面板数据分析简要步骤与注意事项面板单位根面板协整回归分析
面板数据的常见处理

面板数据的常见处理面板数据(Panel Data)是一种涉及多个个体(cross-section units)和多个时间点(time periods)的数据结构。
它在经济学、社会科学和其他领域中被广泛应用。
处理面板数据需要采取一系列的方法和技巧,以确保数据的准确性和可靠性。
下面将介绍面板数据的常见处理方法和步骤。
一、面板数据的类型面板数据可以分为两种类型:平衡面板数据和非平衡面板数据。
1. 平衡面板数据:每个个体在每个时间点都有观测值,数据完整且连续。
2. 非平衡面板数据:个体在某些时间点上可能没有观测值,数据不完整或不连续。
二、面板数据的处理步骤1. 数据清洗和准备面板数据的处理首先需要进行数据清洗和准备工作,包括以下步骤:- 去除缺失值:对于非平衡面板数据,需要检查并去除缺失值,确保数据的完整性和连续性。
- 数据排序:根据个体和时间变量对数据进行排序,以便后续处理和分析。
- 数据转换:根据需要,对数据进行转换,如对数转换、差分等,以满足模型的要求。
2. 面板数据的描述性统计分析描述性统计分析是对面板数据的基本特征进行总结和分析,包括以下内容:- 平均值和标准差:计算每个变量在不同时间点上的平均值和标准差,了解变量的分布情况。
- 相关性分析:计算不同变量之间的相关系数,了解变量之间的关系。
- 可视化分析:绘制折线图、散点图等可视化图形,展示变量的变化趋势和关系。
3. 面板数据的面板单位根检验面板单位根检验是判断面板数据是否存在单位根(unit root)的一种方法,常用的检验方法有以下几种:- Levin-Lin-Chu (LLC)检验:用于检验面板数据是否存在单位根。
- Fisher ADF检验:用于检验面板数据是否存在单位根。
- Im-Pesaran-Shin (IPS)检验:用于检验面板数据是否存在单位根。
4. 面板数据的固定效应模型固定效应模型是用于分析面板数据的一种方法,它考虑了个体固定效应对数据的影响。
面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)(2)

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,LevinandLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。
Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。
Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。
Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。
面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,LevinandLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。
Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。
Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。
Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。
面板数据的常见处理

面板数据的常见处理面板数据是一种经常在经济学、金融学等领域中使用的数据形式,它包含了多个个体(如个人、企业)在多个时间点上的观测数据。
对于这种数据,常见的处理方法包括面板数据的描述统计分析、面板数据的面板回归分析以及面板数据的面板单位根检验等。
一、面板数据的描述统计分析面板数据的描述统计分析是对面板数据进行基本的统计特征描述,包括平均值、标准差、最小值、最大值等。
通过对面板数据的描述统计分析,可以了解面板数据的基本情况,为后续的分析提供基础。
二、面板数据的面板回归分析面板回归分析是对面板数据进行回归分析的一种方法。
通过面板回归分析,可以探究面板数据中个体间的差异以及时间间的变化对因变量的影响程度。
常见的面板回归模型包括固定效应模型、随机效应模型和混合效应模型等。
面板回归分析可以帮助我们理解面板数据中的个体间和时间间的关系,从而为政策制定和决策提供依据。
三、面板数据的面板单位根检验面板单位根检验是用来检验面板数据中的变量是否具有单位根的方法。
单位根表示变量存在非平稳性,而非平稳性会对面板数据的分析结果产生偏误。
常见的面板单位根检验方法包括Levin-Lin-Chu (LLC)检验、Im-Pesaran-Shin (IPS)检验等。
通过面板单位根检验,可以判断面板数据中的变量是否平稳,从而选择合适的模型进行分析。
四、面板数据的面板协整分析面板协整分析是对面板数据中存在协整关系的变量进行分析的方法。
协整关系表示变量之间存在长期稳定的关系,可以用来研究变量之间的长期均衡关系。
常见的面板协整分析方法包括Pedroni的多元协整检验、Westerlund的多元协整检验等。
通过面板协整分析,可以深入了解面板数据中变量之间的长期关系,为政策制定和决策提供参考。
五、面板数据的面板数据的固定效应模型固定效应模型是一种常用的面板数据分析方法,它通过控制个体效应来分析时间变化对因变量的影响。
固定效应模型可以帮助我们消除个体间的差异,从而更准确地估计时间变化对因变量的影响。
面板数据协整分析

面板数据协整分析面板数据协整分析在计量经济学中被广泛应用于研究变量之间的长期均衡关系。
