圆曲线圆心法三角函数坐标计算

合集下载

坐标计算公式

坐标计算公式

坐标计算公式一、计算公式1、圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α±β/2)×CY=Y1+sin (α±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。

β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。

X、Y代表准备求的坐标。

X1、Y1代表起算点坐标值。

α代表起算点的方位角。

R 代表曲线半径2、缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2LS2X=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×CL代表起算点到准备算的距离。

LS代表缓和曲线总长。

X1、Y1代表起算点坐标值。

3、直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。

L代表起算点到准备算的距离。

4、左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。

如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。

二、例题解析例题:直线坐标计算方法α(方位角)=18°21′47″DK184+714.029求DK186+421.02里程坐标X1=84817.831 Y1=352.177 起始里程解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.90 1Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943 求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″ X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086 Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832 求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246 线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574 缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″ X1=86552.086 Y1=926.832 曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2)×745.954=87290.023 Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2)×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)=16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955三、公式解析公式解析一.坐标转换X =A +NCOSα-ESINαY =B +NSINα+ECOSα N=(X-A) COSα±(Y-B)SINα E=(Y-B)COSα±(X-A)SINαA,B为施工坐标系坐标原点α为施工坐标系与北京坐标系X轴的夹角(旋转角)即大地坐标系方位角X,Y为北京坐标值N,E为施工坐标值二.方位角计算1.直线段方位角: α=tanˉ¹ [(Yb-Ya)/(Xb-Xa)]2.交点转角角度: α=2 tanˉ¹ (T/R)计算结果①为﹢且<360,则用原数;②为﹢且>360,则减去360;③为﹣,则加上180.3.缓和曲线上切线角: α=ƟZH±90°*Lo²/(π*R* Ls)α= Lo/(2ρ)=Lo²/(2 A²)=Lo²/(2R*Ls)ρ—该点的曲率半径4.圆曲线上切线角: α=ƟHY±180°*Lo/(π*R)ƟZH—直缓点方位角, ƟHY—缓圆点方位角,注:以计算方向为准,左偏,取"﹣";右偏,取"﹢"。

圆曲线坐标计算公式带例题精编版

圆曲线坐标计算公式带例题精编版

圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α ±β/2)×CY=Y1+sin (α ±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。

β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。

X、Y代表准备求的坐标。

X1、Y1代表起算点坐标值。

α代表起算点的方位角。

R 代表曲线半径缓和曲线坐标计算公式β= L2/2RL S ×180°/πC= L - L5/90R2L S2X=X1+cos (α ±β/3)×CY=Y1+sin (α ±β/3)×CL代表起算点到准备算的距离。

LS代表缓和曲线总长。

X1、Y1代表起算点坐标值。

直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。

L代表起算点到准备算的距离。

左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。

如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。

例题:直线坐标计算方法α(方位角)=18°21′47″X1=84817.831 Y1=352.177 起始里程DK184+714.029求DK186+421.02里程坐标解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″X1=86552.086 Y1=926.832曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=87290.023Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955。

圆曲线坐标计算(坐标正算法)

圆曲线坐标计算(坐标正算法)

二、圆曲线要素计算
1、圆曲线要素 R —— 半径 —— 转向角 T —— 切线长
L —— 曲线长
Eo —— 外矢距
q —— 切曲差
R、、T、L、Eo、q 称为 圆曲线要素。
2、计算公式
为测量得到,R 为设计值。
T R tg
L R

2

180
Eo R (
1 cos
起点
ZY1 QZ2 JD1 YZ1
ZY2
QZ2
YZ2
终点
Y
O
2)计算曲线点坐标
① 计算坐标方位角
i 点为曲线上任意一点。
li 为 i 点与ZY点里程之差。
li 180 i R π
ZY- i JDZY-
90 li δi 2 πR
i
ZYi ZYJD i

2
1)
q 2T L
三、主点里程计算
1、基本知识 里程:由线路起点算起,沿线路中线到该中线桩的 距离。


表示方法:DK26+284.56。
“+”号前为公里数,即26km,“+”后为米数,即 284.56m。 CK —— 表示初测导线的里程。 DK —— 表示定测中线的里程。
K —— 表示竣工后的连续里程。
铁路和公路计算方法略有不同。
2、计算方法
根据交点里程和圆曲线要素计算主点里程。
公路习惯推算方法:
四、单圆曲线测设资料计算
曲线测设是指每隔一定距离测设一个曲线点以在地 面上标志曲线平面位置。 现阶段曲线测设主要采用全站仪或GPS进行,而这 两种方法所需测设资料是曲线点的坐标,故实施测设前 必须计算曲线点的坐标。

