连续时间信号的抽样及频谱分析-时域抽样信号的频谱--信号与系统课设

合集下载

信号与系统总复习要点

信号与系统总复习要点

《信号与系统》总复习要点第一章绪论1.信号的分类:模拟信号,数字信号,离散信号,抽样信号2.信号的运算:移位、反褶、尺度、微分、积分、加法和乘法3. δ(t)的抽样性质 (式1-14)4.线性系统的定义:齐次性、叠加性5.描述连续时间系统的数字模型:微分方程描述离散时间系统的数字模型:差分方程6.连续系统的基本运算单元:加法器,乘法器,积分器离散系统的基本运算单元:加法器,乘法器,延时器7.连续系统的分析方法:时域分析方法,频域分析法(FT),复频域分析法(LT)离散子系统的分析方法:时域分析方法,Z域分析方法8.系统模拟图的画法9.系统线性、时不变性、因果性的判定第二章连续时间系统的时域分析1.微分方程的齐次解+特解的求法自由响应+强迫响应2.系统的零输入响应+零状态响应求法3.系统的暂态响应+稳态响应求法4.0-→0+跳变量冲激函数匹配法5.单位冲激响应h(t), 单位阶跃响应g(t), 与求法h(t)=g'(t), g(t)=h (-1)(t)类似δ(t)与u(t)的关系6.卷积的计算公式,零状态响应y zs (t)=e(t)*h(t)=∫∞-∞e(τ)h(t-τ)d τ=h(t)*e(t)7.卷积的性质串连系统,并联系统的单位冲激响应f(t)*δ(t)= f(t)f(t)*δ(t-3)= f(t-3)8. 理解系统的线性 P57 (1) (2) (3)第三章 傅立叶变换 t →w1.周期信号FS ,公式,频谱:离散谱,幅度谱2.非周期信号FT ,公式,频谱:连续谱,密度谱3. FT FT -14.吉布斯现象 P100---P1015.典型非周期信号的FT (单矩形脉冲)6.FT 的性质①对称性②信号时域压缩,频域展宽 P127,P128 ()[]⎪⎭⎫ ⎝⎛=a F a at f F ω1()()j t F f t e dt ωω∞--∞=⎰1()()2j t f t F e d ωωωπ∞-∞=⎰③尺度和时移性质 P129④频移性质:频谱搬移 cos(w 0t)的FT⑤时域微积分特性,频域微分特性⑥卷积定理(时域卷积定理、频域卷积定理)7.周期信号的FT :冲激8.抽样信号f s (t)的FT 及频谱F s (ω)9.抽样定理①条件 f s >=2f m w s >=2w m②奈奎斯特频率 f s =2f m③奈奎斯特间隔 T s =1/f s10.关于频谱混叠的概念第四章 拉普拉斯变换、连续时间系统的s 域分析 t →s 1. LT LT -12.典型信号的LT3.LT 性质:时移,频移,尺度,卷积()j 1e baf at b F a a ωω⎛⎫+↔⋅ ⎪⎝⎭0001[()cos()][()()]2F f t t F F ωωωωω=++-()()⎰∞∞--=tt f s F ts d e ()()⎰∞+∞-=j j d e j π21 σσss F t f t s []000()()()e st L f t t u t t F s ---=()e ()αt L f t F s α-⎡⎤=+⎣⎦[]()1() 0s L f at F a a a ⎛⎫=> ⎪⎝⎭4.LT 的逆变换①查表法②部分分式展开法(系数求法)③留数法5.LT 分析法 (第四章课件63张,64张,78张,81张) 求H(s), h(t), y zi (t), y zs (t), y(t)6.