周期信号的频谱分析

合集下载

周期信号的频域分析

周期信号的频域分析

周期信号的频域分析周期信号是指在一定时间间隔内,信号的波形和幅度重复的一种信号。

频域分析是指将一个信号从时域(时间域)转换到频域(频率域),以便更好地理解信号的频率特性和频谱分布。

f(t) = a0 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0为直流分量,an和bn分别为傅里叶级数的系数,ω0 =2π/T为基础角频率。

要进行频域分析,首先需要计算出信号的傅里叶系数an和bn。

计算步骤如下:1.计算直流分量a0,即信号f(t)在一个周期内的平均值。

2. 计算余弦项的系数an,使用公式:an = (2/T) * ∫(f(t)*cos(nω0t)dt)其中,∫表示对t从0到T的积分。

3. 计算正弦项的系数bn,使用公式:bn = (2/T) * ∫(f(t)*sin(nω0t)dt)同样,∫表示对t从0到T的积分。

计算出所有的an和bn之后,可以得到信号f(t)的频谱分布。

频谱是指信号在频率域上的幅度分布,可以用幅度谱和相位谱来表示。

1. 幅度谱表示信号各个频率分量的幅度大小。

幅度谱可以通过计算an和bn的幅度来得到,即幅度谱A(f) = sqrt(an^2 + bn^2)。

2. 相位谱表示信号各个频率分量的相位差。

相位谱可以通过计算an 和bn的相位差来得到,即相位谱ϕ(f) = atan(bn/an)。

通过这些计算,我们可以获得信号在频域上的频谱分布,进一步分析信号的频率特性。

频域分析的应用十分广泛。

在通信系统中,频域分析可以用于分析信号的频率偏移、频率响应等问题,为系统的调试和优化提供依据。

在音频和视频信号处理中,频域分析可以用于音频信号的均衡和滤波,视频信号的去噪和增强等。

此外,频域分析还在图像处理、生物医学信号处理等领域得到广泛应用。

总之,周期信号的频域分析是一种将信号从时域转换到频域的方法,可以帮助我们更好地理解信号的频率特性和频谱分布。

通过计算傅里叶系数,可以得到信号的幅度谱和相位谱,从而分析信号在频域上的特性。

§3-1 周期信号的频谱分析

§3-1 周期信号的频谱分析
2 T 2 T 2
E Edt T 1(V )
2
2
2 T x(t ) cosk1tdt T
2 2
2
E cosk tdt
1
2
2E T
2E 1 2 cos k1tdt T k1 sin k1t | 2
2
2E T
2 sin(k1 k1
) 2
2E k 8 k sin( ) sin( ) k T k 4
bk
2 T
T 2
x(t ) sin k1tdt
T 2
2 T
2
E sin k tdt 0
1
2
求得傅里叶级数展开式:
8 1 k x(t ) a0 ak cos k1t 1 sin( ) cos k1t k 1 k 4 k 1
6
4 0 2 3 4 5 6 7 8 9
c0
c2
k1
0 1 2131415161718191
ห้องสมุดไป่ตู้
k

0 2 3 4 5 6 7 8 9
k

k1
7 5
2 3 4 5 6 7 8 9
三、周期信号展开为三角函数式的傅里叶级数 高等数学中学过,周期信号x(t)当满足狄利赫里条件, 即在一个周期中: ⑴ 只有有限个一类间断点;
⑵ 只有有限个极值点,或称有限次振荡;
⑶ 绝对可积
T 2

T 2
x(t ) dt
于是,信号可展开为以下傅里叶级数
x(t ) a0 [ak cosk1t bk sin 1t ]

周期信号频谱分析

周期信号频谱分析

实验名称:周期信号的频谱分析教材名称:电工电子实验技术(下册)页码:P142 实验目的:1、了解和掌握周期信号频谱分析的基本概念;2、掌握Multisim软件用于频谱分析的基本方法;3、加深理解周期信号时域参数变化对其谐波分量的影响及变化趋势。

