非周期信号的频谱分析

合集下载

实验四非周期信号频域分析

实验四非周期信号频域分析

实验四 非周期信号频域分析1 实验目的(1) 掌握傅里叶变换的分析方法及其物理意义。

(2) 掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质。

(3) 学习掌握利用MA TLAB 语言编写计算CTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 的若干重要性质。

2 实验原理及方法2.1连续时间信号傅里叶变换——CTFT傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。

傅里叶变换和其逆变换定义如下:⎰∞∞--=dt e t x j X t j ωω)()( 4-1 ⎰∞∞-=ωωπωd e j X t x t j )(21)( 4-2连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。

任意非周期信号,如果满足狄里克利条件,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号e j ωt 的线性组合构成的,每个频率所对应的周期复指数信号e j ωt 称为频率分量,其相对幅度为对应频率的|X(j ω)|之值,其相位为对应频率的X(j ω)的相位。

X(j ω)通常为关于ω的复函数,可以按照复数的极坐标表示方法表示为:X(j ω)=| X(j ω)|e j ∠ X(j ω)其中,| X(j ω)|称为x(t)的幅度谱, ∠X(j ω)称为x(t)的相位谱。

给定一个连续时间非周期信号x(t),它的频谱是连续且非周期的。

对于连续时间周期信号,也可以用傅里叶变换来表示其频谱,其特点是,连续时间周期信号的傅里叶变换是由冲激序列构成的,是离散的——这是连续时间周期信号的傅里叶变换的基本特征。

2.2 用MA TLAB 实现CTFT 及其逆变换2.2.1 用MATLAB 实现CTFT 的计算MA TLAB 进行傅里叶变换有两种方法,一种利用符号运算的方法计算,另一种是数值计算,本实验采用数值计算的方法。

严格来说,用数值计算的方法计算连续时间信号的傅里叶变换需要有个限定条件,即信号是时限信号,也就是当时间|t|大于某个给定时间时其值衰减为零或接近于零,这个条件与前面提到的为什么不能用无限多个谐波分量来合成周期信号的道理是一样的。

03第1章_瞬变非周期信号与连续频谱

03第1章_瞬变非周期信号与连续频谱

其中: j ( f ) X( f ) X( f )e
X ( f ) Re2 [ X ( f )] Im2 [ X ( f )] 幅值谱 ( amplitude spectrum )
Im[ X ( f )] ( f ) arctg 相位谱 Re[ X ( f )] ( phase spectrum )
T
T
n
x(t )
2 2 2 0
n 0 (n 1) 0 0
Cn
t
T

2 d 0 T


非周期信号的频谱分析
2, Fourier 变换
Fourier 变换的推导 ( 1 ) 由以上思路推导公式
x(t ) lim xT (t )


( x(t )e j 2ft dt)e j 2ft df



令为 X( f )
非周期信号的频谱分析
非周期信号是时间上不会重复出现的信号,一般 为时域有限信号,具有收敛可积条件,其能量为 有限值。这种信号的频域分析手段是傅立叶变换 (Fourier transform)。 傅立叶变换的定义
非周期信号的频谱分析
对比:方波谱
非周期信号的频谱分析
例:矩形脉冲信号(rectangular pulse signal) G(t ) (窗函数(window function))
E, t T / 2 G(t ) 0, t T / 2
矩形脉冲信号的 Fourier 变换为
a
m 1
k
m m
x (t ) am X m ( f )
m 1
k

