圆心坐标法
圆的普通方程化为标准方程

圆的普通方程化为标准方程
标准方程是一种表达圆的最常用方法,它可以表达圆的半径和圆心位置。
而普通方程有三种,如果要把普通方程化为标准方程,首先要知道的是普通方程的三个参数,即圆心坐标(x_0,y_0),半径R,及其他系数a,b,c,根据它们可以把普通方程转化为标准方程: (x-x_0)^2 + (y-y_0)^2 = R^2
下面是具体的步骤:
第一步:将普通方程 ax^2 + bxy + cy^2 + dx + ey + f = 0 的系数a,b,c,d,e,f分别代入下面的公式:
x_0 = -(d/2a) y_0 = -(e/2c)
得到:x_0 = -(d/2a) y_0 = -(e/2c)
第二步:用上面得到的圆心代入普通方程:
ax^2 + bxy + cy^2 + dx + ey + f = 0
然后得到:
a(x -(-d/2a))^2 + b(x -(-d/2a))(y -(-e/2c)) + c(y -(-e/2c))^2 + d(-d/2a) + e(-e/2c)+f=0
第三步:将上面的式子简化,消去系数d,e。
- 1 -。
数控铣床加工中心编程及加工教学教案—圆弧沟槽的加工

任务二圆弧沟槽的加工[教学目标]1.熟练掌握G02/G03圆弧插补指令的格式。
2.掌握G02/G03圆弧插补指令的使用方法。
[教学重点]圆弧沟槽件的编程方法[教学难点]圆弧沟槽件的编程方法[教学过程]新课教学一、圆弧插补指令(G02/G03)圆弧插补指令格式如下:G17 G02/G03 X Y R (I J )F ;G18 G02/G03 X Z R (I K )F ;G19 G02/G03 Y Z R (J K )F ;说明:(1)G17为选择XY平面, G18为选择XZ平面,G19为选择YZ平面,此三个指令为同组模态指令,如图2-9所示。
(2)沿圆弧所在平面另一根轴的正方向向负方向看,顺时针圆弧插补为G02,逆时针圆弧插补为G03。
(3) X、Y、Z为圆弧的终点坐标,R为圆弧半径。
(4)I、J、K为起点到圆心的距离分别在X、Y、Z轴上的矢量值。
图2-9 圆弧插补平面选择示意图二、圆弧的表示方法圆弧的表示方法有圆心法和半径法两种。
(1)圆心法。
用I、J、K指定圆弧起点位置的方法称为圆心法。
I、J、K后面的数值定义为圆弧起点相对于圆心在X、Y、Z轴上的分向量。
图2-10所示为圆心法编程示意图。
图2-10 圆心法编程示意图(2)半径法。
以R指定圆弧半径的方法称为半径法。
半径法以起点、终点和圆弧半径来表示一段圆弧,在圆上会有两段圆弧出现,如图2-11所示。
R后面的数值是正值时,表示圆心角小于等于1800的圆弧;R后面的数值是负值时,表示圆心角大于1800的圆弧。
半径法圆弧加工程序如下:加工圆弧A:G17 G02 X_ Y_ Ra_ F _;加工圆弧B:G17 G02 X_ Y_ -Rb_ F_;图2-11 半径法编程示意图三、整圆编程对于铣削一整圆,只能用圆心法进行加工(见图2-12),半径法无法执行。
如果用半径法以两个半圆相接,其真圆度误差会太大。
整圆的加工程序为G03 X40. Y0. I-40. J0 F100;练习过程:一、布置练习任务独立完成下图零件的加工二、老师讲解加工中心自动加工圆形槽零件的操作步骤及方法。
圆的方程、直线与圆的位置关系题型归纳学生版

圆的方程、直线与圆的关系题型归纳一、学法指导与考点梳理1.圆的方程 (1)圆的方程①标准方程:(x -a )2+(y -b )2=r 2,圆心坐标为(a ,b ),半径为r . ②一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心坐标为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.(2)点与圆的位置关系①几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.②代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r 2(或0)时,点在圆外;等于r 2(或0)时,点在圆上;小于r 2(或0)时,点在圆内. 2.直线与圆的位置关系直线l :Ax +By +C =0(A 2+B 2≠0)与圆:(x -a )2+(y -b )2=r 2(r >0)的位置关系如下表.3.圆与圆的位置关系二、重难点题型突破重难点1 圆的方程求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心. (2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.例1.(1)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0(2)已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13【变式训练1】.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=5【变式训练2】.在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切. (1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程.