准同步数字体系PDH和同步数字体化SDH.pptx
SDH基本原理介绍一PPT课件

建议逐步完善(设备功能、光接口、
组网方式、网络管理等),形成完整
的SDH通信标准
5
PDH的局限性
1、只有地区性的数字信号速率和帧结构标准,而不存在世界性标准。
分为欧洲、日本和北美三种不同的速率标准:
欧洲系列
日本系列
北美系列
565Mbit/s
×4 139Mbit/s
×4 34Mbit/s
×4 8Mbit/s
24.11.2020
26
再生段误码监测B1字节 对再生段信号流进行监控 方式为BIP-8偶校验 BIP-8偶校验工作机理: ➢以8bit为单位(一个字节为单位) ➢校验相应bit列(bit块) ➢使相应列1的个数为偶
段开销--B1
24.11.2020
27
段开销--B1
B1字节工作机理 发端对上一个已扰码帧(1#STM-N)进行BIP8偶校验,所得值 放于本帧(2#STM-N)的B1字节处 收端对所收当前未解扰帧(1#STM-N)进行BIP8偶校验,所得 值B1’与所收下一帧解扰后(2#STM-N)的B1字节相异或 异或的值为零则表示传输无误码块,有多少个1则表示出现多 少个误码块 若收端检测到B1误码块,在收端RS-BBE性能事件中反映出来
段开销--M1
复用段远端误块指示字节——M1 对告信息,由信宿回传到信源 告知发端:收端当前收到的B2检测的误块数 在发端MS-REI(复用段远端误块指示)告警事件中反映出来
24.11.2020
32
段开销--K1、K2
自动保护倒换(APS)通路字节——K1、K2(b1-b5) 传送自动保护倒换信令,使网络具备自愈功能 用于复用段保护倒换情况
1、SDH是世界性的统一标准。 由ITU-T制定,不仅适用于光纤,也适用于微波和卫星传输。 统一的接口规程特性,包括速率等级、信号结构、复用和映射等
PDH和SDH

PHD和SDH以往在传输网络中普遍采用的是准同步数字体系(PDH lesiochronous Digital Hierarchy),随着信息社会的到来,它已不能满足现代信息网络的传输要求,因此同步数字体系应运而生。
PDH存在的主要问题•PDH主要是为话音业务设计,而现代通信的趋势是宽带化、智能化和个人化。
•PDH传输线路主要是点对点连接,缺乏网络拓扑的灵活性。
•存在相互独立的两大类、三种地区性标准(日本、北美、欧洲),难以实现国际互通。
•异步复用,需逐级码速调整来实现复用/解复用。
•缺少统一的标准光接口,无法实现横向兼容。
•网络管理的通道明显不足,建立集中式传输网管困难。
•网络的调度性差,很难实现良好的自愈功能。
SDH的产生SDH的研究工作始于1986年,其目的是建立光纤通信的通用标准,通过一组网络单元提供一个经济、简单、灵活的网络应用。
美国贝尔通信研究所最先提出了光同步传输网的概念,并称之为同步光网络(SONET)。
1988年,美国国家标准协会(ANSI)通过了两个最早的SONET标准。
国际电话电报咨询委员会(CCITT),于1988年接受了SONET的概念,重新命名为同步数字系列(SDH),建立了世界性的统一标准。
什么是SDHSDH-Synchronous Digital Hierarchy,是一种传输技术体制。
它是一套可进行同步信息传输、复用、分插和交叉连接的标准化数字信号的结构等级。
它具有世界性的统一标准,不仅适用于光纤,也适用于微波和卫星通信。