非正弦周期信号的频谱

非正弦周期信号的频谱

频谱分析在通信、电力、自动控制等领域 都有广泛的应用,其分析结果可以为相关 领域的发展提供支持和指导。
02
非正弦周期信号的基本概念
非正弦周期信号的定义
01
非正弦周期信号是指在一个周期 内,信号的波形不是正弦波形的 周期信号。
02
与正弦周期信号相比,非正弦周 期信号的波形更加复杂,包含多 种频率成分。
05
非正弦周期信号频谱分析的应 用
在通信领域的应用
调制与解调
在通信系统中,非正弦周期信号 常被用作调制信号,通过频谱分 析可以了解信号的频率成分,进
而实现信号的调制与解调。
信道特性分析
通过分析信道对非正弦周期信号的 频谱影响,可以评估信道的传输特 性,为信道均衡和信号恢复提供依 据。
干扰识别与抑制
高精度算法
02
发展更高精度的频谱分析算法,以应对复杂和微弱信号的挑战,
提高分析的灵敏度和分辨率。
多域联合分析
03
结合时域、频域和其他变换域的分析方法,提供更全面、深入
的信号特征提取和理解。
对未来技术的展望
实时分析技术
开发能够实时处理和分析非正弦周期信号的技术,以满足实时监 测和控制的需求。
自适应分析技术
频谱的奇对称性
如果非正弦周期信号的波形具有奇对称性(即波形关于原 点对称),则其频谱具有奇对称性。在这种情况下,正负 频率分量的幅度相等,相位相同。
频谱的非对称性
对于不具有偶对称性或奇对称性的非正弦周期信号,其频 谱可能呈现出非对称性。这意味着正负频率分量的幅度和 相位关系可能不遵循简单的对称规律。
在通信系统中,干扰信号往往具有 特定的频谱特征。通过频谱分析, 可以识别干扰信号并采取相应的抑 制措施。

2.5信号的频域分析(非周期信号)2.6傅立叶变换的性质

2.5信号的频域分析(非周期信号)2.6傅立叶变换的性质

能 量 谱
由此最后得
E = ∫ x2 (t )dt =
−∞ ∞
1 ∞ 2 X(ω) dω 2π ∫−∞
(16)
式(15)亦称巴塞伐尔方程或 能量等式。它表示,一个非周 期信号x(t)在时域中的能量可由 它在频域中连续频谱的能量来 表示。 式(15)亦可写成
E= 1 ∞ 2 X(ω) dω 2π ∫−∞ 1 ∞ 2 = ∫ X(ω) dω = ∫ S(ω)dω
证明: 由欧拉公式
X (ω) = ∫ x(t)e
−∞
∞ −∞

− jωt
dt
∞ −∞
X (ω) = ∫ x(t) cosωtdt − j∫ x(t) sin ωtdt
= Re X (ω) + j Im X (ω)
若x(t)为实函数
Re X (ω) = Re X (−ω) Im X (ω) = − Im X (−ω)
x(t) = Arect
(t − t0 )
T
图2.30 具有时移t0的矩形脉冲
X( f ) = AT sin c(πfT) sin c(πfT) > 0 − 2πt0 f , ϕ( f ) = − 2πt0 f ±π , sin c(πfT) < 0
测试技术
2.6傅里叶变换的性质 2.6傅里叶变换的性质


−∞
x(t) dt < ∞
但上述条件并非必要条件 必要条件。因为当引入广义函数概 必要条件 念之后,许多原本不满足绝对可积条件的函数也能进行傅 里叶变换。 若将上述变换公式中的角频率ω用频率f来替代,则由 于ω=2πf,式(5)和(6)分别变为
X( f ) = ∫ x(t)e− j 2πft dt

离散非周期信号频域分析

离散非周期信号频域分析

离散⾮周期信号频域分析离散信号频域分析、快速傅⾥叶变换与采样定理⼀、离散信号频域分析(⼀)周期离散⽅波信号频域分析与周期模拟信号⼀样,周期离散信号同样可以展开成傅⾥叶级数形式,并得到离散傅⾥叶级数(DFS)上式可以看成周期离散信号x(n)的离散傅⾥叶级数展开。

上式是DFS的反变换,记作IDFS并且称错误!未找到引⽤源。

与错误!未找到引⽤源。

构成⼀对离散傅⾥叶级数变换对。

(以上两式中错误!未找到引⽤源。

)在MTALAB中,DFS通过建⽴周期延拓函数语句实现:function Xk=DFS(n,x,N)if N>length(x)n=0:N-1;x=[x zeros(1,N-length(x))];endk=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=x*WNnk;end建⽴⼀个离散⾮周期⽅波信号错误!未找到引⽤源。

