二次根式的概念及性质练习题

合集下载

二次根式的有关概念和性质

二次根式的有关概念和性质

专题01 二次根式的有关概念和性质一、单选题1.(2022·重庆万州·九年级期末)下列各式中,属于二次根式的是( )A .2xB .12x x +C D 【答案】C【解析】【分析】)0a ³的式子是二次根式.【详解】解:A. 2x 不是二次根式,故该选项不正确,不符合题意;B. 12x x +,不是二次根式,故该选项不正确,不符合题意;C.D. 故选C【点睛】本题考查了二次根式的定义,理解定义是解题的关键.2.(2020·山东定陶·八年级期末)当 x =-3)A .3B .-3C .±3D 【答案】A【解析】【分析】把x =-3代入二次根式进行化简即可求解.【详解】解:当x =-33===.故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.3.(2020·四川·眉山市东坡区苏辙中学九年级阶段练习)若|x 0A .5B .﹣6C .6D .36【答案】C【解析】【分析】先根据非负数的性质求出x 、y ,然后把x 、y 的值代入所求式子根据算术平方根的定义解答即可.【详解】解:∵|x 0,∴x +2=0,y -3=0,解得:x =﹣2,y =3,6==.故选:C .【点睛】本题考查了非负数的性质和算术平方根的定义,属于基础题型,熟练掌握基本知识是解题的关键.4.(2021·贵州毕节·m 的取值范围是( )A .3m ³-且2m ¹B .3m >-且2m ¹C .2m ³-D .3m >-【答案】A【解析】【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得:30m +…且20m -¹,解得:3m -…且2m ¹,故选:A .【点睛】本题考查的是二次根式有意义的条件、分式有意义的条件,解题的关键是掌握二次根式的被开方数是非负数、分母不为0.5.(2021·陕西碑林·有意义,则x 的值可能为( )A .8-B .5-C .0D .10-【答案】C【解析】【分析】直接根据二次根式有意义的条件进行解答即可.【详解】解:280x +Q …,4x \-…,故选:C .【点睛】本题考查了二次根式有意义的条件,熟知二次根号内为非负数是解本题的关键.6.(2021·北京丰台·八年级期末)下列运算正确的是( )A =B =C =D =【答案】D【解析】【分析】根据二次根式的计算法则,以及二次根式的化简方法进行计算.【详解】A 、原式=,所以A 选项不符合题意;B ,所以B 选项不符合题意;C 不能合并,所以C 选项不符合题意;D ,所以D 选项符合题意;故选:D .【点睛】本题考查二次根式的计算法则,以及二次根式的化简,掌握二次根式的计算法则是解决本题的关键.7.(2021·贵州毕节·八年级阶段练习)实数a 、b果为( )A .22a b+B .2a -C .2b -D .22a b-【答案】B【解析】【分析】先根据数轴判断出a 、b 和-a b 的符号,然后根据二次根式的性质化简求值即可.【详解】解:由数轴可知:0a <,0b >,0a b -<a b a b=-+-a b a b=-+--2a=-故选:B .【点睛】此题考查的是二次根式的化简,掌握利用数轴判断字母符号和二次根式的性质是解决此题的关键.8.(2021·陕西高陵·八年级阶段练习)实数a ,b =( )A .-a bB .2a b -+C .a b +D .2a b ++【答案】B【解析】【分析】先根据数轴上两点的位置确定1a +和1b -的正负,再根据二次根式的性质化简计算即可.【详解】解:观察数轴可得,10a -<<,12b <<,∴10a +>,10b ->,\()11a b =+--11a b =+-+2a b =-+故选B .【点睛】本题主要考查了结合数轴上点的位置化简二次根式,熟练掌握二次根式的性质是解题的关键.9.(2021·山东·20-=,那么这个等腰三角形的周长为( )A .8B .10C .8或10D .9【答案】B【解析】【分析】根据二次根式和绝对值的性质,求得a b ,,分情况讨论,求解即可.【详解】解:20-=∴40a -=,20b -=,解得4a =,2b =当腰长为2,底边为4时,∵224+=,不满足三角形三边条件,不符合题意;当腰长为4,底边为2时,∵2464+=>,4402-=<,满足三角形三边条件,此时等腰三角形的周长为44210++=.故选:B【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.10.(2021·全国·=+x 、y 、z 为有理数.则xyz =( )A .34B .56C .712D .1318【答案】A【解析】【分析】将已知式子两侧平方后,根据x 、y 、z 的对称性,列出对应等式,进而求出x 、y 、z 的值即可求解.