SDH网络是由一些基本网络单元(NE)组成的,在传输媒质上(如光纤、微波等)进行同步信息传输、复用、分插和交叉连接的传输网络。
•有全世界统一的网络接口接点(NNI)作用:减少设备种类和数量,简化了操作。
•有一套标准化的信息结构等级(STM)作用:统一了现存的两个数字体系,方便了国际互连。
•具有块状帧结构作用:可以安排丰富的开销比特用于网络运行的维护和管理。
同步数字体系的基本概念(ppt 144页)

人民邮电出 版社
图5.20 PDH的网络结构(一种应用)
人民邮电出
版第社 四节 SDH的基本概念
一、 PDH的弱点
现在的准同步数字体系(PDH)传 输体制已不能适应现代通信网的发展要 求,其弱点主要表现在如下几个方面。
(1) 只有地区性数字信号速率和帧 结构标准而不存在世界性标准。
人民邮电出 版社 (2)没有世界性的标准光接口 规范,导致各个厂家自行开发的 专用光接口大量出现。
(3) 准同步系统的复用结构, 除了几个低等级信号(如 2048kbit/s,1544kbit/s)采用 同步复用外,其它多数等级信号 采用异步复用,即靠塞入一些额 外的比特使各支路信号与复用设 备同步并复用成高速信号。
人民邮电出 版社 (4 ) 复接方式大多采用按位复接,虽 然节省了复接所需的缓冲存储器容量,但 不利于以字节为单位的现代信息交换。
人民邮电出 版社
2. 数字复接系统的构成
数字复接器的功能是把4个支 路(低次群)合成一个高次群。
数字分接器的功能是把高次群 分解成原来的低次群,它是由定时、 同步、分接和恢复等单元组成。
人民邮电出 版社
图5.5 数字复接系统方框图
人民邮电出
版第社二节 同步复接与异步复接
一、 同步复接
1. 码速变换与恢复
人民邮电出 版社
图5.13 扣除插入脉冲后的信号序列
图5.14 锁相环方框图
人民邮电出 版社 (1) 由于扣除帧同步码而产 生的抖动,有三位码被扣除,每 帧抖动一次,由于帧周期约为 100μs,故其抖动频率为10kHz。
(2) 由于扣除插入标志码而 产生的抖动。每帧有3个插入标志 码,再考虑到扣除帧码的影响, 相当于每帧有四次扣除抖动,故 其抖动频率为40kHz。
PDH和SDH

运行维护方面
安排了丰富的用于运行、管理和维护(OAM)功能的开销比特,使 网络的监控功能大大加强
7
PDH和SDH分插信号流程的比较
140/34 Mb/s 光 / 电 光信号 分接 34/8 Mb/s 分接 34/140 Mb/s
PDH
2/8 Mb/s 复接
8/34 Mb/s 复接
复接
8/2 Mb/s 分接
第六章
SDH传输技术及网络
1
主要内容 两种数字光纤通信系统传输系 列:PDH和SDH
SDH技术 城域光网络 光接入网技术 SDH光接口的测试
2
§6.1 两种数字光纤通信传输系列:PDH和SDH
“同步”:在数字光纤通信系统中,传送的信号都是 数字化的脉冲序列,这些数字信号流在传输时,其 速率必须完全保持一致,才能保证信息传送的准确 无误。 两种传输系列:PDH和SDH
9 行
TUG-3
7×TUG-2
12列
49.536
9 行
3×TU - 12
R R
7×TUG-2
TUG-2
TUG-3
R 为填充字节
21
参与复用与映射的单元:
5. 管理单元 AU-4
是在高阶VC与复用段之间进行适配的信息结构, 是由高阶VC加上管理单元指针AU-PTR构成。
261列 9列 9 行
AU-PTR
专用 光接口
光 / 电
. . .