系统函数H(s) h(t) 一对拉氏变换对 H(s)的极点决定h(t)的形式H(s)的零点影响h(t)的幅度和相位7.H(s)的零极点 稳定性: ①②极点全在S 面左半面 P241 例4-26 8.连续系统的频响特性 H(jw)=H(s)│s=jw9.全通网络(相位校正),最小相移网络第五章 傅立叶变换应用于通信系统-滤波、调制与抽样1.h(t) H(jw) 构成傅式变换对2.无失真传输概念3.实现无失真传输的系统要满足的时域条件、频域条件4.理想低通滤波器的频响特性,及其单位冲激响应5.信号调制、解调的原理()||h t dt M ∞-∞≤⎰第七章 离散时间系统的时域分析1.离散序列的周期判定:2π/w 0,分三种情况讨论2.离散时间信号的运算、典型离散时间信号3.离散系统的阶次确定4.离散时间系统的差分方程,及模拟图的画法5.u(n), δ(n), g(n), h(n)的关系δ(n)= u(n)- u(n-1) h(n)= g(n)- g(n-1) 6.离散时间系统的时域求解法 (迭代、齐次解+特解、零输入+零状态)7.离散系统的单位冲激响应h(n)及其求法8.卷积和9.系统的零状态响应y zs (n)=x(n)*h(n) 10.有限长两序列求卷积:x 1(n):长N x 2(n):长M 见书例7-16, 对位相乘求和法, 长度:N+M-111.卷积性质:见课件第七章2,第35张12.离散系统的因果性,稳定性时域:因果性 n<0 ,h(n)=0稳定性 h(n)绝对可和()()k u n n k δ∞==-∑0()()k g n h n k ∞==-∑()()()()∑∞-∞=-=*m m n h m x n h n x ()n h n ∞=-∞<∞∑第八章 Z 变换、离散时间系统的Z 域分析1.LT →ZT: z=e sTZ 平面与S 平面的映射关系2. ZTZT -13.典型序列的Z 变换 4.Z 变换的收敛域: 有限长序列 有无0,∞右边序列 圆外左边序列 圆内双边序列 圆环5.逆Z 变换 ①查表法②部分分式展开法(与LT -1不同的,先得除以Z ) ③留数法6.ZT 的性质时移性质 (1)双边序列移位(2)单边序列移位 ①左移 ②右移 序列的线性加权性质序列的指数加权性质卷积定理7.Z 域分析法解差分方程:书P81 例8-16第八章课件2 第33张~37张 ()()n n X z x n z ∞-=-∞=∑()⎰-π=c n z z z X jn x d 21)(18.系统函数H(z) h(n) H(z) Z 变换对 求H(z), h(n), y zs (n), y zi (n), y(n), H(e jw ) *见书P86:例8-19, P109 8-36 8-379.离散系统的稳定性,因果性稳定性 因果性时域 n<0, h(n)=0 频域 H(z)所有极点在单位圆内 收敛域(圆外)含单位圆10.离散系统的频响特性H(e jw )=H(z)│z=ejw =│H(e jw )│e j ψ(w)幅度谱:描点作图,2π为周期相位谱书P98,例8-22, 第八章课件:59张,60张 ()n h n ∞=-∞<∞∑。