【详解】=∴3x y z =++++∴x+y+z=3===,,x+y+z=31=23yz=43xz=2xy ìïïïï\íïïïïî()29xyz ,0,0,016x y z \=³³³,∴xyz =34,故选择:A .【点睛】本题考查二次根式的加减法,x 、y 、z 对称性,掌握二次根式加减法法则,利用两边平方比较无理数构造方程是解题关键.二、填空题11.(2022·浙江·九年级专题练习)当m =____取到最小值.【答案】2【解析】【分析】根据二次根式的非负性即可解答.【详解】0,∴当m ﹣2=0,即m =20.故答案为:2.【点睛】0.12.(2021·浙江浙江·八年级期末)已知有理数,a b 满足等式52b a =+,则=a ______;b =_____.【答案】23- 136【解析】【分析】根据有理数的定义以及等式的性质即可求出答案.【详解】解:由于52b a =-,52b a \-+由于a 与b 是有理数,23a \=-,520b a -+=,23a \=-,136b =.故答案为:23-;136.【点睛】本题考查实数,解题的关键是将等式进行适当的变形,本题属于中等题型.13.(2021·江苏新区·八年级期末)△ABC 的三条边长a 、b 、c 满足8c =60-=,则△ABC ____直角三角形(填“是”或“不是”)【答案】不是【解析】【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可.【详解】解:60-=,∴40a -=,60b -=,∴4,6a b ==,则22246528+=¹,∴222a b c +¹,∴△ABC 不是直角三角形,故答案为:不是.【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.14.(2021·四川省巴中中学八年级期中)若有理数x 、y =则x y m --的值是______.【答案】7【解析】【分析】根据二次根式的非负性求出x 值,同理求出y 值,从而得到m ,代入计算即可.【详解】解:=,∴20x -³,20x -³,∴x =2,0=,∴30y +=且10y m -+=,∴y =-3,∴-3-m +1=0,∴m =-2,∴x -y -m =2-(-3)-(-2)=7,故答案为:7.【点睛】本题考查了二次根式有意义的条件,正确得出x ,y 的值是解题关键.三、解答题15.(2021·全国·八年级课时练习)小球从离地面为h (单位:m )的高处自由下落,落到地面所用的时间为t(单位:s ).经过实验,发现h 与2t 成正比例关系,而且当20h =时,2t =.试用h 表示t ,并分别求当10h =和25h =时,小球落地所用的时间.【答案】函数的解析式为h =5t 2;h =10时,t h =25时t 【解析】【分析】根据待定系数法,可得函数解析式,根据自变量的值,可得函数值.【详解】解:设h =kt 2,由h =20时,t =2,得20=22k ,解得k =5.函数的解析式为h =5t 2,当h =10时,t 2=2,解得t当h =25时,t 2=5,解得t 【点睛】本题考查了函数关系式,利用了待定系数法求解析式.16.(2021·湖北黄冈·八年级期中)若实数x ,y 满足2y =【解析】【分析】根据被开方数是非负数,可得x ,y 的值,根据代数式求值,可得答案.【详解】解:由题意,得10x -…,10x -³,解得1x =,当1x =时,2y =.当1x =,2y ==.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出x ,y 的值是解题关键.17.(2021·全国·0=,则b a 的平方根.【答案】12±【解析】【分析】分式值为零的条件是分子等于零且分母不为零,根据条件求出,a b 的值.【详解】0=,其中4a ¹-,则160-=,即2160a -==,由2160a -=,解得:4,4a a ==-(舍去)0=,解得:1b =-,14b a \=,b a \的平方根为12±,故答案是:12±.【点睛】本题考查零分式值为零的条件及平方根的性质,解题的关键是:分母不为零的条件不能少.18.(2019·贵州·贵阳市清镇养正学校八年级阶段练习)若a 、b 、c 是△ABC 的三边长,且a 、b 、c 满足等|b-12|+(c-13)2=0.(1)求出a 、b 、c 的值.(2)△ABC 是直角三角形吗?请说明理由.【答案】(1)5,12,13a b c ===;(2)△ABC 是直角三角形,理由见解析.【解析】【分析】(1)根据二次根式的非负性、绝对值的非负性、平方的非负性解题即可;(2)由(1)中a 、b 、c 的值,结合勾股定理逆定理解题.