥⎧⎨-≥⎩,解得2x =,1y =∴,∴2=.故答案为:2.23.(2021·山东省诸城市树一中学三模)已知1a =,1b -,则33a b ab -=__________.【答案】【分析】解:33a b ab -()22ab a b =-()()ab a b a b =+-,∵1a +,1b =,∴)11211ab ==-=,11a b +-=112a b -=+-=,24.(2021·陕西·交大附中分校模拟预测)21|3|()2--+-.【答案】4【分析】解:原式=3﹣3+4=4.25.(2021·湖南师大附中博才实验中学二模)计算:201332-⎛⎫+-+- ⎪⎝⎭【答案】【分析】解:原式=143+-+=26.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)计算:11()(53--.【答案】2-【分析】解:11()(53--35=-+2=.27.(2021·陕西·西北工业大学附属中学模拟预测)1124-⎛⎫+ ⎪⎝⎭21124-⎛⎫+ ⎪⎝⎭42=+2=.。

初中数学二次根式的知识点汇总

初中数学二次根式的知识点汇总

初中数学二次根式的知识点汇总二次根式是代数中的一个重要概念,它是一个含有平方根的表达式。

在初中数学中,学生将会学习有关二次根式的一些基本知识,以及如何进行运算和简化。

以下是一些关于初中数学二次根式的知识点的汇总。

一、二次根式的定义和表示方法1.二次根式是一个非负实数的平方根或一组二次根目标。

它可以表示为√a或±√a。

2.在二次根式中,a被称为根式的被开方数,表示所求的数;√a被称为二次根号,表示开方操作。

3.如果a是一个非负实数,那么二次根式√a表示的是非负的实数。

如果a是一个负实数,那么二次根式√a没有实数解。

4.二次根式的定义域是非负实数集合[0,∞)。

二、二次根式的比较大小1.二次根式的大小比较可以通过比较根式的被开方数来进行。

2.如果a和b是两个非负实数,且a>b,则有√a>√b。

3.如果a和b是两个非负实数,且a=b,则有√a=√b。

4.如果a和b是两个非负实数,且a<b,则有√a<√b。

三、二次根式的加减法运算1.只有具有相同的被开方数的二次根式才能进行加减法运算。

2.二次根式的加减法运算可以通过合并同类项的方式进行。

3.合并同类项时,需要注意二次根式的正负号是否一致。

四、二次根式的乘法运算1.二次根式的乘法运算可以通过乘法分配律进行。

2.二次根式的乘法运算可以通过提取同类项的方式进行。

3.提取同类项时,需要注意二次根式的正负号是否一致。

五、二次根式的除法运算1.二次根式的除法运算可以通过乘以倒数的方式进行。

2.二次根式的除法运算可以通过有理化的方式进行,即将分母有理化为无二次根式的形式。

六、二次根式的化简1.将一个二次根式化简为最简形式时,需要将其内部的二次根式去除。

2.二次根式化简的基本原则是尽量将被开方数的因式分解为平方数的积。

3.化简二次根式时,需要注意遵循二次根式的定义域,确保结果是有意义的。

七、二次根式的应用1.二次根式广泛应用于几何、物理和计算机科学等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.实数的基本概念1.无理数的概念:(1)定义:无限不循环小数叫做无理数.(2)解读:1)无理数的两个重要特征:①无限小数;②不循环.2)无理数的常见类型:①具有特定意义的数。

如π等;②具有特定结构的无限小数,如0.1212212221……(每相邻两个1之间依次多一个2)等;③开方开不尽的数,如2,34等. 那么,是否所有带根号的数都是无理数呢???3)有理数与无理数的区别:有理数总可以表示为有限小数或无限循环小数,反之,有限小数和无限循环小数也必定是有理数;而无理数是无限不循环小数,无限不循环小数也必定是无理数.2.实数的概念及分类:(1)定义:有理数和无理数统称为实数.(2)分类:①按定义分:⎧⎧⎨⎪⎨⎩⎪⎩整数有理数实数分数---有限小数或无限循环小数无理数-------无限不循环小数知识点睛实数、二次根式的基本概念②按性质分:0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (3)实数的性质:①相反数:a 与b 互为相反数0a b ⇔+=.②绝对值:,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩或,0,0a a a a a ≥⎧=⎨-<⎩或,0,0a a a a a >⎧=⎨-≤⎩(4)实数和数轴上的点是一一对应的.π是一个超越数,用尺规作图的方法是不能在数轴上表示的;可以用物理方法来表示:用一个直径为1的圆形从数轴的零点开始转动,正好转一圈的那个点就是π,因为直径为1的圆的周长为π。

(5)实数的运算顺序:先算乘方、开方、再算乘除、最后算加减,同级运算按照从左到右的顺序进行,有括号的先算括号里的。

(6)实数中非负数的四种形式及其性质:形式:①0a ≥;②20a ≥0≥(0a ≥)0a ≥.性质:①非负数有最小值0;②有限个非负数之和仍然是非负数;③几个非负数之和等于0,则每个非负数都等于0.(7)实数中无理数的常见类型:①所有开不尽的方根都是无理数,且不可认为带根号的数都是无理数; ②圆周率π及含有π的数是无理数,例如:21π+等;③看似循环,但实质不循环的无限小数是无理数,例如:1.023*******…….(一)根据实数的定义解题:【例1】下列各数,哪些是有理数,哪些是无理数?哪些是正实数?-0.313 131…, π, , 23, , 3.14, 0.4829,1.020020002…(相邻两个2之间0的个数逐次加1),【例2】在实数010.1235中无理数的个数是( ) A .0 B .1 C .2 D .3【拓展】22π 3.140.614140.10010001000017,,,,这7个实数中,无理数的个数是( )A .0B .1C .2D .3【例3】下面有四个命题:①有理数与无理数之和是无理数. ②有理数与无理数之积是无理数. ③无理数与无理数之和是无理数. ④无理数与无理数之积是无理数.请你判断哪些是正确的,哪些是不正确的,并说明理由。