实验任务:1、根据9-1给定的波形和参数测量各谐波分量的幅度值。

2、根据所测数据绘制每一波形的谱线图。

设计提示:实验电路图:图一、分析用电路及信号发生器调整窗口实验结果:表9-1数据:周期信号的频谱分析(Multisim)0 10 20 30 40 50 60 70 80 90 100 矩形波10%-4.023 1.923 1.833 1.689 1.499 1.273 1.024 0.763 0.506 0.263 0.047 矩形波30%-2.023 5.123 3.040 0.699 0.897 1.271 0.659 0.236 0.739 0.595 0.046 矩形波50%-0.022 6.366 0.045 2.121 0.045 1.271 0.045 0.906 0.045 0.703 0.045 正弦波0 4.999 0 0 0 0 0 0 0 0 0三角波50%0 4.053 0 0.451 0 0.162 0 0.083 0 0.050 0三角波70%0 3.903 1.147 0.166 0.177 0.193 0.079 0.030 0.072 0.048 0三角波90%0 3.479 1.654 1.012 0.669 0.450 0.298 0.186 0.103 0.043 0N 0 1 2 3 4 5 6 7 8 9 10 注:谱线数取10+直流。

矩形波10%:矩形波30%:矩形波50%:正弦波50%:三角波50%:三角波70%:三角波90%:实验中注意事项:1、仿真过程中要在Simulate/Fourier Analysis/Output Variables中添加要进行分析的节点。

典型周期信号的频谱

典型周期信号的频谱
f (t) f (t)(全波对称) f (t) f (t T() 半波对称)
2
T
证:an
T
8 T
4 0
f
(t) cosntdt
22
20
f (t) f (t) f (t) f (t T )
2
an T T f (t) cosntdt T T f (t) cosntdt
2
2
T
由复振幅cn 的表达式可知,频谱谱线顶点的联线所
sin x
构成的包络是 x 的形式----称为抽样函数。
1. 找出谐波次数为零的点(即包络与横轴的交点)
包络线方程为
cn
2E
T
sin 2
2
与横轴的交点由下式决定:
sin
2
0
即: ,2 ,3
2
2
0
2
4
6
2m
2f
f
f0
1, 2, 3
T
2 T
2
f (t)e jn1t dt
b.这样定义能确切的反映信号的频谱分布特性。 各个频率分量振幅之间的相对比例关系是固定不 变的。
2.几点说明
a.F ( j) 代表了信号中各频率分量振幅的相对
大小。
|
b.各频率分量的实际振幅为
F ( )
|
d
是无穷
小量。
C. F ( j )具有单位角频率振幅的量纲。
| f (t) | dt 存在。
六.周期和非周期矩形脉冲信号频谱的对比
1.它们都具有抽样函数 sin x 的形式。
2.
Cn
2E
T1
sin n1
2
n1
x

实验四、周期信号的傅里叶级数和频谱分析

实验四、周期信号的傅里叶级数和频谱分析

实验四、周期信号的傅里叶级数和频谱分析1实验目的1)学会利用MATLAB 分析傅里叶级数展开,并理解傅里叶级数的物理含义; 2)学会利用MATLAB 分析周期信号的频谱特性。

2实验原理及实例分析2.1 周期信号的傅里叶级数(基本原理请参阅教材第四章的4.1节和4.2节。

)例1:周期方波信号)(t f 如图1所示,试求出该信号的傅里叶级数,利用MATLAB 编程实现其各次谐波的叠加,并验证Gibbs 现象。

f(t)t(sec)图1 周期方波信号)(t f 的波形图解:从理论分析可知,周期方波信号)(t f 的傅里叶级数展开式为)9sin 917sin 715sin 513sin 31(sin 4)(00000 +++++=t t t t t t f ωωωωωπ其中,ππω220==T。