【详解】解:(1)212(13)0c +-=5,12,13a b c \===;(2)△ABC 是直角三角形,理由如下:22251213+=Q 222a b c \+=\△ABC 是直角三角形.【点睛】本题考查二次根式的非负性、绝对值的非负性、平方的非负性、勾股定理的逆定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.(2021·福建省福州屏东中学七年级期中)阅读材料并解决下列问题:已知a 、b 是有理数,并且满足等式52b =+a ,求a 、b 的值.解:∵52b =a即5(2)b a =-∴2b ﹣a =5,﹣a =23解得:a =﹣213,36b =(1)已知a 、b (1b -=﹣1,则a = ,b = .(2)已知x 、y 是有理数,并且满足等式x 2y +-=x +18,求xy 的平方根.【答案】(1)4,1;(2)【解析】【分析】(1)利用等式左右两边的有理数相等和二次根式相同,建立方程,然后解方程即可.(2)先将等式变形,再利用等式左右两边的有理数相等和二次根式相同,建立方程,然后解方程得到x 和y ,再求xy 的平方根.【详解】解:(1)(11b -=,1b -=,)1a b b --=-,∴b =1,a -b =3,∴a =4;(2218y +-=+,∴(3182y x y -=-+,∴321820y x y -=ìí-=î,解得:739x y ì=ïíï=î,∴xy =21,∴xy 的平方根为【点睛】此题是一个阅读题目,主要考查了实数的运算.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.20.(2021·陕西兴平·八年级期中)若a ,b5b +=+,求a +b 的值.【答案】1【解析】【分析】根据二次根式的双重非负性,求得a 的值,根据a 的值求得b 的值,代入求解即可;【详解】0³³,则60a -³且1220a -³,解得6a =.故05b =+,解得5b =-.则6(5)1a b +=+-=.故答案为:1.【点睛】本题考查了二次根式的性质,理解二次根式的双重非负性,求出a 的值是解题的关键.21.(2021·上海市进才中学北校八年级阶段练习)已知x =【答案】32【解析】【分析】根据二次根式有意义的条件以及分式有意义的条件,以及x 为奇数确定x 的值,将代数式进行化简,进而代入求值即可.【详解】90,70x x ->ìí-³îQ 解得79x £<,Q x 为奇数,7x \=,=当7x =时,原式8=32=.【点睛】本题考查了二次根式有意义的条件以及分式有意义的条件,分式的化简求值,根据二次根式的性质化简,掌握以上知识是解题的关键.22.(2022·贵州松桃·八年级期末)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及一次根式的性质化去一层根号.===.解决问题:化简下列各式;.【答案】(1)22-【解析】【分析】(1)将根号里面的7拆分成4和3,4写成2的平方,3将算式整体开方;(2)将根号里面的9拆分成4和5,4写成2的平方,5将算式整体开方.(1)==(2)2==【点睛】本题考查乘法公式的逆用,能够快速的寻找,归纳,总结,并应用规律是解决本题的关键.23.(2022·江苏·南京玄武外国语学校八年级期末)如图,在正方形网格中,每个小正方形的边长为1个单位长度,A 、B 、C 三点在格点上(网格线的交点叫做格点),现将ABC V 先向上平移4个单位长度,再关于y 轴对称得到111A B C △.(1)在图中画出111A B C △,点1C 的坐标是______;(2)连接1AA ,线段1AA 的长度为______;(3)若(),P a b 是ABC V 内部一点,经过上述变换后,则111A B C △内对应点1P 的坐标为______.【答案】(1)画图见解析,()11,2C ;(2)(3)(),4a b -+【解析】【分析】(1)分别确定,,A B C 平移与轴对称后的对应点111,,,A B C 再顺次连接111,,,A B C 再根据1C 的位置可得其坐标;(2)利用勾股定理求解1AA 的长度即可;(3)根据平移的性质与轴对称的性质依次写出每次变换后的坐标即可.【详解】解:(1)如图,111A B C △是所求作的三角形,其中()11,2,C(2)由勾股定理可得:1AA =故答案为:(3)由平移的性质可得:(),P a b 向上平移4个单位长度后的坐标为:(),4,a b +再把点(),4a b +沿y 轴对折可得:()1,4.P a b -+故答案为:(),4.a b -+【点睛】本题考查的是画平移与轴对称后的图形,平移的性质,轴对称的性质,坐标与图形,二次根式的化简,掌握“平移与轴对称的作图及平移与轴对称变换的坐标变化规律”是解本题的关键.。