通过周期延拓后所得的周期序列利⽤DFS计算实现代码如下:clear all;close all;clc;n=0:3;x=ones(1,4);X=fft(x,1024);Xk1=DFS(n,x,4);Xk2=DFS(n,x,8);figure(1);plot((-1023:2048)/2048*8,[abs(X) abs(X) abs(X)],'--');hold on;stem(-4:7,[abs(Xk1) abs(Xk1) abs(Xk1)],'LineWidth',2);grid;figure(2);plot((-1023:2048)/2048*16,[abs(X) abs(X) abs(X)],'--');hold on;stem(-8:15,[abs(Xk2) abs(Xk2) abs(Xk2)],'LineWidth',2);grid;set(gcf,'color','w');运⾏后得到的是分别以4和8为周期延拓后的错误!未找到引⽤源。

非周期信号的频谱分析第三节连续时间Fourier变换的课件.ppt

非周期信号的频谱分析第三节连续时间Fourier变换的课件.ppt

F( j)
πF (0)
()
若信号不存在直流分量即F(0)=0
则t
f
( )d
F
1
j
F( j)
18
例3 试利用积分特性求图示信号f(t)的频谱函数。
f(t) 1
y(t)=p(t0.5) 1
t
0
1
t
0
1
解: f (t) = t p(t 0.5)dt = t y(t)dt
由于 p(t 0.5) F Y ( j) = Sa (0.5)e j0.5
F F1 ( j)
1 Sa (0.5)e j0.5 j
利用修正的微分特性,可得
F( j) = π( f () f ()) () F1 ( j) j
= 3π () 1 Sa (0.5)ej0.5 j
与例4结果 一致! 24
23
10. 频域微分积分特性
若f (t) F( j)
则( jt)n f (t) F (n) ( j)
由上式利用时域微分特性,得
2
F[ f '(t)] = (j)F(j) = A 2jsin( )
2
因此有
F( j) = 2A sin( ) = ASa( )
2
2
21
20
例6 试利用微分特性求图示信号f(t)的频谱函数。
f(t) 2 1
f '(t) 1
t
0
1
t
0
1
解: f '(t) = p(t 0.5) F Sa(0.5)e j0.5
f1(t) d n f (t
f )
2 (t) F F ( j)
1
2π n
[F1( j) F( j)

非周期信号(方波,锯齿波,三角波)的合成分解以及频谱分析的MATLAB实现

非周期信号(方波,锯齿波,三角波)的合成分解以及频谱分析的MATLAB实现
MATLAB 在数学类科技应用软件中在数值计算方面首屈一指。MATLAB 可以进行矩 阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等, 主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模 设计与分析等领域。
1.2 主要功能
1.数值分析 2.数值和符号计算 3.工程与科学绘图 4.控制系统的设计与仿真 5.数字图像处理 6.数字信号处理 7.通讯系统设计与仿真 8.财务与金融工程
2
连续周期信号的傅立叶级数分析及其 MATLAB 实现
2 连续周期信号的傅立叶级数
频域分析法即傅里叶分析法,它是变换域分析法的基石。其中,傅里叶级数 是变换域分析法的理论基础,傅里叶变换作为频域分析法的重要数学工具,具有 明确的物理意义,在不同的领域得到广泛的应用。
2.1 连续时间周期信号的分解
以高等数学的知识,任何周期为 T 的周期函数,在满足狄里赫利条件时,则 该周期信号可以展开成傅里叶级数。傅里叶级数有三角形式和指数形式两种。
(3-2)
2
2
3
MATLAB 实现程序:
n=7;
6
连续周期信号的傅立叶级数分析及其 MATLAB 实现
T0=2;A=2; T1=2; tn_i=1; for tn=0:0.01:T1*T0
y_t(tn_i)=A* rem (tn,T0)/T0; t_t(tn_i)=tn; tn_i=tn_i+1; end; t=0:0.01:T1*T0; x=A/2; pi=3.1415926; w0=2*pi/T0; for i=1:n fw(i)=i*w0; a(i)=-A/(pi*i); y(i,:)=a(i)*sin(fw(i)*t); x=x+y(i,:); end; subplot(1,3,1); plot(t_t,[y_t;x]); title('锯齿波、锯齿波合成图') subplot(1,3,2); plot(t,[x; y]); title('0-n 次谐波及合成图') subplot(1,3,3); stem(fw,a); title('锯齿波频谱图') 生成图形:

§3-3 非周期信号的频谱分析

§3-3 非周期信号的频谱分析

x(t)
E
T

2
2
T
t
x(t)
E
T

2
2
T
t
x(t)
E

2
2
t
TA k E
0 1
2

k1
TA k E
0 1
2

k1
TA k E
0
2


对应的傅里叶级数展开式
x(t)

Ak e jk1t
k

TAk e jk1t
我们将X(jΩ)表示非周期信号的频谱,即是傅里叶正变 换

X ( j) x(t)e jt dt

x(t)
1

X ( j)e jt d
2
即是傅里叶反变换。上两式称作傅里叶变换对,常表示为
x(t) FT X ( j) ℱ x(t)
x(t) ℱ -1 X ( j)
k
1 T
1 2
TAk e jk1t
k

2 T
当T→∞的时候,
lim x(t)
T
1 2
TAk e
k
jk1t

2 T
lim
T
1 2
TAk e
k
jk1t
1

1

X ( j)e jt d
2
T
E
T

2
2
T
t
0 1
2

k1
x(t)
E
T

2
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非周期信号的频谱分析一、 实验目的1) 掌握用MATLAB 编程,分析门信号的频谱; 2) 掌握用MATLAB 编程,分析冲击信号的频谱; 3) 掌握用MATLAB 编程,分析直流信号的频谱; 4) 掌握用MATLAB 编程,分析阶跃信号的频谱; 5) 掌握用MATLAB 编程,分析单边信号的频谱; 二、 实验原理 常见的非周期信号有: 1、 门信号门信号的傅里叶变换对为:12sin()22()()202t g t F j Sa t ττωτωτωττω⎧<⎪⎪⎛⎫=⇔==⎨⎪⎝⎭⎪>⎪⎩它的幅度频谱和相位频谱分别为()2F j Sa ωτωτ⎛⎫= ⎪⎝⎭ 0sin()02()sin()02ωτϕωωτπ⎧>⎪⎪=⎨⎪<⎪⎩ 2、 冲激信号冲激信号的傅里叶变换对为()1t δ⇔3、 直流信号直流信号的傅里叶变换为12()πδω⇔4、 阶跃信号阶跃信号的傅里叶变换为111()sgn()()22u t t j πδωω=+⇔+ 5、 单边指数信号单边指数信号的傅里叶变换对为01()0ate tf t j t αω-⎧≥=⇔⎨+<⎩ 幅度频谱和相位频谱分别为()F j ω=()arctan()a ωϕω=-三、涉及的MATLAB函数1、fourier函数2、ifourier函数四、实验内容与方法1、验证性试验1)门信号的傅里叶变换MATLAB程序:Clear all;syms t wut=sym('heaviside(t+0.5)-heaviside(t-0.5)');subplot(2,1,1);ezplot(ut)hold onaxis([-1 1 0 1.1]);plot([-0.5 -0.5],[0,1]);plot([0.5 0.5],[0,1]);Fw=fourier(ut,t,w);FFP=abs(Fw);subplot(2,1,2);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.1]);程序运行结果图2)冲激信号的傅里叶变换MATLAB程序:clear allsyms t wut1=sym('heaviside(t+0.5)-heaviside(t-0.5)');subplot(2,1,1);ezplot(ut1);title('脉宽为1的矩形脉冲信号')xlabel('t')hold onaxis([-1 1 0 1.1]);plot([-0.5 -0.5],[0 1]);plot([0.5 0.5],[0 1]);Fw=fourier(ut1,t,w);FFw=abs(Fw);subplot(2,1,2);ezplot(FFw,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.1]);title('脉宽为1的矩形脉冲信号的幅度频谱')hold onpauseut2=10*sym('heaviside(t+0.05)-heaviside(t-0.05)'); subplot(2,1,1);ezplot(ut2);title('脉宽为1、0.1矩形脉冲信号')xlabel('t')hold onaxis([-1 1 0 11]);plot([-0.05 -0.05],[0 10]);plot([0.05 0.05],[0 10]);Fw2=fourier(ut2,t,w);FFw2=abs(Fw2);subplot(2,1,2);ezplot(FFw2,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.1]);title('脉宽为1、0.1的矩形脉冲信号的幅度频谱')hold onpauseut3=100*sym('heaviside(t+0.005)-heaviside(t-0.005)'); subplot(2,1,1);ezplot(ut3);title('脉宽为1、0.1和0.01矩形脉冲信号')xlabel('t')hold onaxis([-1 1 0 110]);plot([-0.005 -0.005],[0 