该方法结合了面板数据的特点和协整分析的思想,对于探讨变量之间的长期关系具有重要意义。
本文将以面板数据协整分析为题,探讨其基本原理、应用场景及操作步骤。
一、基本原理面板数据协整分析基于协整理论,该理论由格兰杰(Granger)和约翰森(Johansen)提出。
协整分析强调变量之间的长期均衡关系,即在长期内,变量之间的差异会被一组线性关系所消除,使得变量之间呈现出稳定的关系。
面板数据是经济学研究中常用的数据格式,具有个体和时间两个维度。
相比于截面数据或时间序列数据,面板数据包含了更多的信息,能够更好地捕捉个体和时间的异质性。
因此,面板数据协整分析更适用于考察个体之间的关系和长期的动态变化。
二、应用场景面板数据协整分析可以应用于多个领域,如经济学、金融学、环境科学等。
以下是一些典型的应用场景:1. 经济增长与贸易关系分析面板数据协整分析可以用于研究不同国家之间的贸易关系和经济增长的关联性。
通过分析面板数据,可以确定是否存在长期均衡关系,以及对经济增长的贡献度。
2. 教育投资与经济发展的影响面板数据协整分析可以帮助研究者探究教育投资对经济发展的影响。
通过分析面板数据,可以建立教育投资与经济发展之间的长期关系模型,从而评估教育政策的效果。
3. 环境污染与经济增长的关系研究面板数据协整分析可以帮助研究者了解环境污染与经济增长之间的关联性。
通过分析面板数据,可以估计环境污染对经济增长的影响,并提出相关政策建议。
三、操作步骤进行面板数据协整分析需要以下几个基本步骤:1. 数据准备首先,需要收集相关面板数据,并对数据进行清洗和整理,确保数据的可靠性和一致性。
同时,还需要进行面板数据的单位根检验,以判断是否需要进行协整分析。
2. 变量选择在进行面板数据协整分析时,需要选择适当的变量作为分析对象。
变量选择应基于理论基础和实际需求,并考虑到变量之间的相关性。
面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,LevinandLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。
Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。
Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。
面板数据分析方法步骤全解

面板数据分析方法步骤全解面板数据分析是一种常用的统计方法,可用于研究面板数据。
面板数据是指在一定时间内,对多个个体或单位进行反复观测的数据。
面板数据的特点是具有跨个体和跨时间的变异性,可以更好地捕捉个体变量和时间变量的相关性。
本文将详细介绍面板数据分析的方法步骤。
步骤一:数据准备面板数据分析的第一步是准备数据。
首先,需要收集面板数据,包括个体的观测值和时间变量。
然后,对数据进行清洗和整理,包括处理缺失值、异常值和重复值。
此外,还要对变量进行命名和编码,以便后续分析使用。
步骤二:面板数据的描述性统计分析在进行面板数据分析之前,通常需要对数据进行描述性统计分析。
这可以帮助我们了解数据的基本特征和变化趋势。
常用的描述性统计方法包括计算平均数、标准差、最大值、最小值和分位数等。
此外,还可以使用图表和图表来可视化数据的分布和变化情况。
步骤三:面板数据的平稳性检验面板数据在进行进一步分析之前,需要进行平稳性检验。
平稳性是指面板数据的统计特性在时间和个体之间保持不变。
常用的平稳性检验方法包括单位根检验和平稳均值假设检验。
如果数据不平稳,可以通过差分或其他方法进行处理,以实现平稳性。
步骤四:面板数据的固定效应模型估计面板数据分析的核心是建立面板数据模型并进行参数估计。
其中,固定效应模型是最常用的面板数据模型之一。
固定效应模型假设个体效应是固定的,与个体的观测值无关。
通过固定效应模型,可以估计个体效应和其他变量的影响。
常用的估计方法包括最小二乘法、广义最小二乘法和联合估计法等。
步骤五:面板数据的随机效应模型估计除了固定效应模型外,还可以使用随机效应模型进行面板数据分析。
随机效应模型假设个体效应是随机的,与个体的观测值相关。
通过随机效应模型,可以同时估计个体效应和其他变量的影响。
常用的估计方法包括广义最小二乘法和极大似然估计法等。
步骤六:面板数据的混合效应模型估计混合效应模型是固定效应模型和随机效应模型的组合,既考虑了个体效应的固定性,又考虑了个体效应的随机性。
面板数据的常见处理

面板数据的常见处理引言概述:面板数据是一种由时间序列和横截面数据组成的数据结构,常用于经济学和社会科学研究中。
由于其特殊的数据结构,面板数据的处理方法与传统的时间序列或者横截面数据有所不同。
本文将介绍面板数据的常见处理方法,包括数据清洗、面板单位根检验、面板回归分析和面板数据的固定效应模型。
一、数据清洗1.1 缺失值处理:面板数据中往往存在缺失值,处理缺失值的方法包括删除缺失观测、插补缺失值和使用面板数据的特征进行缺失值预测。
1.2 异常值处理:面板数据中可能存在异常值,可以通过箱线图、离群值检测方法等进行识别和处理。
1.3 数据平滑:面板数据中的变量可能存在噪声,可以使用平滑方法如挪移平均、指数平滑等对数据进行平滑处理。
二、面板单位根检验2.1 单位根概念:单位根是时间序列分析中的重要概念,用于判断变量是否具有非平稳性。
对于面板数据,我们需要进行面板单位根检验,判断变量的平稳性。
2.2 常见的面板单位根检验方法包括Levin-Lin-Chu(LLC)检验、Im-Pesaran-Shin(IPS)检验和Maddala-Wu(MW)检验等。