二次根式知识点及典型例题(含答案)

二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。

练习1、x为何值时,下列各式有意义。

【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。

二次根式的概念与性质1

二次根式的概念与性质1

二次根式的概念与性质1一.选择题(共30小题)1.下列式子:①;②;③;④;⑤;⑥,其中一定是二次根式的有()A.5个B.4个C.3个D.2个2.下列判断正确的是()A.带根号的式子一定是二次根式B.一定是二次根式C.一定是二次根式D.二次根式的值必定是无理数3.下列各式中①;②;③;④;⑤一定是二次根式的有()A.1个B.2个C.3个D.4个4.下列各式中,二次根式有()①②③④A.1个B.2个C.3个D.4个5.下列各式中:①;②;③;④.其中,二次根式的个数有()A.1个B.2个C.3个D.4个6.在式子,,,,(x≤0)中,一定是二次根式的有()A.1个B.2个C.3个D.4个7.x≥3是下列哪个二次根式有意义的条件()A.B.C.D.8.若有意义,则x满足条件是()A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣39.式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≥2C.x=2D.x<﹣210.如果代数式有意义,那么x的取值范围是()A.x≠3B.x<3C.x>3D.x≥311.使二次根式在实数范围内有意义的x的取值范围在数轴上表示为()A.B.C.D.12.二次根式中,字母a的取值范围是()A.a B.a C.a D.a13.使式子+成立的x的取值范围是()A.x≥﹣2B.x>﹣2C.x>﹣2,且x≠2D.x≥﹣2,且x≠214.若式子有意义,则实数m的取值范围是()A.m>﹣2B.m>﹣2且m≠1C.m≥﹣2D.m≥﹣2且m≠115.代数式+中x的取值范围在数轴上表示为()A.B.C.D.16.下列说法正确的个数有()①代数式的意义是a除以b的商与1的和;②要使y=有意义,则x应该满足0<x≤3;③当2x﹣1=0时,整式2xy﹣8x2y+8x3y的值是0;④地球上的陆地面积约为14900万km2,用科学计数法表示为1.49×108km2.A.1个B.2个C.3个D.4个17.使代数式有意义的整数x有()A.5个B.4个C.3个D.2个18.已知实数x、y满足y=﹣2,则y x值是()A.﹣2B.4C.﹣4D.无法确定19.要使代数式有意义,则下列关于x的描述正确的是()A.最小值是1B.最大值是1C.最小值是﹣1D.最大值是﹣1 20.如果式子是有意义,那么a的取值范围是()A.a≥2B.a>2C.a=2D.a≤1 21.若代数式有意义,则实数x的取值范围是()A.x>0B.x≥0C.x≠0D.任意实数22.下列计算正确的是()A.﹣|﹣3|=3B.﹣32=9C.D.23.化简等于()A.B.±C.D.524.二次根式的值是()A.2017B.﹣2017C.2017或﹣2017D.2017225.下列各式中,正确的是()A.B.C.D.26.若=a﹣2,则a与2的大小关系是()A.a=2B.a>2C.a≤2D.a≥2 27.等于()A.8B.﹣8C.2D.﹣228.化简(﹣)2的结果是()A.±3B.﹣3C.3D.929.给出下列化简①(﹣)2=2:②=2;③=12;④=,其中正确的是()A.①②③④B.①②③C.①②D.③④30.=()A.B.C.D.二.填空题(共10小题)31.已知a≥0时,=a.请你根据这个结论直接填空:(1)=;(2)若x+1=20182+20192,则=.32.化简二次根式a后的结果是33.若=1.2,则a=;若=m,则m=;34.已知实数a在数轴上的位置如图所示,化简:+|a﹣1|=.35.若a<2,化简+a﹣1=.36.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为.37.若a>1,化简的结果是.38.实数a在数轴上的位置如图所示,则化简后为.39.化简:2<x<4时,﹣=.40.当a<0,b>0时.化简:=.二次根式的概念与性质1参考答案与试题解析一.选择题(共30小题)1.下列式子:①;②;③;④;⑤;⑥,其中一定是二次根式的有()A.5个B.4个C.3个D.2个【分析】根据二次根式的定义即可求出答案.【解答】解:形如的代数式叫做二次根式,其中,a 叫做被开方数,被开方数必须大于或等于0∴④;⑤;⑥是二次根式,故选:C.【点评】本题考查二次根式的定义,解题的关键是熟练运用二次根式的定义,本题属于基础题型.2.下列判断正确的是()A.带根号的式子一定是二次根式B.一定是二次根式C.一定是二次根式D.二次根式的值必定是无理数【分析】直接利用二次根式的定义分析得出答案.【解答】解:A、带根号的式子不一定是二次根式,故此选项错误;B、,a≥0时,一定是二次根式,故此选项错误;C、一定是二次根式,故此选项正确;D、二次根式的值不一定是无理数,故此选项错误;故选:C.【点评】此题主要考查了二次根式的定义,正确把握二次根式的性质是解题关键.3.下列各式中①;②;③;④;⑤一定是二次根式的有()A.1个B.2个C.3个D.4个【分析】二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,据此逐一判断即可得.【解答】解:在①;②;③;④;⑤一定是二次根式的是③④⑤,故选:C.【点评】本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.4.下列各式中,二次根式有()①②③④A.1个B.2个C.3个D.4个【分析】二次根式一定要满足被开方数为非负数且根指数为2,结合选项进行判断即可【解答】解:①能满足被开方数为非负数,故①正确;②被开方数为负数,不是二次根式,故②错误;③根指数为3,不是二次根式,故③错误;④x2+2x+1能满足被开方数为非负数,故④正确;综上二次根式有2个,故选:B.【点评】主要考查了二次根式的概念.式子(a≥0)叫二次根式.(a≥0)是一个非负数.5.下列各式中:①;②;③;④.其中,二次根式的个数有()A.1个B.2个C.3个D.4个【分析】直接利用二次根式的定义分析得出答案.【解答】解:①;②;③;④.二次根式的只有①,故选:A.6.在式子,,,,(x≤0)中,一定是二次根式的有()A.1个B.2个C.3个D.4个【分析】依据二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式求解可得.【解答】解:在所列式子中一定是二次根式的是,(x≤0)这2个,故选:B.【点评】本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.7.x≥3是下列哪个二次根式有意义的条件()A.B.C.D.