信号与系统(第2章 信号的时域分析)
第二章 信号与系统的时域分析

二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t
x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,
第二章 连续信号的时域分析

第二章连续信号的时域分析所谓信号的时域分析,指的是整个分析过程都在时间域内进行,分析过程中所有的信号都用以时间t为自变量的时间函数表达式或时间波形图表示。
本章首先介绍几个典型的连续时间信号,以及对这些信号的基本运算。
此外,连续信号的卷积积分也是信号与系统时域分析中的基本运算,本章将详细介绍卷积积分的定义及其运算方法。
2.1 基本要求1.基本要求♦了解基本的连续信号及其相关参数和描述;♦了解信号的基本运算;♦掌握阶跃信号和冲激信号的定义、性质及作用;♦掌握卷积积分的定义、性质及计算。
2.重点和难点♦冲激信号的定义及性质♦含有阶跃和冲激函数的信号的求导和求积分运算♦卷积积分的计算2.2 知识要点1.基本的连续信号了解正弦信号、实指数信号、复简谐信号、门信号及抽样函数信号的函数表达式、时间波形及其相关参数。
2.信号的基本运算从数学意义上看,系统对信号的处理和变换就是对信号进行一系列的运算。
一个复杂的运算可以分解为一些基本运算的组合。
本章主要了解信号的加减乘除运算、翻转平移和尺度变换、微积分等几种基本的运算。
所有运算既可以利用信号的时间函数表达式进行,也可以在时间波形图上进行运算。
注意与数学上相关运算的区别。
这里强调,作为信号基本运算之一的积分运算,运算结果得到的是一个新的以t 为自变量的函数,具体表示符号和定义为⎰∞--=tf t fττd )()()1( (2-1)3.阶跃信号和冲激信号阶跃信号和冲激信号是对实际系统中的某类信号进行理想近似后得到的两个特殊信号,这两种信号用于描述一类特殊的物理现象,对于信号特性和系统性能的分析,起着十分重要的作用。
阶跃信号和冲激信号的时间波形如图2-1所示。
在信号与系统的分析过程中,经常利用阶跃函数将分段信号的时间函数表达式统一为一个解析表达式,以简化信号的运算。
利用阶跃函数还可以方便地表示因果、非因果信号等。
由于阶跃函数和冲激函数是两个特殊的函数,因此在进行求导和求积分等运算时,必须根据其定义和性质对函数表达式进行分析,以便化为普通函数的运算。
信号与系统第二章第一讲

则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。
信号与系统第二章

2.0 引 言
2.1 连续时间基本信号 2.2 卷积积分 2.3 系统的微分算子方程 2.4 连续系统的零输入响应 2.5 连续系统的零状态响应 2.6 系统微分方程的经典解法
2.0 引 言
信号与系统分析的基本任务:
在给定系统和输入的条件下,求解系统的
输出响应。
f2( ) c
f2(-)
1
2、反转:
-1
c
0
3、平移: 将f(-)沿时间轴平移t,t为参变量
f2(-) c
t>0时向右平移, t<0时向左平移
f2(t-) c
-1
0
f 2 (( t )) f 2 (t )
f2(t-) c
-1
0 t-1 t
t-1
t
-1
0
0
0
2 0
1
0
2 0
f1() f2(1-) 1 g(t)
f1() f2(2-)
0
2
0
0
t
以上可以归纳为下列情况:
f1( )
2
f1(t) f2(t)
g(t)
0
2
0
t
当t<0时,f1()f2(t-)=0,所以g1(t)=0
当0t2时,f1()与f2(t-) 有部分重迭, 积分限 0t,g2(t)为:
t-2
t 0
用图解法进行分段积分,求出g(t)
f1( ) 2 0 1 2 2 0
f1( ) 2 2 f2(1-) 0
f1( ) 2 2 0
f1 ( )
信号与系统-第2章

f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
第2章 连续时间信号和离散时间信号的时域分析

第2章 连续时间信号和离散时间信号的时域分析
2.单位冲激信号 1) 单位冲激信号(Delta函数)的定义
∞ δ (t )dt = 1 ∫ ∞ (2-14) δ (t ) = 0 t ≠ 0 冲激信号用箭头表示,如图2.8(a)所示。冲激信号具有强度,其
强度就是冲激信号对时间的定积分值。在图中以括号注明,以与信 号的幅值相区分。 冲激信号可以延时至任意时刻 t0 ,以符号 δ (t t 0 ) 表示,定义 为
Ae st = Ae(σ + jω
0 )t
= Aeσ t cos(ω0 t ) + jAeσ t sin(ω0 t )
(2-8)
式(2-8)表明,一个复指数信号可以分解为实部﹑虚部两部分。 实部﹑虚部分别为幅度按指数规律变化的正弦信号。若 σ < 0 ,复指 数信号的实部﹑虚部为减幅正弦信号,波形如图2.4(a)﹑(b)所示。 若 σ > 0 ,其实部﹑虚部为增幅正弦信号,波形如图2.4(c)﹑(d)所 示。
第2章 连续时间信号和离散时间信号的时域分析
4.抽样函数 抽样函数是指 sin t 与 t 之比构成的函数,其定义如下:
sin t Sa(t ) = t
抽样函数的波形如图2.5所示。
(2-10)
图2.5 抽样函数的波形 抽样函数具有以下性质:
Sa(0) = 1, Sa(kπ) = 0 ,k
= ±1, ±2,L ∫∞ Sa(t )dt = π
第2章 连续时间信号和离散时间信号的时域分析
应用阶跃信号与延时阶跃信号,可以表示任意的矩形波脉冲信号。 例如,图2.7(a)所示的矩形波信号可由图2.7(b)表示,即 :
f (t ) = u (t T ) u (t 3T )
信号与系统第二章ppt课件