2.3 单位根检验的结果可以匡助我们选择合适的模型和估计方法,避免估计结果的偏误。
三、面板回归分析3.1 固定效应模型:面板数据的回归分析中,固定效应模型是常用的方法之一。
该模型可以控制个体间的异质性,并通过固定效应项捕捉个体固定的影响。
3.2 随机效应模型:随机效应模型是另一种常用的面板回归模型,它假设个体效应项与解释变量无关,通过随机效应项来捕捉个体间的异质性。
3.3 混合效应模型:混合效应模型是固定效应模型和随机效应模型的组合,它可以同时考虑个体效应和时间效应。
四、面板数据的固定效应模型4.1 模型假设:固定效应模型假设个体效应是固定的,即个体效应项与解释变量无关。
4.2 估计方法:固定效应模型的估计方法包括最小二乘法和差分法。
最小二乘法可以直接估计固定效应模型的参数,而差分法则通过对数据进行差分来消除个体效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归( spurious regression )。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中 ,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布 , 这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002) 的改进, 提出了检验面板单位根的LLC法。
Levin et al. (2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25〜250之间,截面数介于10〜250之间)的面板单位根检验。
Im et al. (1997) 还提出了检验面板单位根的IPS 法, 但 Breitung(2000) 发现 IPS 法对限定性趋势的设定极为敏感 , 并提出了面板单位根检验的 Breitung 法。
Maddala and Wu(1999)又提出了 ADF-Fisher 和 PP-Fisher 面板单位根检验方法。
由上述综述可知,可以使用 LLC、IPS、Breintung 、ADF-Fisher 和 PP-Fisher5 种方法进行面板单位根检验。
其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS、H-Z 分别指 Levin, Lin & Chu t* 统计量、 Breitung t 统计量、 lm Pesaran & Shin W 统量、计 ADF- Fisher Chi-square 统计量、PP-Fisher Chi-square 统计量、Hadri Z 统计量,并且 Levin, Lin & Chu t* 统计量、 Breitung t 统计量的原假设为存在普通的单位根过程, lm Pesaran & Shin W 统计量、 ADF- Fisher Chi-square 统计量、 PP-Fisher Chi-square 统计量的原假设为存在有效的单位根过程, Hadri Z 统计量的检验原假设为不存在普通的单位根过程。
有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC(Levin-Lin-Chu )检验和不同根单位根检验 Fisher-ADF 检验(注:对普通序列(非面板序列)的单位根检验方法则常用 ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。
如果我们以 T(trend )代表序列含趋势项,以 I (intercept )代表序列含截距项, T&I 代表两项都含,N (none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。
但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。
具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。
并且认为,只有三个模型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的, 而只要其中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。
此外,单位根检验一般是先从水平 ( level )序列开始检验起, 如果存在单位根,则对该序列进行一阶差分后继续检验,若仍存在单位根,则进行二阶甚至高阶差分后检 验,直至序列平稳为止。
我们记 I(0) 为零阶单整, I(1) 为一阶单整,依次类推, I(N) 为 N 阶单整。
步骤二:协整检验或模型修正 情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以 进行协整检验。
协整检验是考察变量间长期均衡关系的方法。
所谓的协整是指若两个或 多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。
此时我们称这些变量序列 间有协整关系存在。
因此协整的要求或前提是同阶单整。
但也有如下的宽限说法:如果变量个数多于两个,即解释变量个数多于一个,被 解释变量的单整阶数不能高于任何一个解释变量的单整阶数。
另当解释变量的单整阶数 高于被解释变量的单整阶数时,则必须至少有两个解释变量的单整阶数高于被解释变量 的单整阶数。
如果只含有两个解释变量,则两个变量的单整阶数应该相同。
