第三章(2)周期信号的频谱分析
实验三-周期信号的频谱分析-实验报告

信号与系统实验报告实验三周期信号的频谱分析学院专业班级学号指导教师实验报告评分:_______实验三 周期信号的频谱分析一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。
二、实验容实验前,必须首先阅读本实验原理,读懂所给出的全部例程序。
实验开始时,先在计算机上运行这些例程序,观察所得到的信号的波形图。
并结合例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q3-1 编写程序Q3_1,绘制下面的信号的波形图:-+-=)5cos(51)3cos(31)cos()(000t t t t x ωωω∑∞==10)cos()2sin(1n t n n nωπ其中,ω0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(ω0t)、cos(3ω0t)、cos(5ω0t) 和x(t) 的波形图,给图形加title ,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。
抄写程序Q3_1如下: clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N='); x=0; for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]);grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')执行程序Q3_1所得到的图形如下:Q3-2给程序Program3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
第三章第二节离散信号频域分析

则 y (n ) IDFS [Y (k )] x1 (m) x2 (n m)
m 0
N 1
x2 (m) x1 (n m)
m 0
N 1
证: y(n) IDFS[ X 1 (k ) X 2 (k )]
j
2
j j e 2 e 2
e
3 j 2
sin 2 sin / 2
求x n 的8点DFT N 8
X k X e j
3 j k 2 4
2 k 8
e
2 sin 2 k 8 1 2 sin k 2 8 sin k 2 sin k 8
若 则有
2.周期序列的移位 设
则 如果m>N,则m=m1+Nm2
3.周期卷积 设 和 DFS系数分别为
都是周期为N的周期序列,它们的
令
则
上式表示的是两个周期序列的卷积,称为周期卷积。 周期为N的两个序列的周期卷积的离散傅里叶级数等于 它们各自离散傅里叶级数的乘积。
周期卷积的计算:
周期卷积中的序列 和 对m都是周 期为N的周期序列,它们的乘积对m也是以N为周期的, 周期卷积仅在 一个周期内求和。 相乘和相加运 算仅在m=0到N-1的区间内进行。计算出 n=0到N-1(一个周期)的结果后,再将其进行周期延拓, 就得到周期卷积 。 周期卷积满足交换律
j
2 nk N
一个域的离散造成另一个域的周期延拓, 因此离散傅里叶变换的时域和频域都是 离散的和周期的。
离散时间、连续频率—序列的傅里叶变换
周期信号的频域分析

周期信号的频域分析周期信号是指在一定时间间隔内,信号的波形和幅度重复的一种信号。
频域分析是指将一个信号从时域(时间域)转换到频域(频率域),以便更好地理解信号的频率特性和频谱分布。
f(t) = a0 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0为直流分量,an和bn分别为傅里叶级数的系数,ω0 =2π/T为基础角频率。
要进行频域分析,首先需要计算出信号的傅里叶系数an和bn。
计算步骤如下:1.计算直流分量a0,即信号f(t)在一个周期内的平均值。
2. 计算余弦项的系数an,使用公式:an = (2/T) * ∫(f(t)*cos(nω0t)dt)其中,∫表示对t从0到T的积分。
3. 计算正弦项的系数bn,使用公式:bn = (2/T) * ∫(f(t)*sin(nω0t)dt)同样,∫表示对t从0到T的积分。
计算出所有的an和bn之后,可以得到信号f(t)的频谱分布。
频谱是指信号在频率域上的幅度分布,可以用幅度谱和相位谱来表示。
1. 幅度谱表示信号各个频率分量的幅度大小。
幅度谱可以通过计算an和bn的幅度来得到,即幅度谱A(f) = sqrt(an^2 + bn^2)。
2. 相位谱表示信号各个频率分量的相位差。
相位谱可以通过计算an 和bn的相位差来得到,即相位谱ϕ(f) = atan(bn/an)。
通过这些计算,我们可以获得信号在频域上的频谱分布,进一步分析信号的频率特性。
频域分析的应用十分广泛。
在通信系统中,频域分析可以用于分析信号的频率偏移、频率响应等问题,为系统的调试和优化提供依据。
在音频和视频信号处理中,频域分析可以用于音频信号的均衡和滤波,视频信号的去噪和增强等。
此外,频域分析还在图像处理、生物医学信号处理等领域得到广泛应用。
总之,周期信号的频域分析是一种将信号从时域转换到频域的方法,可以帮助我们更好地理解信号的频率特性和频谱分布。
通过计算傅里叶系数,可以得到信号的幅度谱和相位谱,从而分析信号在频域上的特性。
DSP实验报告-周期信号的频谱分析处理