【分析】根据二次根式中的被开方数是非负数列出不等式,分别计算即可.【解答】解:A,x+3≥0,解得,x≥﹣3,错误;B、x﹣3>0,解得,x>3,错误;C、x+3>0,解得,x>﹣3,错误;D、x﹣3≥0,解得,x≥3,正确,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.8.若有意义,则x满足条件是()A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣3【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.9.式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≥2C.x=2D.x<﹣2【分析】直接利用二次根式的性质分析得出答案.【解答】解:∵式子在实数范围内有意义,∴2﹣x≥0,x﹣2≥0,解得:x=2.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.10.如果代数式有意义,那么x的取值范围是()A.x≠3B.x<3C.x>3D.x≥3【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣3>0,∴x>3,故选:C.【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.11.使二次根式在实数范围内有意义的x的取值范围在数轴上表示为()A.B.C.D.【分析】根据被开方数大于等于0列式计算即可得到x的取值范围,然后在数轴上表示即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2,在数轴上表示如下:.故选:B.【点评】本题主要考查了二次根式的被开方数是非负数,属于基础题.12.二次根式中,字母a的取值范围是()A.a B.a C.a D.a【分析】直接利用二次根式的性质分析得出答案.【解答】解:∵二次根式有意义,∴1﹣2a>0,解得:a<,故字母a的取值范围是:a<.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.13.使式子+成立的x的取值范围是()A.x≥﹣2B.x>﹣2C.x>﹣2,且x≠2D.x≥﹣2,且x≠2【分析】先由分式有意义的性质得到:x2﹣4≠0,x≠±2,根据二次根式有意义的条件,得x+2≥0,解答即可求解.【解答】解:由题意得:x2﹣4≠0,∴x≠±2又∵x+2≥0,∴x≥﹣2∴x的取值范围是:x>﹣2且x≠2.故选:C.【点评】本题考查了二次根式的性质与分式有意义的性质,解不等式,是基础题.14.若式子有意义,则实数m的取值范围是()A.m>﹣2B.m>﹣2且m≠1C.m≥﹣2D.m≥﹣2且m≠1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m≥﹣2且m≠1故选:D.【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件,本题属于基础题型.15.代数式+中x的取值范围在数轴上表示为()A.B.C.D.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得3﹣x≥0且x﹣1≠0,解得x≤3且x≠1,在数轴上表示如图,故选:A.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数且分母不能为零得出不等式是解题关键.16.下列说法正确的个数有()①代数式的意义是a除以b的商与1的和;②要使y=有意义,则x应该满足0<x≤3;③当2x﹣1=0时,整式2xy﹣8x2y+8x3y的值是0;④地球上的陆地面积约为14900万km2,用科学计数法表示为1.49×108km2.A.1个B.2个C.3个D.4个【分析】根据代数式的意义,二次根式和分式有意义的条件以及科学计数法进行解答.【解答】解:①代数式的意义是a除以b与1的和的商,故错误;②要使y=有意义,则x应该满足x≤3且x≠0,故错误;③当2x﹣1=0时,2xy﹣8x2y+8x3y=2xy(1﹣4x+4x2)=2xy(1﹣2x)2=0,故正确;④地球上的陆地面积约为14900万km2,用科学计数法表示为1.49×108km2,故正确;故选:B.【点评】考查了代数式的意义,二次根式和分式有意义的条件以及科学计数法.科学计数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学计数法.【科学计数法形式:a×10n,其中1≤a<10,n为正整数】.17.使代数式有意义的整数x有()A.5个B.4个C.3个D.2个【分析】直接利用二次根式的得出x的取值范围,进而得出整数x的值.【解答】解:∵代数式有意义,∴x+3>0,3﹣3x≥0,解得:x>﹣3,x≤1,则﹣3<x≤1,故代数式有意义的整数x有:﹣2,﹣1,0,1,共4个数.故选:B.【点评】此题主要考查了二次根式有意义的条件,正确得出x的取值范围是解题关键.18.已知实数x、y满足y=﹣2,则y x值是()A.﹣2B.4C.﹣4D.无法确定【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【解答】解:∵实数x、y满足y=﹣2,∴x=2,y=﹣2,∴y x=(﹣2)2=4.故选:B.【点评】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.19.要使代数式有意义,则下列关于x的描述正确的是()A.最小值是1B.最大值是1C.最小值是﹣1D.最大值是﹣1【分析】根据二次根式有意义的条件解答可得.【解答】解:要使代数式有意义,则x﹣1≥0,即x≥1,所以x有最小值1,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式的被开方数为非负数.20.如果式子是有意义,那么a的取值范围是()A.a≥2B.a>2C.a=2D.a≤1【分析】直接利用二次根式的性质化简得出答案.【解答】解:∵式子是有意义,∴a﹣2>0,解得:a>2,∴a的取值范围是:a>2.故选:B.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.21.若代数式有意义,则实数x的取值范围是()A.x>0B.x≥0C.x≠0D.任意实数【分析】根据分式和二次根式有意义的条件进行解答.【解答】解:依题意得:x2≥0且x≠0.解得x≠0.故选:C.【点评】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.22.