则可分别求出1、3、5、9、19、39、79、159项傅里叶级数求和的结果,其MATLAB 程序如下,产生的图形如图2所示。

close all;clear all; clct = -2:0.0001:2; omega = 2 * pi;y = square(2 * pi * t,50); n_max = [1 3 5 9 19 39 79 159]; N = length(n_max); for k = 1:Nfk = zeros(1,length(t)); for n = 1:2:n_max(k) bn = 4 / (pi * n);fk = fk + bn * sin(n * omega * t); endfigure; plot(t,y,t,fk,'Linewidth',2); xlabel('t(sec)');ylabel('部分和的波形'); String = ['最大谐波数=',num2str(n_max(k))];axis([-2 2 -3 3]);grid; title(String);disp([String,'时,在信号跳变点附近的过冲幅度(%)']);f_max = (max(fk) - max(y)) / (max(y) - min(y)) * 100 endt(sec)部分和的波形最大谐波数=1t(sec)部分和的波形最大谐波数=3t(sec)部分和的波形最大谐波数=5t(sec)部分和的波形最大谐波数=9t(sec)部分和的波形最大谐波数=19t(sec)部分和的波形最大谐波数=39t(sec)部分和的波形最大谐波数=79t(sec)部分和的波形最大谐波数=159图2 例1程序产生的图形程序输出的用于验证Gibbs 现象的数值分别为:13.6620 10.0211 9.4178 9.1164 8.9907 8.9594 8.9484 8.94642.2周期信号的频谱分析(基本原理请参阅教材第四章的4.3节。

信号分析3.01 周期信号的频谱分析——傅里叶级数

信号分析3.01 周期信号的频谱分析——傅里叶级数

时域信号分解 频域信号分解
X
三角傅立叶级数 指数傅立叶级数
频域分析概念
第 第 8 8 页 页
提出以正弦信号或虚指数函数为基本信号进行信号 分解,从而引出信号的频域分析. 其思想:任意复杂的激励信号可分解为一系列不同幅 值、不同频率的正弦信号或虚指数信号的线性组合. 引出傅立叶变换概念 对周期信号
三维空间矢量 类 比
正交矢量集
C
2
A C1 A1 C2 A2 C3 A3
分解 正交函数集
A3
A2
A
C C
3 1
A1
2.信号空间
f (t )
c
j 1 j

j
(t )
n维空间
X
3.正交函数集
n个函数i(t) (i=1,…,n),若在区间( t1,t2)上满足:
1 t 0 T 积分限为-T/2 直流分量 a0 f (t ) d t 到T/2行吗? t0 T 2 t 0 T 余弦分量的幅度 an t f (t ) cosn 1t d t T 0 2 t 0 T 正弦分量的幅度 bn f (t ) sinn1t d t T t0
bn An sin n
bn n arctan a n
f (t ) a0 [ An cos n cos( n1t ) An sin n sin( n1t )]
余弦形式
, bn , An , n随变量nw1变化,是nw1n的函数 信号的频域分析 n an
f (t )
画波形

A
O

T t
A
f (t ) A(sin t 1 sin 3t 1 sin 5t ) 3 5

4-2 信号的频域分析-周期信号频域分析

4-2 信号的频域分析-周期信号频域分析
16
分析问题使用的数学工具为傅里叶级数 最重要概念:频谱函数 要点
1. 频谱的定义、物理意义 2. 频谱的特点 (离散,衰减) 3. 频谱的性质,应用性质分析复杂信号的频谱 4. 功率谱的概念及在工程中的应用
17
离散Fourier级数(DFS)
DFS的定义 常用离散周期序列的频谱分析 周期单位脉冲序列d N[k] 正弦型序列 周期矩形波序列 DFS的性质

0 2π / T
n 0
3
例2 已知连续周期信号的频谱如图,试写出 信号的Fourier级数表示式。
Cn
4 3 2 1 3 2 1 1 3 2
0
1
2
3
n
解: 由图可知 C 0 4
f (t ) C n e jn 0 t
n
C 1 3
C 2 1
三、周期信号的频谱及其特点
1. 频谱的概念
周期信号f(t)可以分解为不同频率虚指数信号之和
f (t ) C n e j n 0 t
n =
不同的时域信号,只是傅里叶级数的系数Cn不同, 因此通过研究傅里叶级数的系数来研究信号的特性。 Cn是频率的函数,它反映了组成信号各次谐波 的幅度和相位随频率变化的规律,称频谱函数。
10
例3 试求周期矩形脉冲信号在其有效带宽(0~2 /)内
谐波分量所具有的平均功率占整个信号平均功率 的百分比。其中A=1,T=1/4,=1/20。
f (t )
A
T