【例4】判断正误,在后面的括号里对的用 “√”,错的记“×”表示,并说明理由. (1)无理数都是开方开不尽的数.( ) (2)无理数都是无限小数.( ) (3)无限小数都是无理数.( )(4)无理数包括正无理数、零、负无理数.( ) (5)不带根号的数都是有理数.( ) (6)带根号的数都是无理数.( ) (7)有理数都是有限小数.( )(8)实数包括有限小数和无限小数.( )(二)实数的绝对值:【例5】求下列各数的相反数及绝对值: (1)364- (2)π-3【例6】已知一个数的绝对值是3,求这个数.【拓展】|x |=|-π|,求x 的值。

【例7】若01<<b 则2b ,b 1b 这四个数有下列关系( ) A.b b b b 21<<<B.b b b b 21<<<C. 12b b b b <<<D.b b b b <<<12【例8】比较下列各组数的大小:(1)7和3 (2)二.二次根式的概念1. a≥0)的式子叫做二次根式2. 二次根式应满足两个条件:第一,有二次根号。

第二,被开方数是正数或0。

第三,二次根式a (a ≥0)表示非负数a 的算术平方根。

3.性质(1)2)(a =a (a≥0).(0)(0)a a a a a ≥⎧==⎨-<⎩a a =2(a≥0) a a -=2(a <0)a≥0,b≥0) a≥0,b≥0)(a≥0,b>0) a≥0,b>0)【例1】下列各式中哪些是二次根式,请作出判断。

m ≤【例2】当x在实数范围内有意义【拓展1】x为何值时,下列各式在实数范围内有意义(1);(2);(3)【拓展2】x取何值时,下列各式有意义?(1) (2) (3) )12-【拓展3】x取何值时,下列格式有意义:(1) (2) ;(3)3.最简二次根式a≥)中的a称为被开方数.满足下面条件的二次根式我们称为最简二次根式:(1)被开方数的因数是整数,因式是整式(被开方数不能存在小数、分数形式);(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不含二次根式。

二次根式的计算结果要写成最简根式的形式.【例1】判断下列各式中哪些是最简二次根式,哪些不是?(1) (2) (3) (4) a>b)(5)【例2】下列二次根式中,最简二次根式的个数是()..A.1个B.2个C.3个D.4个【例3】在下列二次根式中,最简二次根式有____________________。

【练习】下列根式)A.2个B.3个C.4个D.5个【例4】把下列各式化成最简二次根式。

)0x≥4. 同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式。

合并同类二次根式:(a b=+【例1】下列各组中的两个根式是同类二次根式的是()A 52x 和3xB 12ab 和13ab C x2y 和xy2D a 和1a2【例2】在27 、112、112中与 3 是同类二次根式的个数是()A. 0B.1C.2D.3【巩固】下列二次根式中,哪些是同类二次根式?(字母均为正数)【例3】下列各组二次根式中,属于可以合并的是( )A .12与72B .63与28C .34x 与22xD .18与23【例4】若a+b4b 与3a +b 是同类二次根式,则a 、b 的值为( )A a=2 , b=2B a=2 , b=0C a=1 , b=1D a=0 , b=2 或a=1 , b=1【巩固】若4a b b +与最简二次根式3a b +为同类二次根式,其中a ,b 为整数,则a =______,b =________;【例5】若最简二次根式35a -与3a +是可以合并的二次根式,则____a =。

【例6】下列二次根式中,与a 是可以合并的是( )A .2aB .23aC .3aD .4a【例7】若最简二次根式22a b a b a b +++与是同类根式,求2b a -的值.1. 把下列各数分别填入相应的集合里83,-3.1459,-3π,,722-23,-87,-0.020202……,1.414,-7,1.2112111211112(相邻两个2之间1的个数逐次加1)(1)正有理数集合:{ ……}(2)有理数集合:{ ……} (3)无理数集合:{ ……} (4)实数集合: { ……} 2. x 取何值时,下列各式有意义:(1)2x - (2)2x- (3)2x -(4)213x x ++- (5)1x- (6)x课后作业3.求下列各数的相反数、倒数和绝对值. (1)5- (2)3278(3) 1-π4.下列判断(1) 12 3 和13 48 不是同类二次根式;(2)145和125不是同类二次根式;(3)8x 与8x不是同类二次根式,其中错误的个数是( ) A. 3 B. 2 C .1 D. 0 5.下列二次根式中,是最简二次根式的是( ) A. 8x B.x 2-3 C.x -yxD. 3a 2b6.x 的取值范围是( )A .12x ≥B .12x ≤C .12x = D .x 可取一切值7.x 的取值范围是( ) A .3x -≥且0x ≠ B .3x ≤且0x ≠ C .0x ≠ D .3x -≥8.x 是怎样的实数时,下列二次根式有意义?(1)(2)(3) (4)9.下列哪些是二次根式,哪些不是二次根式?(1) )3x ≤ (2)(3))0x ≤。

相关文档
最新文档