连续时间信号的时域分析和频域分析

连续时间信号的时域分析和频域分析

时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计

《信号与系统》第四章

《信号与系统》第四章

图 两个矢量正交
矢量的分解
c2V2
V
V2
2
o
1
V1
c1V1
图 平面矢量的分解
c3V3
V3
V
o V1
V2
c2V2
c1V1
V c1V1 c2V2 c3V3
图 三维空间矢量的分解
推广到n维空间
1 正交函数的定义
在区间 (t1,t内2 ),函数集 {0 (t),1(t中),的,各N个(t)函} 数间,若满足下列 正交条件:
➢在波形任一周期内,其第二个半波波形与第一个半波波形相同;
x(t) x(t T0 / 2)
➢这时x(t)是一个周期减半为
的周期非正弦波,其基波频率

,即其只含有偶次谐T0波2;
20
4.4波形对称性与傅里叶系数
4 奇半波对称
➢在波形任一周期内,其第二个半周波形恰为第一个半周波形的
负值; x(t) x(t T0 / 2)
交函数集 {0 (t),1(t), ,N (t)} 是完备的,即再也找不到一个函数 (t)
能满足
t2
(t)
* m
(t
)dt
0
t1
m 0,1, , N
则在区间 (t1,t2 ) 内,任意函数x(t)可以精确地用N+1个正交函数地加权和
表示:
N
x(t) c00 (t) c11(t) cN N (t) cnn (t)
T0
3 傅里叶级数系数的确定
➢正弦—余弦形式傅里叶级数的系数
2Bk
2 T0
x(t) cos k0tdt
T0
2Dk
2 T0
x(t) sin k0tdt

信号与系统PPT 第五章 连续时间信号的抽样与量化

信号与系统PPT   第五章 连续时间信号的抽样与量化

pt
他抽样方式,如零阶抽样
1
保持。
O Ts
t
M1
fs0 t
f t
M2
fs0 t
1
O Ts
t
p1 t
1.零阶抽样信号的频谱
设零阶抽样信号fs0t Fs0
fs t f t t nTs
n
Fs
1 Ts
n
F
ns
此线性系统必须 具有如下的单位 冲激响应
fs (t) 保 持得到fso (t).
f (t)
F
1
0 f (t)
t
s 2m
m m
1 Fs
Ts
0
TS f (t)
t
s m
m
s
s 2m
1 Fs
Ts
0
t
s m m s
TS
采样频率不同时的频谱
5.2.2 时域抽样定理 (1)时域抽样定理
一个频带受限的信号f (t),若频谱只占据 m ~ m
的范围,则信号f t可用等间隔的抽样值来惟一地表示。
即: fs (t) f (t) p(t)
设连续信号 抽样脉冲信号 抽样后信号
f t F (m m)
pt P , fst Fs
复习
周期信号的傅里叶变换
令周期信号f(t)的周期为T1,角频率为1=2f1
f t F 2π Fn1 n1
n
其中:
F n1
1 T1
T1
2 T1
F (
s
)
S a0F ( )
S a
s
2
F (
s
)
设: 1,
Ts 2
s

连续时间信号的抽样

连续时间信号的抽样
由于这一正弦信号频谱为在 处0 的函数,因而对它
的抽样,就会遇到一些特殊问题。
cos
0t
1 2
e e j0t
j0t
( 0 ) ( 0 )
sin
0t
1 2j
e e j0t
j0t
j ( 0 ) ( 0 )
( )
( )
0
0
余弦
( j )
0
正弦
0
( j )
奈奎斯特定理应用于正弦信号
采样周期T
理想重构系统
xa (t)
3 实际抽样
• 用宽度为 的矩形周期脉冲 p(t代) 替冲激串
p(t)
C e jkst k
k
Ck
1 T
0
e jkst dt
T
sin( ks
2
ks
)
j ks
e 2
2
p(t)
A 1
T
T
t
xT (t) X (n1) xT (t t0 ) X (n1)e jn1t0
抽样定理应用于正弦信号时要求: 抽样频率大于信号最高频率的两倍,而不
是大于或等于两倍。
例子
• 对于两不同频率的正弦信号x1(t),x2(t),如果用同 一抽样频率对其抽样,抽样出的序列可能是一 样的,则我们无法判断它是来源于x1(t)还是x2(t)。
• 例:
x1 (t) cos(2 40t), f1 40Hz x2 (t) cos(2 140t), f2 140Hz
A 1
T
T
t
实际抽样
xa (t)
p(t)
xs (t)
冲激串到序列的转 换
x(n) xa (nT )

《信号与系统》课程教学大纲

《信号与系统》课程教学大纲

《信号与系统》课程教学大纲一、课程基本信息1、课程编号:14L181Q2、课程体系/类别:大类专业基础/主干课程3、学时/学分:48/34、先修课程:高等数学、工程数学、电路分析5、适用专业:通信工程、自动化、铁道信号、电子科学与技术二、课程教学目标及学生应达到的能力本课程是大学本科二年级电子信息类本科生必选的技术基础课程。