实验报告一、实验目的和要求谱分析即求信号的频谱。
本实验采用DFT/FFT技术对周期性信号进行谱分析。
通过实验,了解用X(k)近似地表示频谱X(ejω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T、抽样点数N)。
二、实验内容和步骤2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。
2-2 谱分析参数可以从下表中任选一组(也可自定)。
对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期?2-3 对以上几个正弦序列,依次进行以下过程。
2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U,V)。
2-3-2 分析抽样间隔T、截断长度N(抽样个数)对谱分析结果的影响;2-3-3 思考X(k)与X(e jω)的关系;2-3-4 讨论用X(k)近似表示X(ejω)时的栅栏效应、混叠现象、频谱泄漏。
三、主要仪器设备MATLAB编程。
四、操作方法和实验步骤(参见“二、实验内容和步骤”)五、实验数据记录和处理clc;clf;clear;%清除缓存%第一组数据的MATLAB程序(之后几组只需要将参数改变即可) T=0.000625;length=32;n=0:length-1;t=0:0.0001:31;%原序列和采样序列xn=sin(2*pi*50*n*T);xt=sin(2*pi*50*t);%画第一幅图(原序列和采样序列)figure(1);subplot(2,1,1);plot(t,xt);xlabel('t');ylabel('xt');axis([0,0.2,-1.1,1.1]);title('原序列时域');subplot(2,1,2);stem(n,xn ,'filled');xlabel('n');ylabel('xn');axis([0,length,-1.1,1.1]);title('采样后序列时域');%画第二幅图(采样序列实部、虚部、模和相角)figure(2);subplot(2,2,1);stem(n,real(xn) ,'filled');xlabel('n');ylabel('real(xn)');axis([0,length,-1.1,1.1]);title('采样序列的实部');subplot(2,2,2);stem(n,imag(xn) ,'filled');xlabel('n');ylabel('imag(xn)');axis([0,length,-1.1,1.1]);title('采样序列的虚部');subplot(2,2,3);stem(n,abs(xn) ,'filled');xlabel('n');ylabel('abs(xn)');axis([0,length,-1.1,1.1]);title('采样序列的模');subplot(2,2,4);stem(n,angle(xn) ,'filled');xlabel('n');ylabel('angle(xn)');axis([0,length,-(pi+0.5),pi+0.5]);title('采样序列的相角');%计算DFTDFT=fft(xn,length);%画第三幅图(DFT的幅度、实部和虚部)figure(3);subplot(3,1,1);stem(n,abs(DFT) ,'filled');xlabel('k');%DFT后的频域变量为kylabel('abs(DFT)');title('DFT 幅度谱');subplot(3,1,2);stem(n,real(DFT) ,'filled');xlabel('k');ylabel('real(DFT)');title('DFT的实部');subplot(3,1,3);stem(n,imag(DFT) ,'filled');xlabel('k');ylabel('imag(DFT)');title('DFT的虚部');六、实验结果与分析实验结果:第一组数据:实验名称:DFT/FFT的应用之一 确定性信号谱分析姓名:张清学号:3110103952 P.4第二组数据:第三组数据:第四组数据:第五组数据:第六组数据:6-1 实验前预习有关概念,并根据上列参数来推测相应频谱的形状、谱峰所在频率(U)和谱峰的数值(V)、混叠现象和频谱泄漏的有无。
周期信号频谱分析