圆曲线坐标计算坐标正算法

圆曲线坐标计算坐标正算法
1、基本知识 里程:由线路起点算起,沿线路中线到该中线桩 的距离。 表示方法:DK26+284.56。
“+”号前为公里数,即26km,“+”后为米数, 即284.56m。
CK —— 表示初测导线的里程。 DK —— 表示定测中线的里程。
K —— 表示竣工后的连续里程。 铁路和公路计算方法略有不同。
二、圆曲线要素计算
1、圆曲线要素 R —— 半径 —— 转向角 T —— 切线长 L —— 曲线长 Eo —— 外矢距 q —— 切曲差 R、、T、L、Eo、q 称为 圆曲线要素。
2、计算公式 为测量得到,R 为设计值。
T R tg
2
L R
180
Eo
R
(
1 cos
1)
2
q2TL
三、主点里程计算
Y
XZ2YXJD 2 T2coαsJD 1JD 2 YZ2YYJD 2 T2sinαJD 1JD 2 XY2ZXJD 2 T2coαsJD 2JD 3 YY2ZYJD 2 T2sin αJD 2JD 3
通用公式:
XZY i XJDi Ti coαsi1,i YZY i YJDi Ti sinαi1,i
例如:ZY点里程为18+197.36,中桩间距为20m,
则第一点里程为____________1_8_+_2__0_0______________。
第二点里程为________1_8_+_2__2_0________________。
依此类推。
2、曲线点坐标计算
X
起点
ZY1
QZ2 YZ1
JD2
QZ2
i
ZY-
JD
Z Y i Z Y JD i

三角函数的计算方法

三角函数的计算方法

三角函数的计算方法三角函数是数学中的一种重要概念,也是物理、工程以及计算机图形学等领域常用的数学工具。

它们用于描述和计算三角形的属性和关系。

在数学中,常见的三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数等。

正弦函数和余弦函数是最基本的三角函数,它们的计算方法如下:正弦函数(Sine Function):正弦函数的定义域为实数集,值域为[-1,1],可以表示为y =sin(x)。

正弦函数的计算方法可以分类讨论,一般有两种方法:单位圆定义和泰勒级数展开。

单位圆定义方法:单位圆的半径为1,以原点O为圆心,绕圆心旋转而成。

对于任意一个角θ(弧度制),其对应的点P(x, y)在单位圆上的横坐标x称为θ的正弦值,即sin(θ)=y。

泰勒级数展开方法:正弦函数还可以通过泰勒级数展开来计算。

泰勒级数展开将一个函数表示为无穷多个项的和的形式,对于正弦函数,它的泰勒级数展开为:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...余弦函数(Cosine Function):余弦函数的定义域为实数集,值域为[-1,1],可以表示为y =cos(x)。

余弦函数的计算方法与正弦函数类似,也可以用单位圆定义方法和泰勒级数展开方法。

单位圆定义方法:余弦函数的横坐标x称为θ的余弦值,即cos(θ)=x。

泰勒级数展开方法:余弦函数的泰勒级数展开为:cos(x) = 1 -x^2/2! + x^4/4! - x^6/6! + ...正切函数(Tangent Function):正切函数的定义域为实数集,值域为整个实数集,可以表示为y = tan(x)。

正切函数的计算方法有以下几种:基本关系式、波尔展开和对数法。

基本关系式:正切函数的定义为tan(x) = sin(x) / cos(x),可以利用正弦函数和余弦函数的计算结果来计算正切函数的值。

波尔展开:正切函数的波尔展开为:tan(x) = x + x^3/3 + 2x^5/15 + 17x^7/315 + ...对数法:正切函数还可以利用自然对数函数的泰勒级数展开来计算,即tan(x) = x + (x^3/3) + (2x^5/15) + (17x^7/315) + ...余切函数(Cotangent Function):余切函数的定义域为实数集,值域为整个实数集的补集,可以表示为y = cot(x)。