下列计算正确的是()A.﹣|﹣3|=3B.﹣32=9C.D.【分析】直接利用二次根式的性质以及绝对值的性质分别化简得出答案.【解答】解:A、﹣|﹣3|=﹣3,故此选项错误;B、﹣32=﹣9,故此选项错误;C、=3,正确;D、=3,故此选项错误;故选:C.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确化简各数是解题关键.23.化简等于()A.B.±C.D.5【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:==.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.24.二次根式的值是()A.2017B.﹣2017C.2017或﹣2017D.20172【分析】根据=|a|化简可得.【解答】解:=|﹣2017|=2017,故选:A.【点评】本题主要考查二次根式的性质与化简,解题的关键是掌握=|a|.25.下列各式中,正确的是()A.B.C.D.【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A、=4,故此选项错误;B、﹣=﹣4,正确;C、=4,故此选项错误;D、=4,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.26.若=a﹣2,则a与2的大小关系是()A.a=2B.a>2C.a≤2D.a≥2【分析】根据二次根式的性质即可求出答案.【解答】解:由题意可知:a﹣2≥0,∴a≥2,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.27.等于()A.8B.﹣8C.2D.﹣2【分析】直接利用二次根式的性质化简得出答案.【解答】解:=8.故选:A.【点评】此题主要考查了二次根式的性质,正确掌握运算法则是解题关键.28.化简(﹣)2的结果是()A.±3B.﹣3C.3D.9【分析】根据二次根式的性质即可求出答案.【解答】解:原式=3,故选:C.【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.29.给出下列化简①(﹣)2=2:②=2;③=12;④=,其中正确的是()A.①②③④B.①②③C.①②D.③④【分析】根据二次根式的运算法则即可求出答案.【解答】解:①原式=2,故①正确;②原式=2,故②正确;③原式==2,故③错误;④原式==,故④错误;故选:C.【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.30.=()A.B.C.D.【分析】根据二次根式的性质进行化简即可.【解答】解:,故选:D.【点评】此题考查二次根式的性质,关键是根据二次根式的性质进行化简.二.填空题(共10小题)31.已知a≥0时,=a.请你根据这个结论直接填空:(1)=3;(2)若x+1=20182+20192,则=4037.【分析】(1)由=根据二次根式性质可得;(2)由x+1=20182+20192=2×20182+2×2018+1得x=2×20182+2×2018,代入得==,从而得出答案.【解答】解:(1)==3,故答案为:3;(2)∵x+1=20182+20192=20182+(2018+1)2=20182+20182+2×2018+1=2×20182+2×2018+1,∴x=2×20182+2×2018,则===2×2018+1=4037,故答案为:4037.【点评】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质和完全平方公式的应用.32.化简二次根式a后的结果是﹣或【分析】分﹣1<a<0和a>0两种情况,根据二次根式的性质化简.【解答】解:当﹣1<a<0时,原式=﹣,当a>0时,原式=,故答案为:﹣或.【点评】本题考查的是二次根式的化简,掌握二次根式的性质,灵活运用分情况讨论思想是解题的关键.33.若=1.2,则a=;若=m,则m=非负数;【分析】直接利用二次根式的性质计算得出答案.【解答】解:∵=1.2,∴a=()2=,∵=m,∴m≥0,即m为非负数.故答案为:,非负数.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.34.已知实数a在数轴上的位置如图所示,化简:+|a﹣1|=1﹣2a.【分析】直接利用数轴上a的位置,进而得出a的取值范围,进而化简即可.【解答】解:由数轴可得:﹣1<a<0,则+|a﹣1|=﹣a+1﹣a=1﹣2a.故答案为:1﹣2a.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.35.若a<2,化简+a﹣1=1.【分析】直接利用a的取值范围,再结合二次根式的性质化简得出答案.【解答】解:∵a<2,∴+a﹣1=2﹣a+a﹣1=1.故答案为:1.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.36.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为2a﹣b.【分析】直接利用数轴上a,b的位置进而得出b﹣a<0,a>0,再化简得出答案.【解答】解:由数轴可得:b﹣a<0,a>0,则|b﹣a|+=a﹣b+a=2a﹣b.故答案为:2a﹣b.【点评】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.37.若a>1,化简的结果是a﹣1.【分析】根据=|a|进行化简即可.【解答】解:原式==|1﹣a|=a﹣1,故答案为:a﹣1.【点评】此题主要考查了二次根式的化简和性质,关键是掌握=|a|.38.实数a在数轴上的位置如图所示,则化简后为7.【分析】根据数轴可以求得a的取值范围,从而可以化简题目中的式子,从而可以解答本题.【解答】解:由数轴可得,4<a<8,∴=a﹣3+10﹣a=7,故答案为:7.【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确二次根式化简求值的方法.39.化简:2<x<4时,﹣=2x﹣6.【分析】首先根据x的范围确定x﹣2与x﹣4的符号,然后利用算术平方根的定义,以及绝对值的性质即可化简.【解答】解:∵2<x<4,∴x﹣2>0,x﹣4<0,∴原式=﹣=|x﹣2|﹣|x﹣4|=x﹣2﹣(4﹣x)=x﹣2﹣4+x=2x﹣6.故答案为:2x﹣6.【点评】本题考查了二次根式的化简,正确理解算术平方根的性质是关键.40.当a<0,b>0时.化简:=﹣a.【分析】直接利用a,b的符号,进而化简得出答案.【解答】解:∵a<0,b>0,∴=﹣a.故答案为:﹣a.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.。