实验名称:周期信号的频谱分析教材名称:电工电子实验技术(下册)页码:P142 实验目的:1、了解和掌握周期信号频谱分析的基本概念;2、掌握Multisim软件用于频谱分析的基本方法;3、加深理解周期信号时域参数变化对其谐波分量的影响及变化趋势。
实验任务:1、根据9-1给定的波形和参数测量各谐波分量的幅度值。
2、根据所测数据绘制每一波形的谱线图。
设计提示:实验电路图:图一、分析用电路及信号发生器调整窗口实验结果:表9-1数据:周期信号的频谱分析(Multisim)0 10 20 30 40 50 60 70 80 90 100 矩形波10%-4.023 1.923 1.833 1.689 1.499 1.273 1.024 0.763 0.506 0.263 0.047 矩形波30%-2.023 5.123 3.040 0.699 0.897 1.271 0.659 0.236 0.739 0.595 0.046 矩形波50%-0.022 6.366 0.045 2.121 0.045 1.271 0.045 0.906 0.045 0.703 0.045 正弦波0 4.999 0 0 0 0 0 0 0 0 0三角波50%0 4.053 0 0.451 0 0.162 0 0.083 0 0.050 0三角波70%0 3.903 1.147 0.166 0.177 0.193 0.079 0.030 0.072 0.048 0三角波90%0 3.479 1.654 1.012 0.669 0.450 0.298 0.186 0.103 0.043 0N 0 1 2 3 4 5 6 7 8 9 10 注:谱线数取10+直流。
矩形波10%:矩形波30%:矩形波50%:正弦波50%:三角波50%:三角波70%:三角波90%:实验中注意事项:1、仿真过程中要在Simulate/Fourier Analysis/Output Variables中添加要进行分析的节点。
第13讲 周期信号的频谱及其特点

号的调制与解调等等。
精选版课件ppt
2
本章主要内容
3.1 3.2 3.3 3.4 3.5
周期信号的分解与合成 周期信号的频谱及特点 非周期信号的频谱 傅氏变换的性质与应用(1) 傅氏变换的性质与应用(2)
精选版课件ppt
3
本章主要内容
3.6 周期信号的频谱 3.7 系统的频域分析 3.8 无失真传输系统与理想低通滤波器 3.9 取样定理及其应用 3.10 频域分析用于通信系统
0 0 20 30 40 50
0.15
精选版课件ppt
14
周期信号的单边频谱
已知周期信号 f(t)11c o ts2 1s in t
2 4 3 4 3 6
求其基波周期T,基波角频率0,画出它的单边频谱图。
解:将f(t)改写为: f(t) 1 1 c o t s2 1 c o t s 2 4 3 4 3 62
精选版课件ppt
13
周期信号的单边频谱
画出周期信号 f(t) 的振幅频谱和相位频谱。
f(t) 1 si0 n t 2 co 0 t sco 20 ts ( 4 )
f(t) 1 5 co 0 ts 0 .( 1) 5 c o 20 s t 4
Ak 5
k
0.25
1
1
0
0
20 30 40 50
相位频谱图描述各次谐波的相位与频率的关系。
根据周期信号展开成傅里叶级数的不同形式,频谱图又分 为单边频谱图和双边频谱图。
精选版课件ppt
8
周期信号的单边频谱
周期信号 f ( t ) 的三角函数形式的傅里叶级数展开式为
f(t)A0 Ancos(n1tn) n1
A n 与 n 1 的关系称为单边幅度频谱;
§3.2 周期信号的频谱和功率谱

不变,T增大,谱线间隔
1
2 T
减小,谱线逐渐密集,幅度
A T
பைடு நூலகம்
减
小
当 T
1 0
A 0 T
非周期信号连续频谱
非周期信号 n1 连续频率
2.当T不变, 减小时
T不变
1
2 间隔不变
T
A 振幅为0的谐波频率
T
2
,
4
,......
信号与系统
练习:周期信号的频谱描绘
不改变 不改变 不改变
Fn
2 T
2
f (t)dt
T
2 A
2
Adt
2
T
信号与系统
练习:周期信号的频谱描绘
a 2 nT
T
2 T
2
f (t) cos n1tdt
2A sin n n T
2 A
T
sin n
T
n
2A Sa(n )
T
T
T
f (t)
A
T
2 A
T
n 1
Sa( n
T
)
cos(n1t )
A 2A
TT
S a(
立叶展开式并画出其频谱图。
1
解: f(t) 在一个周期内可写为如下形式
Tt
f (t) 2 t T t T
T
22
f(t) 是奇函数,故 an 0
信号与系统
4
bn T
T 2 0
f (t) sin n1tdt
4 T
T 2 0
2t T
sin
n1tdt
(1
2
T
)
An &n 2
第三章:信号的频域分析