三角函数的计算方法

三角函数的计算方法

三角函数的计算方法三角函数包括正弦函数、余弦函数、正切函数等。

它们是以角为自变量的函数,可以用来描述直角三角形中的角和边的关系。

在计算三角函数的值时,我们通常会用到单位圆和特殊角的概念。

首先,让我们来了解一下正弦函数和余弦函数。

在单位圆上,对于任意角θ,我们可以将角θ的终边与单位圆交点的横纵坐标分别定义为角θ的正弦值sinθ和余弦值cosθ。

正弦函数和余弦函数的定义域是实数集,值域是[-1,1]。

在计算正弦函数和余弦函数的值时,我们可以利用单位圆上点的坐标来进行计算,也可以利用三角恒等式和特殊角的数值来进行计算。

接下来,让我们来了解一下正切函数。

正切函数是指角θ的正切值tanθ,它的定义是正弦值与余弦值的比值,即tanθ=sinθ/cosθ。

正切函数的定义域是全体实数减去所有使得cosθ=0的点,值域是全体实数。

在计算正切函数的值时,我们也可以利用三角恒等式和特殊角的数值来进行计算。

除了正弦函数、余弦函数和正切函数之外,还有其他一些与它们相关的三角函数,如余切函数、正割函数、余割函数等。

它们与正弦函数、余弦函数和正切函数之间有着一些特定的关系,可以通过它们之间的互余关系和互割关系来进行计算。

在实际应用中,我们经常会遇到需要计算三角函数的值的情况,比如在物理中计算力的合成分量、在工程中计算结构的受力情况等。

因此,掌握三角函数的计算方法是非常重要的。

在计算三角函数的值时,我们可以利用单位圆、三角恒等式和特殊角的数值来进行计算,也可以利用计算器或数学软件来进行计算。

总之,三角函数是数学中非常重要的概念,它们在几何、物理、工程等领域中都有着广泛的应用。

通过学习三角函数的定义和性质,掌握三角函数的计算方法,我们可以更好地理解和应用三角函数,为解决实际问题提供数学工具的支持。

圆曲线坐标计算 坐标正算法

圆曲线坐标计算 坐标正算法

Y
X ZY2 X JD2 T2 cos αJD1JD2 YZY2 YJD2 T2 sin αJD1JD2 X YZ2 X JD2 T2 cos αJD2 JD3 YYZ2 YJD2 T2 sin αJD2 JD3
通用公式:
X ZYi X JDi Ti cos αi1,i YZYi YJDi Ti sin αi1,i
例如:ZY点里程为18+197.36,中桩间距为20m, 则第一点里程为________________________________。
第二点里程为______________________________。
18+200
依此类推。
18+220
2、曲线点坐标计算
X
起点
ZY1
QZ2 YZ1
JD2
QZ2
2、计算方法 根据交点里程和圆曲线要素计算主点里程。
公路习惯推算方法:
四、单圆曲线测设资料计算
曲线测设是指每隔一定距离测设一个曲线点以在地 面上标志曲线平面位置。
现阶段曲线测设主要采用全站仪或GPS进行,而这 两种方法所需测设资料是曲线点的坐标,故实施测设前 必须计算曲线点的坐标。
1、基本要求 中桩间距:即相邻两曲线点间的距离,一般为 20 米, 地形复杂时为 10 米。施工时可按规范或标书要求进行。 桩号:即曲线点的里程,必须是中桩间距的整倍数。
五、圆曲线测设
1、全站仪坐标放样 将曲线点及控制点坐标数据数据输入全站仪,在控制点上安 置仪器,以相邻控制点为后视点,测设曲线点。 2、检核 在其它控制点上安置仪器,定向后实测各曲线点的坐标,并 与计算值比较,若差值在允许范围内,则测设成果合格,否则说 明测设错误,应查找原因予以纠正。 由于用全站仪极坐标法进行中桩测设时,实际的点位误差主 要是测设时的测量误差,误差一般很小,完全能够达到精度要求, 可不做调整。

圆曲线坐标计算公式带例题

圆曲线坐标计算公式带例题

精心整理圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×RSX=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×CL代表起算点到准备算的距离。

LS代表缓和曲线总长。

X1、Y1代表起算点坐标值。

直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值Y1=352.177 起始里程DK184+714.029求DK186+421.02里程坐标解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档