二次根式的概念、性质知识点及练习

二次根式的概念、性质知识点及练习

二次根式的概念、性质1.二次根式的概念:(1)一般地,把形如式子a(a≥0)的式子叫做二次根式。

“”称为二次根号,二次根号下面的“a”叫做被开方数。

知识拓展:①被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意a≥0是a为二次根式的前提条件。

②二次根式的定义是从形式上界定的,必须含有二次根号“”,虽然9=3,但是3是9的计算结果,因此9是二次根式。

③“”的根指数是“2”,一般把根指数“2”省略,不要误把“”的根指数当作“0”。

④形如b a(a≥0)的式子也是二次根式,它表示b与a的乘积,注意当b为带分数时,要把b写成假分数的形式。

特别提示:判断一个式子是不是二次根式,看其是否同时具备二次根式的两个特征:(1)带二次根号“”;(2)被开方数是非负数。

二者缺一不可。

(2)二次根式有意义的条件:当a≥0时,a有意义;当a<0时,a在实数范围内没有意义。

知识拓展:①如果一个式子中有多个二次根式,那么每个二次根式的被开方数都必须为非负数才能保证这个式子有意义。

②在解决关于代数式有意义的问题时,要注意二次根式、分式有意义的条件,即二次根式中被开方数为非负数,分式中分母不能为零。

(3)二次根式的非负性:在二次根式中,被开方数一定是非负数,并且二次根式a≥0,即非负数。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。

二次根式化简的基本技巧和方法:1)根号下是一个正整数:将该数字拆分成一个完全平方数和某个数字的乘积,然后将完全平方数开平方放到根号外面。

2)根号下是一个分数:将该分数拆分成一个分数的平方数和某个数字的乘积,然后将分数开根号到根号外面。

3)根号下有数字和字母:这种情况下,由于不确定字母是正数还是负数,因此开放的时候要带着绝对值开方。

二次根式的概念及性质

二次根式的概念及性质

二次根式的概念及性质姓名:一、 二次根式的定义 形如a (a ≥0),这样的式子叫做二次根式.例题:x 是怎样的实数时,下列各式在实数范围内有意义?(1)27+x (2)(2)27--x ;(3)34+x ;(4).2)1(+-x对应练习:1、下列各式是不是二次根式?(是的打”√”,不是的打” ×”) (1)()0<-a a ; ( )(2)()0<a a ; ( ) (3)()121>+x x ; ( )(4)22x -- ( ) 2、已知-2<x <0,则下列各式中在实数范围内没有意义的是 ( ) A.x -2 B. x +2 C.12-x D.x 21-3、已知-2<x <0,则下列各式中在实数范围内有意义的是( ) A. -2|x | B.2-x C.1-x D.x -14、若322+-+-=x x y ,则x y 的算术平方根是5、如果xy -和y x -都是二次根式(x ≠0,y ≠0),那么x 和y 的符号应为( )A.⎩⎨⎧>>00y xB.⎩⎨⎧<<00y xC.⎩⎨⎧<>00y xD.⎩⎨⎧><00y x中考演练:1.(2009年内蒙古包头)函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤2. (2009年武汉)函数y x 的取值范围是( )A .12x -≥B .12x ≥C .12x -≤D .12x ≤ 3.(2009年河北)在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <04.(2009年株洲市)...,则x 的取值范围是A . 2x ≥B .2x >C .2x <D .2x ≤5. 已知x 、y 为实数,且133+-+-=x x y ,求x y y x +的值. 二、二次根式的性质:1. 0≥a (a ≥0);a 表示的意义: . a 是一个 数.初中阶段所学的几种非负数的表示方法:(1) (2)(3) . 2.()2a =a (a ≥0),由此可以看出任何一个非负数都可以写成 的形式.如3=()23. 3.=2a =⎩⎨⎧ (a 的取值情况)例题1:若等式032=++-b a 成立,则a= ,b=练习:1.已知x 、y 都是实数,且3-+y x 与5+-y x 互为相反数,求22y x -的值.2.若03442=-++-b a a 成立,则ab 的平方根是 .3.已知032=++-+ab b a ,求222b ab a +-的值4.已知()03212=-+-+-z y x ,则xyz 分别是 .5.已知n n m 6912=++-,则mn= .例题2:在实数范围内因式分解:a 4-8a 2+16例题3:计算:()232练习:1.把下列各式写成一个正数的平方的形式(题中所有字母都表示正数): (1)4= (2)10= (3)5π =________ (4)16x= (3)=a 41 (4)=243b a __2.在实数范围内因式分解:(1)m 2-121 (2)26-3x 2 (3)x 4-9 (4)25y 4-16 (5)x 4-12x 2+363.计算: (1)()223-(2)2221⎪⎭⎫ ⎝⎛a (3)()2xy x (4)()222y x -(5)()()22y x y x --+ 作业: 1.(2009年鄂州)使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3 B 、x ≥3 C 、 x>4 D 、x ≥3且x ≠42.(2009x 的取值范围是( ) A .1x ≠ B .0x ≠ C .10x x >-≠且 D .10x x ≠≥-且3. (2009年宁波市)x 的取值范围是( )A .2x ≠B .2x >C .x ≤2D .2x ≥4. (2009年甘肃庆阳)x 应满足的条件是 .5.设2-=x a ,2-=x b ,c=(x-2)2,d=x+2,则在a 、b 、c 、d 四个数中,其值一定为非负数的数共有( )A.1个B.2个C.3个D.4个6.(2009年新疆)若x y =xy 的值是( )A. B. C .m n + D .m n -7.(2009年贵州省黔东南州)=-2)3(___________8.(2009山西太原市)计算2的结果等于 . 9.(09湖南怀化)若()2240a c --=,则=+-c b a .10.(2009年凉山州)已知一个正数的平方根是32x -和56x +,则这个数是 . 11.12.在实数范围内分解因式:=-122a ____;=+-2324x x __________(本题难)。