重难点2 直线与圆的位置关系 判定直线与圆位置关系的常用方法:(1)几何法:根据圆心到直线的距离d 与圆半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组的解的个数判断.(3)直线系法:若动直线过定点P ,则点P 在圆内时,直线与圆相交;当P 在圆上时,直线与圆相切或相交;当P 在圆外时,直线与圆位置关系不确定.例2.(1)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]【变式训练1】.若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A .1 B .-3 C .1或-3D .2【变式训练2】.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.【变式训练3】.在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为(I )求圆心的轨迹方程;(II )若点到直线,求圆的方程. 重难点3 直线、圆方程的综合应用(1)判断或处理直线和圆的位置的问题,一般有两种方法,一是几何法,利用圆的几何性质解题,二是代xOy P x y P P y x P数法,联立圆与直线的方程,利用判别式,根与系数关系来处理,在做题时要用心作图,很多题目要用到数形结合的思想.(2)若,()P x y 是定圆222()()C x a y b r -+-=:上的一动点,则mx ny +和yx这两种形式的最值,一般都有两种求法,分别是几何法和代数法.①几何法.mx ny +的最值:设mx ny t +=,圆心(,)C a b 到直线mx ny t +=的距离为22d m n=+,由d r =即可解得两个t 值,一个为最大值,一个为最小值.y x 的最值:yx即点P 与原点连线的斜率,数形结合可求得斜率的最大值和最小值. ②代数法.mx ny +的最值:设mx ny t +=,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.y x 的最值:设yt x=,则y tx =,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.例3.(1)已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6 D .2(2)著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.【变式训练1】.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S .【变式训练2】.在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.三、课堂定时训练(45分钟)1.(2020黑龙江黑河一中高二期中)已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( ) A .(x -1)2+(y +1)2=25 B .(x +1)2+(y -1)2=25 C .(x -1)2+(y +1)2=100 D .(x +1)2+(y -1)2=1002.(2020山东潍坊三中高二期中)已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.(2020福建莆田一中高二月考)过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是( ) A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-=D .()()22114x y +++=4.(2020邢台市第八中学高二期末)方程220x y Dx Ey F ++++=表示以(2,3)-为圆心,4为半径的圆,则D,E,F 的值分别为( ) A .4,6,3-B .4,6,3-C .4,6,3--D .4,6,3--5.(2020·全国高二课时练习)直线y=x+1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离6.(2020山东泰安实验中学高二期中)0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A 或B .C .-D .-7.(2020全国高二课时练)与圆()22:136C x y -+=同圆心,且面积等于圆C 面积的一半的圆的方程为_________.8.(2020·上海高二课时练习)若圆22(1)(4)5x y -+-=的圆心到直线0x y a -+=的距离为2,则a 的值为_________.9.(2020湖南师大附中高二期中)已知点()()1,2,1,4A B --,求(1)过点A,B 且周长最小的圆的方程; (2)过点A,B 且圆心在直线240x y --=上的圆的方程.10.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.。
高三第一轮复习圆的方程及求法