2

2
T
t
解: 周期矩形脉冲的傅里叶系数为
Cn A T Sa ( n 0 2 )
将A=1,T=1/4, = 1/20,0= 2/T = 8 代入上式

实验5 周期信号的傅里叶级数及频谱分析

实验5 周期信号的傅里叶级数及频谱分析

N = length(n_max) ;
for k=1:N
n = 1:2:n_max(k) ;
b = 4./(pi*n) ;
x = b*sin(omega*n'*t) ;
figure
plot(t,y) ;
hold on
plot(t,x) ;
hold off ;
xlabel('t') ;
ylabel(' 部分和的波形') ;
f (t) A0 An cos(nw0t n ) n1
A0 a0
An an2 bn2
n
arctg
bn an
(n 1, 2, )
a0 A0
bann
Acosn Asinn
(n 1, 2, )
从物理概念上来说,A0是信号f (t)的直流分量, A1 cos(w0t 1)
f (t)e jnw0t , n 0, 1, 2,
2
例1:周期方波信号如图6-1所示,是求出 该信号的傅里叶级数,利用MATLAB编程 实现其各次谐波的叠加,并验证其收敛性
ex6_1.m
理论分析,周期方波信号的傅里叶级数展 开式子为:
4A
1
1
1
f (t) (sin w0t 3 sin 3w0t 5 sin 5w0t 7 sin 7w0t )
Fne jnw0t与Fne jnw0t成对出现
傅里叶系数的幅度 Fn 或随An角频率 的n变w0化关系绘制 成的图形称为信号的幅度谱,而相位 随角n或频n率 变化关系nw绘0 制成图形,称为信号的相位谱。幅度谱 和相位谱统称为信号的频谱,信号频谱是信号的另 一种形式的表示,它提供了从另一个角度来观察和 分析信号的途径。利用MATLAB命令可以对周期 信号的频谱及其特点进行观察验证分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统实验报告实验三周期信号的频谱分析实验报告评分:_______实验三周期信号的频谱分析实验目的:1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。

实验内容:(1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。

程序如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of timew0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t);x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N=');x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]); grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')subplot(224)plot(t,x)%Plot xtaxis([-2 4 -2 2])grid on,title('signal xt')(2)给程序3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。

程序如下:% Program3_1 clear, close allT = 2;dt = 0.00001;t = -2:dt:2;x1 = ut(t) - ut(t-1-dt);x = 0;for m = -1:1x = x + ut(t-m*T) - ut(t-1-m*T-dt);endw0 = 2*pi/T;N = 10;L = 2*N+1;for k = -N: N;ak(N+1+k) = (1/T)*x1*exp(-j*k*w0*t')*dt; endphi = angle(ak);subplot(211)'k = -10:10;stem (k,abs(ak),'k');axis([-10,10,0,0.6]);grid on;title('fudupu');subplot(212);k = -10:10stem(k,angle(ak),'k');axis([-10,10,-2,2]);grid on;titie('xiangweipu');xlabel('Frequency index x');(3)反复执行程序Program3_2,每次执行该程序时,输入不同的N值,并观察所合成的周期方波信号。