《二次根式》的知识要点和习题

《二次根式》的知识要点和习题

《二次根式》的知识要点和习题知识要点1、二次根式的概念:形如a (a ≥0)的式子叫做二次根式。

二次根式a 的实质是一个非负数a 的算术平方根。

注意:在二次根式中,被开放数能够是数,也能够是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a ≥0是a 为二次根式的前提条件,如5,21x +,等是二次根式,而5-、2x -、12--x 等都不是二次根式;a 的根指数是2, 即2a ,可省略不写;b a 也是二次根式。

当b 为带分数时,要把b 改写成假分数。

538是二次根式,不能写成2532。

2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。

如 不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如 ,,..........都不是最简二次根式,而,,5,都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如 ,,就是同类二次根式,因为=2,=3,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

①的有理化因式为,②的有理化因式为,③的有理化因式为,④的有理化因式为,⑤的有理化因式为5.二次根式的性质:(1). (a≥0)是一个非负数, 即≥0;(2).非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);(3).某数的平方的算术平方根等于某数的绝对值,即=|a|=(4).非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。

(5).非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a≥0,b>0)。

6.二次根式的乘除(1). 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的定义】 (1)
【考点二二次根式有意义的条件】 (2)
【考点三求二次根式的值】 (3)
【考点四求二次根式中的参数】 (4)
【考点五利用二次根式的性质化简】 (6)
【考点六复合二次根式的化简】 (7)
【过关检测】 (9)
【典型例题】
【考点一二次根式的定义】
【考点二二次根式有意义的条件】
【考点三求二次根式的值】
【考点四求二次根式中的参数】
【考点五利用二次根式的性质化简】
【考点六复合二次根式的化简】
-=
)解:743
【过关检测】一、选择题
【详解】解:二次根式
a b
-≠a b
+= a b
14
【答案】22+-a b c。

二次根式知识点梳理及经典练习(超详细)

二次根式知识点梳理及经典练习(超详细)

二次根式知识点梳理及经典练习知识点1:二次根式的概念1.二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.题型一:二次根式的判定【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________(填序号). [练一练]:1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、)0(≥a a2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______题型二:二次根式有意义【例2】若式子13x -有意义,则x 的取值范围是 .[练一练]:1、使代数式43--x x 有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、使代数式221x x -+-有意义的x 的取值范围是3、如果代数式mn m 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限题型三:二次根式定义的运用[练一练]:A.-1 B.1 C.2 D.3题型四:二次根式的整数部分与小数知识点2:二次根式的性质常用到.注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.题型一:二次根式的双重非负性【例4】若()2240a c -+-=,则=+-c b a .[练一练]:1、若0)1(32=++-n m ,则m n +的值为 。

2、已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ) A .3 B .– 3 C .1 D .– 13、已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为______.4、若1a b -+互为相反数,则()2005_____________a b -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的概念及性质练习题
班级 姓名
一.判断题(对的打“∨”,错的打“×”)
(1x 的取值范围是x<0 ( )
(2中字母x 的取值范围是x ≤3
4 ( )
(3)当x=-1
( )
(4)当a=-4( )
(5)2= —12 ( );(6—1
2 (

(7)2= —1
2 ( );(8)(2
=2×1
2=1 (

二、填空题:
1.b ≥3)s ≥0)a (0≥a )的代
数式,叫做_______.
2.当x______ 时,
3
x 的取值范围是_______ .
4.
(7)
2
=________;(8
+(
2=________.
(10

5.当x=-2
_______. 6.当a取______
时,
7.当x取______
8.当m=-2
值为________.
9、若直角三角形的两直角边分别是2cm 和acm,则直角三角形的斜边长是_______
10、若正方形的面积是(b-3)cm2,则正方形的边长是_________。

三、选择题:
1.下列各式中,哪一个是二次根式()
A

(
(
()(
()
(
()(
2
2
3
1_____,2______,3_____, 4_____,5____,6____.
===
===
2
.使代数式2
x +有意义的x 的取值范围是( ) A .x ≠-2; B .x ≤12且x ≠-2; C .x<12
且x ≠-2; D .x ≥1
2且x ≠-2
3.下列各式中一定成立的是( )
A
=3+4=7 B
C .(
2
D
=1-13=2
3
四、求下列二次根式中字母的取值范围:
五、计算:(1
-(12)2; (2)

3)
4时x 的值.
(
)(
)(
)123(
4
x-4│—│7-x│.。

相关文档
最新文档