30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、抽样信号 (Sampling Signals)
Definition:
Sa(t)
=
sin t
t
1 Sa (t)
主要性质:
Sa(0)=1
Sa(kπ)=0, k=±1,±2…
-3π -2π -π
0
π
2π 3π t
M
∫ ∞ Sa(t)dt=π
-∞
2020/7/7
二1、、奇单异位阶信跃号信(S号in(gUunliat rSittyepFSuignncatliso)ns)
2020/7/7
2、正弦信号和虚指数信号 (Sine & Imaginary Exponential Signals)
正弦信号(Sinusoidal Signals )
f (t)= A sin (ωt +φ) , t频率,φ为初相角;
周期为 T=2π/ ω,即 ω= 2πf
2020/7/7
0 -A
t
M
2、正弦信号和虚指数信号 (Sine & Imaginary Exponential Signals)
虚指数信号(Imaginary Exponential Signals)
f (t)= e jω t , t∈R
周期为 T=2π/ ω,即 ω= 2πf
根据Euler公式,虚指数信号可以用相同频率的 正弦信号来表示:
cost()1(ejt ejt) sin(t) 1(ejt ejt)
2
2j
2020/7/7
3、复指数信号 (Complex Exponential Signals, Eternal Signals)
f (t)= A e s t , t∈R s=σ+jω
根据Euler公式,可得 A e s t = A e σ t cos(ωt) + j A e σ t sin(ωt)
当α<0 时,信号随时间衰减 ;Decaying exponential
2020/7/7
1、指数信号(Exponential Signals)
Definition:
f (t)= A eαt , t∈R (R表示实数集)
α的绝对值大小反映信号增长或衰减的速率, | a | 越大速率越快 。
| a | 的倒数称为时间常数τ, τ越大指数信号增长或衰减的速率越慢 。
e jω t = cos(ωt) + j sin(ωt)
2020/7/7
2、正弦信号和虚指数信号 (Sine & Imaginary Exponential Signals)
虚指数信号(Imaginary Exponential Signals)
f (t)= e jω t , t∈R
或者根据Euler公式,正弦信号也可以用相同频 率的虚指数信号来表示:
2T
f(t) = u(tT)u(t2T)
T
2T
-u(t-2T)
2020/7/7
1、单位阶跃信号(Unit Step Signals ) 利用阶跃信号表示矩形脉冲
矩形脉冲的特例——门信号
Gτ(t) 1 -τ/2 0 τ/2
Gτ(t) =U(t +τ/2)-U(t -τ/2)
t
2020/7/7
1、单位阶跃信号(Unit Step Signals )
与虚指数信号进行比较:
e jω t = cos(ωt) + j sin(ωt)
2020/7/7
3、复指数信号 (Complex Exponential Signals, Eternal Signals)
f (t)= A e s t , t∈R
et sin0t
σ>0幅值增 加 t
s=σ+jω
et sin0t
σ<0幅值衰 0 减 t
2020/7/7
3、复指数信号 (Complex Exponential Signals, Eternal Signals)
f (t)= A e s t , t∈R s=σ+jω 当σ=0时, A e s t A e jω t
复指数虚指数;实部与虚部为等幅正弦信号
当ω=0时,复指数实指数; 当ω 、σ均为0时信号为直流信号。
利用阶跃信号的单边性表示信号的时间范围
sin0tu(t)
t 0
s i n0tu(tt0)
t 0 t0
si n 0(tt0)u(t)
t 0 t0
si n 0(tt0)u (tt0)
t 0 t0
Signals and Systems
第2章 信号的 时域分析
2020/7/7
第2章
2.1 Time-Domain Description of Continuous-Time Signals
连续时间信号的时域描述
• 典型信号(Basic Signals / Block Signals )
– 典型连续信号(Basic Continuous-Time Signals)
Definition:
U(t)
={
1 0
t>0 t<0
U (t) 1
0
t
延时t0时刻
U(t-t0)
={
1 0
t > t0 t < t0
U (t-t0) 1
0 t0
t
2020/7/7
1、单位阶跃信号(Unit Step Signals ) 利用阶跃信号表示矩形脉冲
f(t) 1
f(t)
u(t-T)
1
T
0
2π/ω
t
φ/ω
M
2020/7/7
2、正弦信号和虚指数信号
(Sine & Imaginary Exponential Signals)
按指数衰减的正弦信号
Efxp(to)n=en{tial0lAy dea-mσtpseidnsi((nωutst<)oi0d)a(ltS≥i0gn)als
f (t) A
– 典型离散信号(Basic Discrete-Time Signals)
2020/7/7
第2章 Basic Continuous-Time Signals
典型连续信号
➢指数信号
{ 普通
信号
➢正弦信号(虚指数信号) ➢复指数信号
➢抽样信号
{ 奇异
信号
➢单位阶跃信号 ➢单位冲激信号 ➢斜坡信号
➢冲激偶信号
2020/7/7
一、1、典指型数普信通号信(号Exponential Signals)
Definition:
f (t)= A eαt , t∈R (R表示实数集)
f (t) A e a t (a>0)
A A e a t (a=0)
A e a t (a<0)
0
t
当α>0 时,当A信α为=号随t0=时时0,间时信增的长号信;为号G直r幅o流w值i信ng。号ex。ponential