通过观察,你了解的吉伯斯现象的特点是:程序如下:clear,close allT = 2;dt = 0.00001;t = -2:dt:2;x1 = ut(t)-ut(t-1-dt);x = 0; for m = -1:1x = x + ut(t-m*T) - ut(t-1-m*T-dt);endw0 = 2*pi/T;N = input('Type in the number of the harmonic components N = :');L = 2*N+1;for k = -N:1:N;ak(N+1+k) = (1/T)*x1*exp(-j*k*w0*t')*dt; endphi = angle(ak);y=0;for q = 1:L;y = y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T); end;subplot(221),plot(t,x),title('The original signal x(t)'),axis([-2,2,-0.2,1.2]),subplot(223),plot(t,y),title('The synthesis signal y(t)'),axis([-2,2,-0.2,1.2]),xlabel('Time t'),subplot(222)k=-N:N;stem(k,abs(ak),'k.'),title('The amplitude |ak| of x(t)'),axis([-N,N,-0.1,0.6])subplot(224)stem(k,phi,'r.'),title('The phase phi(k) of x(t)'),axis([-N,N,-2,2]),xlabel('Index k')N=1N=3通过观察我们了解到:如果一个周期信号在一个周期有内断点存在,那么,引入的误差将除了产生纹波之外,还将在断点处产生幅度大约为9%的过冲(Overshot),这种现象被称为吉伯斯现象(Gibbs phenomenon)。

即信号在不连续点附近存在一个幅度大约为9%的过冲,且所选谐波次数越多,过冲点越向不连续点靠近。

(4)计算如图的傅里叶级数的系数程序如下:clc,clear,close allT=2;dt=0.00001;t=-3:dt:3;x=(t+1).*(u(t+1)-u(t))-(t-1).*(u(t)-u(t-1));x1=0; for m=-2:2x1=x1+(t+1-m*T).*(u(t+1-m*T)-u(t-m*T))-(t-1-m*T).*(u(t-m *T)-u(t-1-m*T));endw0=2*pi/T;N=10;L=2*N+1;for k=-N:N;ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t')*dt;endphi=angle(ak);plot(t,x1);axis([-4 4 0 1.2]);grid on;title('The signal x1(t)'); xlabel('Time t (sec)'); ylabel('signal x1(t)');(5)仿照程序3_1,编写程序Q3_5,以计算x2(t) 的傅里叶级数的系数(不绘图)。

程序如下:clc,clear,close allT=2;dt=0.00001;t=-3:dt:3;x=ut(t+0.2)-ut(t-0.2-dt);x2=0;for m=-1:1x2=x2+ut(t+0.2-m*T)-ut(t-0.2-m*T)-ut(t-0.2-m*t-dt); endw0=2*pi/T;N=10;L=2*N+1for k=-N:N;ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t')*dt;endphi=angle(ak);plot(t,x2);axis([-2.5 2.5 0 1.2]);grid on;title('The signal x2(t)');xlabel('Time t (sec)');ylabel('signal x2(t)');(6)仿照程序3_2,编写程序Q3_6,计算并绘制出原始信号x1(t) 的波形图,用有限项级数合成的y1(t) 的波形图,以及x1(t) 的幅度频谱和相位频谱的谱线图。

程序如下:clc,clear,close allT=2;dt=0.00001;t=-3:dt:3;x=(t+1).*(ut(t+1)-ut(t))-(t-1).*(ut(t)-ut(t-1));x1=0;for m=-2:2x1=x1+(t+1-m*T).*(ut(t+1-m*T)-ut(t-m*T))-(t-1-m*T).*(ut( t-m*t)-ut(t-1-m*t));endw0=2*pi/T;N=10;L=2*N+1;for k=-N:N;ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t')*dt;endphi=angle(ak);y=0;for q=1:L;y=y+ak(q)*exp(j*(q-1-N)*w0*t);end;subplot(221)plot(t,x)%plot xaxis([-3 3 -0.2 1.2]);grid on;title('The original signal x(t)'); subplot(223)plot(t,y)%Plot yaxis([-3 3 -0.2 1.2]);grid on;title('The synthesis signal y(t)'); subplot(222);xlabel('Time i (sec)');subplot(222);k=-N:N;stem(k,abs(ak),'k');axis([-N N -0.1 0.6]);grid on;title('The amplitude spectrum of x(t)'); subplot(224);k=-N:N;stem(k,phi,'k');axis([-N N -2 2]);grid on;title('The phase spectrum of x(t)');xlabel('Frequency index k');实验心得:在实验的过程中,掌握连续时间周期信号的傅里叶级数的物理意义和分析方法,观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因,掌握各种典型的连续时间非周期信号的频谱特征。

相关文档
最新文档