. . .用
复
34M
分级复用、分散的网络部件、背靠背结构、人 工交叉连接、非标准的光接口
4
准同步数字系列(PDH)存在的问题
接口标准不统一
没有国际统一的速率标准
《数字通信原理与技术》课件第5章

从原理上讲,要识别V1是信码还是调整比特,只要1位码 就够了。这里用3位码主要是为了提高可靠性。如果用1位码, 这位码传错了,就会导致对V1的错误处置。例如用“1”表示 有调整,“0”表示无调整,经过传输若“1”错成“0”,就会把调整 比特错当成信码;反之,若“0”错成“1”,就会把信码错当成调 整比特而舍弃。现在用3位码,采用大数判决,即“1”的个数比 “0”多认定是3个“1”码;反之,则认定是3个“0”码。这样,即 使传输中错一位码,也能正确判别V1的性质。
基于30/32路系列的数字复接体系(E体系)的结构图如图 5-4所示。
图5-4 PCM30/32路系列数字复接体系(E体系)
5.2 同步数字体系(SDH)
5.2.1 SDH的基本概念 20世纪80年代中期以来,光纤通信在电信网中获得广泛
应用,其应用范围已逐步从长途通信、市话局间中继通信转 向用户入网。光纤通信优良的宽带特性、传输性能和低廉价 格正使之成为电信网的主要传输手段。然而随着电信网的发 展和用户要求的提高,光纤通信中的传统准同步(PDH)数字体 系暴露出一些固有的弱点,即
图5-3 正码速调整原理
通过图5-3中的比较器可以做到缓存器快要读空时发出 一指令,命令2112kHz时钟停读一次,使缓存器中的存储量增 加,而这一次停读就相当于使图5-2(a)的V1比特位置没有置 入信码而只是一位作为码速调整的比特。图5-2(a)帧结构 的意义就是每212bit比相一次,即作一次是否需要调整的判决。 判决结果需要停读,V1就是调整比特;不需要停读,V1就仍然是 信码。这样一来就把在2048kb/s上下波动的支路码流都变成 同步的2112kb/s码流。
图5-1 数字复接系统方框图
在图5-1中,码速调整单元的作用是把各准同步的输入支路的 数字信号的频率和相位进行必要调整,形成与本机定时信号完全同 步的数字信号。若输入信号是同步的,那么只需调整相位。
两种数字传输体制(PDH和SDH)ppt

包权
人书友圈7.三端同步
PDH系统配置
PCM
PCM 跳
四
次
PCM
级
基
复
群
光
群
接
复
端
设
设
接 设
机
备
备
备
2/34
34
/140
光纤 光纤
PCM
PCM 跳
四 级 PCM
光
次
复基
端
群
接群
机
复 接
设设
设
备备
备
2/34
SDH的定义
• SDH传输网由SDH终端设备TM、分插复用设备ADM、数字交叉 连接设备DXC等网络单元以及连接它们的物理链路组成的网 络。
效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
SDH的速率等级
• STM-1 155.52 Mb/S ( 约155M) • STM-4 622.08 Mb/S (约622M) • STM-16 2488.32 Mb/S (约2.5G) • STM-64 9953.28 Mb/S (约10G)
SDH的帧结构
9×N RSOH AU PTR
MSOH
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
SDH基本原理和概念PPT课件

因此,PDH体制不适应大容量传输网的组建,SDH体制 应运而升。
第9页/共53页
1.3 SDH体制的优点:
与PDH相对比SDH体制的优势: 1、接口方面
电接口:标准的信息结构等级(速率等级) 同步传输块STM-N :
SDH信号
比特率(Mb/s)
STM-1
2、复用方式:
复用/解复用的方式,决定高速信号上/下低速 信号的方便性。 PDH采用异步复用方式: 低速信号在高速信号中的位置无规律性,即无 预知性,即不能从高速信号中直接分离低速信号。
东西放在 哪儿了?