100]);plot([0.005 0.005],[0 100]);Fw3=fourier(ut3,t,w);FFw3=abs(Fw3);subplot(2,1,2);ezplot(FFw3,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.1]);title('脉宽为1、0.1和0.01的矩形脉冲信号的幅度频谱') hold onpause程序运行结果图3)直流信号的傅里叶变换MATLAB程序:clear all;display('Please input the value of a')a=input('a=');syms tf=exp(-a*abs(t));subplot(1,2,1)ezplot(f);axis([-2*pi 2*pi 0 1]);ylabel('时域波形');F=fourier(f);subplot(1,2,2)ezplot(abs(F));axis([-3 3 0 2/a])程序运行结果图a=0.1时:a=0.01时:a=0.001时:a=0.0001时:4)阶跃信号的傅里叶变换MATLAB程序:clear allsyms w;xw=1/(j*w);ezplot(abs(imag(xw)));axis([-3 3 -1.5*pi 1.5*pi]);hold ony=0:0.01:pi;plot(0,y);hold ony=-pi:pi;plot(0,y);hold ontitle('阶跃信号频谱');xlabel('\omega');axis([-pi pi -6 6]);x=-pi:0.001:pi;plot(x,0)hold ony=-6:0.01:6;plot(0,y);hold on程序运行结果图5)单边指数信号的傅里叶变换MATLAB程序:clear allsyms t v w phase im ref=exp(-2*t)*sym('heaviside(t)'); Fw=fourier(f);subplot(3,1,1);ezplot(f);axis([-1 2.5 0 1.1]);xlabel('时域波形');subplot(3,1,2)ezplot(abs(Fw));xlabel('幅度频谱');im=imag(Fw);re=real(Fw);phase=atan(im/re);subplot(3,1,3);ezplot(phase);xlabel('相位频谱');程序运行结果图2、 程序设计实验确定下列信号的傅里叶变换的数学表达式1)2()()1t f t e U t -=+的傅里叶变换1()2()2F j j ωπδωω=++ MATLAB 程序:clear allsyms t v w phase im ref=exp(-2*t)*sym('heaviside(t)')+1; Fw=fourier(f); Fw=simple(Fw); subplot(3,1,1); ezplot(f);axis([-1 2.5 0 1.1]); xlabel('时域波形'); subplot(3,1,2) ezplot(abs(Fw)); im=imag(Fw); re=real(Fw); xlabel('幅度频谱'); phase=atan(im/re); subplot(3,1,3); ezplot(phase); xlabel('相位频谱');程序运行结果图2)2()(1)()t f t e U t G t -=-+的傅里叶变换12sin ()1j e F j j ωωωωω--=++MATLAB 程序:clear allsyms t v w phase im ref=exp(-1*t)*sym('heaviside(t-1)')+heaviside(t+1)-heavis ide(t-1);Fw=fourier(f); Fw=simple(Fw); subplot(3,1,1); ezplot(f);axis([-2.5 2.5 0 1.1]); xlabel('时域波形'); subplot(3,1,2) ezplot(abs(Fw)); im=imag(Fw); re=real(Fw); xlabel('幅度频谱'); phase=atan(im/re); subplot(3,1,3); ezplot(phase); xlabel('相位频谱');程序运行结果图3)()2()(4)f t U t t δ=+-的傅里叶变换41()2(())j j F j e e j ωωωπδωω--=++MATLAB 程序:clear allsyms t v w phase im ref=2*sym('heaviside(t-1)')+dirac(t-4); Fw=fourier(f); Fw=simple(Fw); subplot(3,1,1); ezplot(f)axis([-1 6 0 1.5]); xlabel('时域波形'); subplot(3,1,2) ezplot(abs(Fw)); im=imag(Fw); re=real(Fw); xlabel('幅度频谱'); phase=atan(im/re); subplot(3,1,3); ezplot(phase); xlabel('相位频谱');程序运行结果图。

相关文档
最新文档