本课程教学目标是使学生牢固掌握信号与系统的基本原理和基本分析方法,掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、z变换)的基本内容、性质与应用。

特别要建立信号与系统的频域分析的概念以及系统函数的概念,为学生进一步学习后续课程打下坚实的基础。

通过本课程的学习,使学生在分析问题和解决问题的能力上有所提高,并能够自主性学习,具有一定的创造性工作能力。

本课程主要支撑以下毕业要求指标点:1.2 将具体工程问题抽象为数学、物理问题,选择适当的模型进行描述,并理解其局限性本课程核心内容是信号的表示和系统的描述,包括利用数学的方法将信号从不同角度进行表示;根据实际系统建立描述系统的数学模型,并从不同的域对系统进行描述;理解信号与系统时域、频域和复频域的特点及适用情况,从而根据具体问题选择合适的域进行分析。

1.3 对模型进行推理求解和必要的修正改进本课程在讲授信号的表示和系统的描述的基础上,介绍根据系统的描述,利用信号的表示和线性非时变系统的特性从不同域求解系统模型,即求解系统的响应。

2.2 运用专业基础理论与方法,进行通信信号分析和通信系统设计实现本课程讲授了从时域、频域和复频域进行信号分析,从时域、频域和复频域进行系统描述及系统响应求解,为通信工程、铁道信号、自动化、电子技术等电子信息类专业奠定基础。

三、课程教学内容和要求(一)课程主要知识点、要求及课时分配(二)课程重点、难点1.信号与系统分析导论(2学时)重点:确定信号及线性非时变系统的特性。

难点:线性非时变系统的判断。

信号与系统实验

信号与系统实验

实验一 抽样定理与信号恢复一、实验目的1. 观察离散信号频谱,了解其频谱特点;2. 验证抽样定理并恢复原信号。

二、实验原理1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。

抽样信号 Fs (t )=F (t )·S (t )。

其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。

Ts 又称抽样间隔,Fs=1Ts 称抽样频率,Fs (t )为抽样信号波形。

F (t )、S (t )、Fs (t )波形如图1-1。

t-4T S -T S 0T S 4T S8T S 12T S tt02/1τ1τ2/31τ2/1τ1τ2/31τ2/1τ-(a)(b)(c)图1-1 连续信号抽样过程将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图1-2所示。

2. 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱()∑∞∞--∙=m s s m m SaTsA j )(22s F ωωπδτωτω 它包含了原信号频谱以及重复周期为fs (f s =πω2s 、幅度按ST A τSa (2τωs m )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。

因此,抽样信号占有的频带比原信号频带宽得多。

以三角波被矩形脉冲抽样为例。

三角波的频谱 F (j ω)=∑∞-∞=-K k k sa E )2()2(12τπωδππ抽样信号的频谱Fs (j ω)=式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图1-3所示。

图1-2 信号抽样实验原理图)(2(212s m k s m k k Sa m Sa TS EA ωωωδπτωτπ--∙∙∑∞-∞=-∞=111112ττπω==f 或(b) 抽样信号频谙图1-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。

信号与系统实验报告实验三 连续时间LTI系统的频域分析报告

信号与系统实验报告实验三   连续时间LTI系统的频域分析报告

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言
随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。

传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。

仪器设备很大部分陈
旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。

虚拟仪器正是解决这一矛盾的最佳方案。

基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。

在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。

信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。

将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。

信号的特征值分为幅值特征值、时间特征值和相位特征值。

尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。

信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。

频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。

信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。

因为Pn只是n的函数,所以X(j )在重复的过程中不会使其形状发生变化。

假定信号x(t)的频谱限制在- m~+ m的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(j )是以s为周期重复。

显然,若在抽样的过程中s<2 m,则X^(j )将发生频谱混叠现象,只有在抽样的过程中满足s>=2 m条件,X^(j )才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。

2 虚拟仪器开发软件LabVIEW入门
2.1 LabVIEW介绍
LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。