第6页/共53页
140 OLT
34
8 140
2
34
8
140 140 OLT
34 34
8 8
2
2)段开销:
完成对STM-N整体信号流进行监控。即对STM-N“车厢” 中所有“货物包”进行整体上的性能监控。 再生段开销(RSOH):对STM-N整体信号进行监控。 复用段开销(MSOH):对STM-N中的某一个STM-1信号 进行监控。 RSOH、MSOH、POH组成SDH层层细化的监控体制。
155.520简称 155M
STM-4
622.080简称 622M
STM-16
2488.320简称 2.5G
STM-64
9953.280简称 10G
第10页/共53页
SDH:高等级信号速率是相邻低等级信号 精确的4倍
光接口:对电信号扰码。 SDH:光口信号码型是加扰的NRZ码, PDH:光口信号码型是mBnB码。
第2页/共53页
1.1 SDH产生的技术背景
SDH是什么——同步数字传输体制。类似于PDH, 均为数字信号传输体制。 产生的社会背景: 1)信息社会要求: 通信网传输、交换、处理大量信息,向数字化、综 合化、智能化、个人化发展。 2)作为通信网的承载体传输网要求: 宽带化——信息高速公路 规范化——世界性统一的标准接口
SDH基本原理 ppt课件

VC-4-64c
VC-4-16c
VC-4-4c
VC-4 VC-3
x3 TUG-3
x7
x1 TU-3
x7 TUG-2
x1 TU-2
x3 TU-12
x
4
TU-11
C-4-256c
C-4-64c
C-4-16c
C-4-4c
C-4 VC-3
C-3
VC-2
C-2
VC-12 C-12
VC-11 C-11
中国的SDH基本复用映射结构
2#STM-N 将A置于2# 帧B1字节处
与2#帧B1字节 的值(A)相异或
BIP8偶校验 所得值为A’
2#STM-N 1#STM-N
B2
复用段误码监测字节: B2
对复用段信号流进行监控,方式为BIP24偶校验。 收端检测到B2误码块,在MS-BBE性能事件中反映出来。
发端
发端上报MS-REI告警, MS-FEBBE性能事件
信号流 对告M1
收端
收到端检测到有B2 误块:MS-BBE
M1
复用段远端误块指示字节:M1
对告信息:由信宿回传到信源。 告知发端:收端当前收到的B2检测的误块数;并在发端上报
MS-FEBBE性能事件。 同时在发端有MS-REI(复用段远端误块指示)告警事件上报。
信号流
发端
对告M1
发端上报MS-REI告警, MS-FEBBE性能事件,remote error indication
定帧字节:A1,A2
寻找连续信号流的帧头 A1=f6H、A2=28H
连续信号流
STMN
STMN
STMN
STMN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
图5.11 异步复接二次群帧结构
3. 异步复接系统的构成
实现正码速调整异步复接和 分接系统的方框图如图5.12所示。
)
图5.12二次群异步复接和分接系统的方框图
)
4. 复接抖动的产生与抑制
在采用正码速调整的异步复接系 统中,即使信道的信号没有抖动,复 接器本身也产生一种抖动,即“插入 抖动”的相位抖动。
)
这样的复接系列具有如下优点: (1)易于构成通信网,便于分支与 插入,并具有较高的传输效率。复用倍 数适中,多在3~5倍之间。 (2)可视电话、电视信号以及频分制 群信号能与某个高次群相适应。 (3)与传输媒介,如对称电缆、同 轴电缆、微波、波导、光纤等传输容量 相匹配。
)
图5.1 PCM复接体制
)
二、 PCM复用和数字复接
扩大数字通信容量,形成二次群以上 的高次群的方法通常有两种:PCM复用和 数字复接。
1. PCM
所谓PCM复用就是直接将多路信号编 码复用。
2.
数字复接是将几个低次群在时间的空 隙上迭加合成高次群。
)
)
图5.2 数字复接的原理示意图
三、 数字复接的实现
数字复接的实现主要有两种方法: 按位复接和按字复接。
码速调整技术可分为正码速调整、 正/负码速调整和正/零/负码速调整三种。
)
图5.9 正码速调整电路和码速恢复电路
)
图5.10 脉冲插入方式码速调整示意图
)
2. 异步复接二次群帧结构
ITU-T G.742推荐的正码速调整异 步复接二次群帧结构如图5.11(b)所示。
异步复接二次群的帧周期为 100.38μs, 帧长为848bit。其中有4×205 =820bit(最少)为信息码(这里的信息 码指的是四个一次群码速变换之前的码 元,即不包括插入的码元),有28bit的 插入码(最多)。
2. 数字复接系统的构成
数字复接器的功能是把4个支 路(低次群)合成一个高次群。
数字分接器的功能是把高次群 分解成原来的低次群,它是由定时、 同步、分接和恢复等单元组成。
)
图5.5 数字复接系统方框图
)
第二节 同步复接与异步复接
一、 同步复接
1. 码速变换与恢复
码速变换及恢复过程如图5.6所示。
1. PCM
ITU-T G.751推荐的PCM三次 群有480个话路,速率为 34.368Mbit/s。三次群的异步复 接过程与二次群相似。
)
图5.16异步复接三次群帧结构
)
)
图5.17PCM三次群异步复接方框图
2. PCM
ITU-T G.751 推 荐 的 PCM 四 次 群 有 1 9 2 0 个 话 路 , 速率为139.264Mbit/s。
)
)
图5.4数码率不同的低次群复接
五、 数字复接的方法及系统构成
1.