也就是说,单整阶数不同的两个或以上的非平稳序列如果一起进行协整检验,必 然有某些低阶单整的,即波动相对高阶序列的波动甚微弱(有可能波动幅度也不同)的 序列,对协整结果的影响不大,因此包不包含的重要性不大。
而相对处于最高阶序列, 由于其波动较大,对回归残差的平稳性带来极大的影响,所以如果协整是包含有某些高 阶单整序列的话(但如果所有变量都是阶数相同的高阶,此时也被称作同阶单整,这样 的话另当别论),一定不能将其纳入协整检验。
协整检验方法的文献综述: (1)Kao(1999) 、Kao and Chiang(2000) 利用推广的 DF和ADF 检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静 态面板回归的残差来构建统计量。
(2)Pedron(1999) 在零假设是在动态多元面板回归中没 有协整关系的条件下给出了七种基于残差的面板协整检验方法。
和 Kao 的方法不同的是,Pedroni 的检验方法允许异质面板的存在。
(3)Larsson et al(2001) 发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法,这种检验的方法是检验变 量存在共同的协整的秩。
主要采用的是 Pedroni 、Kao Johansen 的方法。
通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差 是平稳的。
因此可以在此基础上直接对原方程进行回归,此时的回归结果是较精确的。
这时,我们或许还想进一步对面板数据做格兰杰因果检验 (因果检验的前提是变量协整) 。
但如果变量之间不是协整(即非同阶单整)的话,是不能进行格兰杰因果检验的,不过 此时可以先对数据进行处理。
引用张晓峒的原话,“如果y 和x 不同阶,不能做格兰杰因 果检验,但可通过差分序列或其他处理得到同阶单整序列,并且要看它们此时有无经济 意义。
”下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的,即 是通过概率或者分布函数的角度体现出来的:在所有其它事件的发生情况固定不变的条 件下,如果一个事件X 的发生与不发生对于另一个事件 丫的发生的概率(如果通过事件 定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又有先后顺 序(A 前B 后),那么我们便可以说X 是丫的原因。
考虑最简单的形式,Gran ger 检验是 运用F-统计量来检验X 的滞后值是否显着影响丫 (在统计的意义下,且已经综合考虑了 丫 的滞后值;如果影响不显着,那么称 X 不是丫的“ Gran ger 原因”(Gra nger cause);如 果影响显着,那么称X 是丫的“Granger 原因”。
同样,这也可以用于检验 丫是X 的“原 因”,检验丫的滞后值是否影响X (已经考虑了 X 的滞后对X 自身的影响)。
Eviews 好像没有在 POO 窗口中提供 Gran ger causality test ,而只有 uni t root test 曰. 量。
和 cointegration test 。
说明 Eviews 是无法对面板数据序列做格兰杰检验的,格兰杰检验只能针对序列组做。
也就是说格兰杰因果检验在Eviews中是针对普通的序列对(pairwise) 而言的。
你如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/Make Group),再来试试。
情况二:如果如果基于单位根检验的结果发现变量之间是非同阶单整的,即面板数据中有些序列平稳而有些序列不平稳,此时不能进行协整检验与直接对原序列进行回归。
但此时也不要着急,我们可以在保持变量经济意义的前提下,对我们前面提出的模型进行修正,以消除数据不平稳对回归造成的不利影响。
如差分某些序列,将基于时间频度的绝对数据变成时间频度下的变动数据或增长率数据。
此时的研究转向新的模型,但要保证模型具有经济意义。
因此一般不要对原序列进行二阶差分,因为对变动数据或增长率数据再进行差分,我们不好对其冠以经济解释。
难道你称其为变动率的变动率?步骤三:面板模型的选择与回归面板数据模型的选择通常有三种形式:一种是混合估计模型( Pooled Regression Model )。
如果从时间上看,不同个体之间不存在显着性差异;从截面上看,不同截面之间也不存在显着性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS估计参数。
一种是固定效应模型 (Fixed Effects Regression Model )。
如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。
一种是随机效应模型( Random Effects Regression Model )。
如果固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应,并且这两个随机误差项都服从正态分布,则固定效应模型就变成了随机效应模型。
在面板数据模型形式的选择方法上,我们经常采用F检验决定选用混合模型还是固定效应模型,然后用Hausmar检验确定应该建立随机效应模型还是固定效应模型。
检验完毕后,我们也就知道该选用哪种模型了,然后我们就开始回归:在回归的时候,权数可以选择按截面加权( cross-section weights )的方式,对于横截面个数大于时序个数的情况更应如此,表示允许不同的截面存在异方差现象。