传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。

它用图标表示函数,用连线表示数据流向。

LabVIEW程序使用虚拟仪器(Virtual Instrument,缩写为VI)的概念。

它是指一台计算机和连接外部的端口(计算机的COM口,LPT口或内插板)在软件控制下可完全模拟替代传统的仪器。

因VI功能完全是由软件定义,故在硬件系统不变的情况下,用户可通过软件开发自行改变或扩充仪器的功能,实现自己的特殊要求,或用一套硬件系统实现多种仪器的功能,从而使虚拟仪器VI不但比传统仪器更灵活有效,而且也更经济。

VI的核心就是LabVIEW程序,所以在LabVIEW中,所有程序均称之为VI程序,不管它是否通过端口和外界进行通讯。

每个VI程序均可作为一个功能模块被重复使用,因而使用LabVIEW 来开发和扩展程序极为方便。

LabVIEW编程语言同常规的程序语言不同,它采用更易使用和理解的图形化程序语言-G语言(Graphical programming language)。

G语言使用图标代替常规的一条或一组语句来实现一个功能,通过各功能图标间的逻辑连接实现程序功能。

其编程过程不是书写一行行语句,而是连接一个个代表一定功能的图标,其程序编制
过程简单,不涉及复杂功能实现的算法,易于掌握。

同时,因为其编程过程基于可重复使用的功能模块,故可方便地使用由专业人员编制提供的专业级别的功能模块,开发出专业水平的程序。

所以,LabVIEW在世界范围内的众多领域如航空、航天、通信、汽车、半导体、化学和生物医学等得到了广泛的应用,从简单的仪器控制、数据采集到复杂的测试和数据处理,从工厂、科研院所到大学里的实验室,到处都可以发现LabVIEW的应用。

在西方国家(如美国)的许多大学已将LabVIEW作为本科的教学内容,成为工程师素质培养的一个方面。

由于LabVIEW虚拟仪器的强大功能,使得使用一套硬件系统就可进行多种不同要求的研究,故而可以用更小的消耗进行更多的研究,尤其适合在我国资金较少的科研单位用于研究工作。

LabVIEW6.-中,包含许多专家编写的VI供用户使用。

在数据采集方面有许多采集卡(DAQ)的支持模块,使采集程序的编制不必涉及低层控制;有各种数字、模拟信号I/O 模块;有对GPIB(General Purpose Interface Bus,IEEE488标准)、VXI(VME bus eXtensions for Instrumentation ,扩展IEEE1014标准)和Serial端口的支持和控制等VI。

在数据处理控制方面有各种数字信号处理和产生、频谱分析、滤波、平滑窗口、概率统计等VI。

本LabVIEW简介部分主要介绍LabVIEW语言的基础知识,包括界面、菜单、工具、模板、器件、函数等,通过这一部分的学习,读者即可使用LabVIEW编程并在实际工作中进行应用。

LabVIEW进阶部分将深入探讨LabVIEW的编程环境、编程技巧以及优化策略等和更多的功能,考虑到篇幅限制,本书不与介绍,感兴趣的同学可参看下列参考书继续学习,不断提高自己的应用水平。

LabVIEW程序被称为VI(Virtual Instrument),即虚拟仪器。

LabVIEW的核心概念就是“软件即是仪器”,即虚拟仪器的概念。

LabVIEW还包含了大量的工具与函数用于数据采集、分析、显示与存储等。

LabVIEW在测试、测量和自动化等领域具有最大的优势,因为LabVIEW提供了大量的工具与函数用于数据采集、分析、显示和存储。

用户可以在数分钟内完成一套完整的从仪器连接、数据采集到分析、显示和存储的自动化测试测量系统。

它被广泛地应用于汽车、通信、航空、半导体、电子设计生产、过程控制和生物医学等各个领域。

LabVIEW不仅可以用来快速搭建小型自动化测试测量系统,还可以被用来开发大型的分布式数据采集与控制系统。

相关文档
最新文档