数字复接的方法实际也就是数字复接 同步的方法,有同步复接和异步复接两种。
同步复接是用一个高稳定的主时钟来 控制被复接的几个低次群,使这几个低次 群的数码率(简称码速)统一在主时钟的 频率上(这样就使几个低次群系统达到同 步的目的),可直接复接(复接前不必进 行码速调整,但要进行码速变换,详见第 )二节)。
)
图5.13 扣除插入脉冲后的信号序列
图5.14 锁相环方框图
)
(1) 由于扣除帧同步码而产 生的抖动,有三位码被扣除,每 帧抖动一次,由于帧周期约为 100μs,故其抖动频率为10kHz。
(2) 由于扣除插入标志码而 产生的抖动。每帧有3个插入标志 码,再考虑到扣除帧码的影响, 相当于每帧有四次扣除抖动,故 其抖动频率为40kHz。
1.
按位复接是每次复接各低次群(也 称为支路)的一位码形成高次群。
2.
按字复接是每次复接各低次群(支
路)
。
)
图5.3 按位复接与按字复接示意图
)
四、 数字复接的同步
数字复接要解决两个问题:同步 和复接。
数字复接的同步指的是被复接的 几个低次群的数码率相同。
为此,在各低次群复接之前,必 须使各低次群数码率互相同步,同时 使其数码率符合高次群帧结构的要求。 数字复接的同步是系统与系统间的同 步,因而也称之为系统同步。
)
二、 PCM子群
速率介于64kbit/s和2048kbit/s 之间的信号称为子群。子群速率主要 考虑到下列因素。
(1) 与某些传输介质相匹配。
(2) 与某些业务种类相匹配。
(3) 复接速率与其它等级相配 合并有一定的规则性。
PCM子群还可用于用户环路和小 容量的特殊通信需要。
)
三、 PCM
比 二 次 群 更 高 的 等 级 有 PCM 三次群、四次群、五次群等,下面 分别加以介绍。
准同步数字体系(PDH)和同步 数字体系(SDH)
第一节 数字复接的基本概念 第二节 同步复接与异步复接 第三节 PCM零次群和PCM高次群 第四节 SDH的基本概念 第五节 SDH的速率与帧结构 ) 第六节 同步复用与映射方法
第一节 数字复接的基本概念
一、 准同步数字体系
(PDH)
国际上主要有两大系列的准同 步 数 字 体 系 , 都 经 ITU-T 推 荐 , 即 PCM24路系列和PCM30/32路系列。
)
图5.7二次群同步复接、图5.8 二次群同步复接的帧结构
二、 异步复接
1.
码速调整是利用插入一些码元将各 一次群的速率由2048kbit/s左右统一调 整成2112kbit/s。接收端进行码速恢复, 通过去掉插入的码元,将各一次群的速 率由2112kbit/s还原成2048kbit/s左右。
)
图5.6 码速变换及恢复过程
)
2.
二次群同步复接器和分接器的方框图 如图5.7所示。
在复接端,支路时钟和复接时钟来自 同一个总时钟源,各支路码速率为 2048kbit/s,且是严格相等的,经过缓冲 存储器进行码速变换,以便复接时本支路 码字与其他支路码字错开以及为插入附加 码留下空位,复接合成电路把变换后的各 支路码流合并在一起,并在所留空位插入 包括帧同步码在内的附加码。
)
(3) 扣除码速调整插入脉 冲所产生的抖动,即指扣除第 161位V脉冲所产生的抖动。
由于锁相环具有对相位噪声 的低通特性,经过锁相环后的剩 余抖动仅为低频抖动成分。
)
第三节PCM零次群和PCM高次群
一、 PCM零次群
PCM 通 信 最 基 本 的 传 送 单位是64kbit/s,即一路话音 的编码,因此它是零次的。