圆的方程及求法【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 2.初步了解用代数方法处理几何问题的思想. 主干知识归纳1.圆的定义:平面内与定点的距离等于定长的点的集合(轨迹) 2.圆的方程:方法规律总结1.待定系数法求圆的方程(1) 若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2) 若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 2.几何法求圆的方程:利用圆的有关几何性质,如“圆心在圆的任一条弦的垂直平分线上”、“半径, 弦心距,弦长的一半构成直角三角形”等.3.求与圆有关的轨迹问题的四种方法【指点迷津】【类型一】确定圆的方程【例1】:求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的方程 【解析】: 设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意列出方程组()()⎪⎩⎪⎨⎧=++=-+-=+013211222222b a r b a r b a ,解之得⎪⎩⎪⎨⎧=-==534r b a ,∴圆的标准方程是(x -4)2+(y +3)2=25. 答案:(x -4)2+(y +3)2=25.【例2】:已知圆心为C 的圆经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上,求圆的标准方程.【解析】:法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为⎝⎛⎭⎫-D 2,-E2.由题意可得⎪⎩⎪⎨⎧=--=+-+-+=+--0205)5(106)6(222E D F E D F E ,消去F 得⎩⎨⎧ D +E -10=0D -E -2=0,解得⎩⎨⎧D =6E =4,代入求得F =-12,所以圆的方程为x 2+y 2+6x +4y -12=0,标准方程为(x +3)2+(y +2)2=25. 法二:因为A (0,-6),B (1,-5),所以线段AB 的中点D 的坐标为⎝⎛⎭⎫12,-112,直线AB 的斜率k AB =1)6(5----=1,因此线段AB 的垂直平分线l 的方程是y +112=-⎝⎛⎭⎫x -12,即x +y +5=0.圆心C 的坐标是方程组⎩⎨⎧ x +y +5=0x -y +1=0的解,解得⎩⎨⎧x =-3y =-2,所以圆心C 的坐标是(-3,-2).圆的半径长r =|AC |=22)26()30(+-++=5,所以,圆心为C 的圆的标准方程是(x +3)2+(y +2)2=25. 答案:(x +3)2+(y +2)2=25.【类型二】与圆有关的轨迹问题【例1】:已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【解析】:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON (图略),则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 答案:(1) (x -1)2+y 2=1. (2) x 2+y 2-x -y -1=0.【例2】:已知直角三角形ABC 的斜边为AB ,且A (-1,0),B (3,0),求: (1)直角顶点C 的轨迹方程; (2)直角边BC 中点M 的轨迹方程.【解析】:(1)设顶点C (x ,y ),因为AC ⊥BC ,且A ,B ,C 三点不共线,所以x ≠3且x ≠-1. 又k AC =y x +1,k BC =yx -3,且k AC ·k BC =-1, 所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1).(2)设点M (x ,y ),点C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32(x ≠3且x ≠1),y =y 0+02,于是有x 0=2x -3,y 0=2y .由(1)知,点C 在圆(x -1)2+y 2=4(x ≠3且x ≠-1)上运动,将x 0,y 0代入该方程得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(x ≠3且x ≠1).答案:(1) x 2+y 2-2x -3=0(x ≠3且x ≠-1).(2) (x -2)2+y 2=1(x ≠3且x ≠1).例3.(2010·山东烟台调研)若圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称,过点C (-a ,a )的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .y 2-4x +4y +8=0B .y 2+2x -2y +2=0C .y 2+4x -4y +8=0D .y 2-2x -y -1=0【解析】:由圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称可知两圆半径相等且两圆圆心连线的中点在直线y =x -1上,故可得a =2,即点C (-2,2),所以过点C (-2,2)且与y 轴相切的圆P 的圆心的轨迹方程为(x +2)2+(y -2)2=x 2,整理即得y 2+4x -4y +8=0. 答案:C.【同步训练】【一级目标】基础巩固组一、选择题1. 已知两点A (9,4)和B (3,6),则以AB 为直径的圆的方程为( )A .(x -6)2+(y -5)2=10B .(x +6)2+(y +5)2=10C .(x -5)2+(y -6)2=10D .(x +5)2+(y +6)2=10【解析】:线段AB 的中点坐标(6,5)为圆心坐标,半径=21|AB|=10答案:A.2. (2014·四川成都外国语学校)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1【解析】:(x +1)2+(y -1)2=1的圆心为(-1,1),它关于直线x -y -1=0对称的点为(2,-2),对称后半径不变,所以圆C 2的方程为(x -2)2+(y +2)2=1. 答案:B.3. 若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)【解析】:曲线C 的方程可化为(x +a )2+(y -2a )2=4,则该方程表示圆心为(-a,2a ),半径等于2的圆.因为圆上的点均在第二象限,所以a >2. 答案:D.4. 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( )A .a <-2或a >32B .-32 <a <0C .-2<a <0D .-2<a <32【解析】:方程x 2+y 2+ax +2ay +2a 2+a -1=0转化为(x +2a )2+(y +a )2=-43a 2-a +1,所以若方程表示圆,则有-43a 2-a +1>0,∴3a 2+4a -4<0,∴-2<a <32 .答案:D.5. 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长比为1∶2,则圆C 的方程为( )A .⎝⎛⎭⎫x ±332+y 2=43B .⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13【解析】:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π,设圆心(0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝⎛⎭⎫y ±332=43. 答案:C. 二、填空题6. 经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为________. 【解析】:由⎩⎨⎧ x =1,x +y =2,得⎩⎨⎧x =1,y =1,即所求圆的圆心坐标为(1,1),又由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1. 答案:(x -1)2+(y -1)2=1.7. 已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________. 【解析】: ∵圆的方程可化为(x +1)2+(y -2)2=5-a ,∴其圆心为(-1,2),且5-a >0,即a <5. 又圆关于直线y =2x +b 成轴对称,∴2=-2+b ,∴b =4.∴a -b =a -4<1. 答案:(-∞,1).8. 圆心在直线2x -3y -1=0上的圆与x 轴交于A (1,0),B (3,0)两点,则圆的方程为______________. 【解析】:所求圆与x 轴交于A (1,0),B (3,0)两点,故线段AB 的垂直平分线x =2过所求圆的圆心,又所求圆的圆心在直线2x -3y -1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得为(2,1),进一步可求得半径为2,所以圆的标准方程为(x -2)2+(y -1)2=2. 答案:(x -2)2+(y -1)2=2. 三、解答题9. 已知圆的方程是x 2+y 2+2(m -1)x -4my +5m 2-2m -8=0, (1)求此圆的圆心与半径;(2)求证:不论m 为何实数,它们表示圆心在同一条直线上的等圆. 【解析】:(1)配方得:(x +m -1)2+(y -2m )2=9∴圆心为(1-m,2m ),半径r =3.(2)证明:由(1)可知,圆的半径为定值3,且⎩⎨⎧x =1-my =2m ,∴2x +y =2.∴不论m 为何值,方程表示的圆的圆心在直线2x +y -2=0上,且为等圆.答案:(1) 圆心为(1-m,2m ),半径r =3. (2) 圆心在直线2x +y -2=0上,且为等圆.10. (2010·辽宁抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【解析】:(1)设AP 中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). ∵P 点在圆x 2+y 2=4上,∴(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.答案:(1) (x -1)2+y 2=1. (2) x 2+y 2-x -y -1=0.【二级目标】能力提升题组一、选择题1. 已知二元二次方程Ax 2+Cy 2+Dx +Ey +F =0,则⎩⎨⎧A =C ≠0,D 2+E 2-4F >0,是方程表示圆的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件【解析】:取A =C =4,D =2,E =2,F =1时,满足⎩⎨⎧A =C ≠0,D 2+E 2-4F >0,但是4x 2+4y 2+2x +2y +1=0不表示圆;方程13x 2+13y 2+x +y +1=0表示圆,其中A =13,C =13,D =1,E =1,F =1,但不满足D 2+E 2-4F >0.综上可知,选D . 答案:D.2. (2010·浙江宁波调研)若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14【解析】:由题意知,圆C 的圆心坐标为(-4,-1).又直线l 始终平分圆C ,所以直线l 必过圆心,故4=4a +b ≥24ab ,故ab ≤1. 答案:C. 二、填空题3. (2009·扬州调研)若直线ax +by =1过点A (b ,a ),则以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是________.【解析】:∵直线ax +by =1过点A (b ,a ), ∴ab +ab =1, ∴ab =12,又OA =a 2+b 2,∴以O 为圆心,OA 长为半径的圆的面积:S =π·OA 2=(a 2+b 2)π≥2ab ·π=π, ∴面积的最小值为π.答案:π.【高考链接】1. (2016年浙江省文科第10题)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x+8y +5a =0表示圆,则圆心坐标是 ,半径是 【解析】:由题可得a 2=a +2,解得a =-1或a =2当a =-1时,方程为x 2+y 2+4x+8y -5=0表示圆,故圆心为(-2,-4),半径为5 当a =2时,方程不表示圆 答案:(-2,-4),5.2. (2009年上海第题)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1【解析】:设中点M 的坐标为(x ,y ),与之对应的圆上动点Q 的坐标为(x 0,y 0),显然M 与Q 的对应关系为:⎩⎪⎨⎪⎧x =x 0+42,y =y 0+(-2)2,同时Q 满足在圆x 2+y 2=4上,即x 20+y 20=4;利用M 与Q 的对应关系将x 、y 代入,得中点M 的轨迹方程为:(x -2)2+(y +1)2=1.答案:A.3. (2015年湖北省第16题)如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B在A 的上方),且2AB =.(Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.【解析】:试题分析:设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点(1,0)T 知,点C 的横坐标为1, 即01x =,半径0r y =.又因为2AB =,所以222011y +=,即0y r =,所以圆C 的标准方程为22(1)(2x y -+=,令0x =得:1)B .设圆C 在点B处的切线方程为1)kx y -=,则圆心C到其距离为:d ==,解之得1k =.即圆C 在点B 处的切线方程为x 1)y =+,于是令0y =可得x 1=,即圆C 在点B 处的切线在x轴上的截距为1--故应填22(1)(2x y -+=和1--答案:(Ⅰ)22(1)(2x y -+=;(Ⅱ)1--。
知识讲解_圆的方程_基础

【解析】
(1)法一:设圆的方程为: ,则
,解得:
所以所求圆的方程为: ,即 ,所以圆心为(4,1),半径为 .
法二:线段 的中点为为 ,
线段 的中垂线为 ,即
同理得线段 中垂线为
联立 ,解得
所以所求圆的方程为(4,1),半径
所以 .
(2)法一:设圆的方程为: ,则
,解得:
所以圆的方程为 .
法二:过点 与直线 垂直的直线是 ,
线段 的中垂线为 ,
由 得:圆心坐标为 ,由两点间距离公式得半径 ,
所以圆的方程为 .
【变式2】判断方程ax2+ay2―4(a―1)x+4y=0(a≠0)是否表示圆,若表示圆,写出圆心坐标和半径长.
【答案】 ,
类型三:点与圆的位置关系
例6.判断点M(6,9),N(3,3),Q(5,3)与圆(x―5)2+(y―6)2=10的位置关系.
(1)2x2+y2―7y+5=0;
(2)x2―xy+y2+6x+7y=0;
(3)x2+y2―2x―4y+10=0;
(4)2x2+2y2―5x=0.
【答案】(1)不能表示圆(2)不能表示圆(3)不能表示圆(4)表示圆
【解析】(1)∵方程2x2+y2―7y+5=0中x2与y2的系数不相同,∴它不能表示圆.
例1.求满足下列条件的各圆的方程:
(1)圆心在原点,半径是3;
(2)圆心在点C(3,4)上,半径是 ;
(3)经过点P(5,1),圆心在点C(8,―3)上.
【思路点拨】根据题设条件,可利用圆的标准方程解决.
【答案】(1)x2+y2=9(2)(x―3)2+(y―4)2=5(3)(x―8)2+(y+3)2=25
圆的标准方程教案

圆的标准方程教案圆的标准方程教案1教学目标(一)知识目标1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;2.理解并掌握切线方程的探求过程和方法。
(二)能力目标1.进一步培养学生用坐标法研究几何问题的能力;2. 通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力;3. 通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。
(三)情感目标通过运用圆的知识解决实际问题的学习,理解理论________于实践,充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。
教学重、难点(一)教学重点圆的标准方程的理解、掌握。
(二)教学难点圆的标准方程的应用。
教学方法选用引导?探究式的教学方法。
教学手段借助多媒体进行辅助教学。
教学过程Ⅰ.复习提问、引入课题师:前面我们学习了曲线和方程的关系及求曲线方程的方法。
请同学们考虑:如何求适合某种条件的点的轨迹?生:①建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y);②写出适合某种条件p的点M的集合P={M ?p(M)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。
⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。
[多媒体演示]师:这就是建系、设点、列式、化简四步曲。
用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。
[给出标题]师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52 即x2+y2=25.若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程?生:x2+y2=r2.师:你是怎样得到的?(引导启发)圆上的点满足什么条件?生:圆上的任一点到圆心的距离等于半径。
即,亦即x2+y2=r2.师:x2+y2=r2 表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至C(a,b)点(如图),方程又是怎样的?生:此圆是到点C(a,b)的距离等于半径r的点的集合,由两点间的距离公式得即:(x-a)2+(y-b)2= r2Ⅱ.讲授新课、尝试练习师:方程(x-a)2+(y-b)2= r2 叫做圆的标准方程.特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.师:圆的标准方程由哪些量决定?生:由圆心坐标(a,b)及半径r决定。
极坐标系下圆方程的圆心和半径的求法

坐标法

“坐标法——直线与圆、圆锥曲线(下)”一、高考趋势解析几何以其独特的研究内容及研究方法在中学数学中占有独特的地位,而“直线和圆”在解析几何中又有举足轻重的分量,具体表现在:“曲线的方程”、“方程的曲线”是解析几何的基本概念,而“两点间的距离公式”、“点到直线的距离公式”、“定比分点公式”、“斜率公式”、“交角公式”又是解析几何中用得最多的公式。
“直线”和“圆”是解析几何的重要内容。
“线性规划”是解析几何联系实际的重要渠道。
数形结合的思想是解析几何乃至整个中学数学的重要思想。
此外,“坐标法”、“对称法”、“参数法”也是解析几何的重要方法。
本章知识与中学数学的其他聿节如函数方程、不等式、平面几何、三角等,有着很广泛、很紧密的联系。
复习要抓住六个字:深刻、灵活、熟练。
首先,要正确地理解基本概念,尤其是对“方程的曲线”、“曲线的方程”、“直线的倾斜角”、“直线的斜率”、“两直线的关系”、“直线的截距”等概念要力求“深刻”而全面地理解。
基本公式很多,直线的方程、圆的方程又有多种形式。
解题中这些知识不但使用的概率很大,而且要求使用得很灵活。
要做到这一点,就必须弄清楚它们的适用范围。
“数形结合法”、“坐标法”、“对称法”、“轨迹求法”这些方法要熟练掌握。
此外,解题中还应把知识结合起来,尤其要充分利用图形的几何性质和方程的消元技巧,以减少计算量。
解析几何是高中数学的重要内容,而圆锥曲线又是解析几何的核心内容,基本内容有:椭圆、双曲线、抛物线这三种圆锥曲线的定义、标准方程币几何性质;直线与圆锥曲线的位置关系。
有以下主要特点:是历年高考的重点。
纵观近年高考试题,圆锥曲线内容在试卷中所占6<比例一直稳定在15%左右,可见,在高中占有举足轻重的地位。
是中学数学各骨干知识的交汇点。
圆锥曲线与中学数学的许多内容如函数方程、不等式、三角函数均有紧密联系。
是各种数学思想方法的综合点。
解析几何的基本方法是“坐标法”,即用代数的方法研究几何图形的基本性质。