三.非周期信号的频谱
X(t)与│X(f)│之间存在:
三.非周期信号的频谱
∵许多时间函数(例如:正弦函数)的总能 量无限,但其功率有限。 ∴考虑在(-∞,+∞)上的平均功率:
∫
∞
−∞
x2 (t)dt = ∫ X ( f ) df
2 −∞
∞
(巴赛伐等式)
(3-11)
T →∞
lim
上式为总能量的频谱表达式, 左边为X(t)在(-∞,+∞)之间的总能量, 右边│X(f)│2称为X(t)的能谱密度。
∞ -∞
x (t ) = ∫
∞
−∞
X ( f ) e j (2π ft +φ ( f ) ) df
(3-10)
取实部
∫
+∞ −∞
X (ω ) e
dω
X ( f ) cos(2πft + ϕ ( f ))df
n
X ( f ) = 2 π X (ω )
称 X ( f ) 为 x (t ) 的连续频谱。一般
它的巴赛伐等式为:
四.平稳随机信号的频谱
∵平稳随机信号不是周期信号
(3-13)
2
∫
2 −∞ T
∞
x (t )dt = ∫ X ( f , T ) df
−∞
∞
∴其频谱应为连续谱 又∵样本曲线的波形各不相同 ∴幅值谱没有意义 ∴平稳随机信号的频谱是指功率谱密度。
lim 可得: T →∞
∞ 1 ∞ 2 1 2 xT (t )dt = ∫ lim X ( f , T ) df ∫ − ∞ − ∞ T →∞ 2T 2T
式(3-9)代入(3-5)得:
X (ω ) =
x (t) =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
2
Sa( x) sin x x
---------取样函数
1.它是偶函数。
2. 当 x 0 时,Sa( x) 1 。
3.当 x k k 0 时,函数值为0。
Sax
1
3 2
0
2
它是无限拖尾的衰减振荡。
3 x
n
Fn T Sa( 2 )
n 0, 1, 2, .....
该周期性矩形脉冲的指数形式傅里叶级数展开式为:
第三为收敛性,此频谱的各次谐波分量的振幅虽然随nΩ 的变化有起伏变化,但总的趋势是随着nΩ的增大而逐渐减小。 当nΩ→∞时,|Fn|→0。
周期性矩形脉冲信号的频谱还有自己的特点 :
1、各谱线的幅度按包络线 Sa( )的规律变化。
T
2
在2
m (m
1,
2,...)各处,即
2m
的各处,
包络为零,其相应的谱线,亦即相应的频谱分量也等
第一个零点时谱线的序号:n 2
n 2 T
由上图 可以看出,此周期信号频谱具有以下几个特点:
第一为离散性,此频谱由不连续的谱线组成,每一条谱线 代表一个正弦分量,所以此频谱称为不连续谱或离散谱。
第二为谐波性,此频谱的每一条谱线只能出现在基波频率 Ω的整数倍频率上,即含有Ω的各次谐波分量,而决不含有非 Ω的谐波分量。
o 2 3 4 5 6
- 10° - 15°
- 30°
- 20°
- 30°
- 45°
- 45° (b)
图 3.3-2 信号的双边频谱 (a) 振幅谱; (b) 相位谱
二、 周期矩形脉冲的频谱
设有一幅度为1,脉冲宽度为 的周期性矩形脉
冲,其周期为 T ,求其复傅里叶系数。
f t
1
T 2 0 2 T
复习
• 1、傅里叶级数的三角形式 • 2、傅里叶级数的指数形式 • 3、傅里叶系数的奇偶性
3.3 周期信号的频谱
一、 周期信号的频谱
f (t)
A0 2
An cos(nt n)
n1
Fne
n
jnt
Fn
1 2
Ane jn
Fn e jn
1 T
T
2f
T 2
t e jnt dt
如果将 An ~ n ,n ~ n 的关系绘成下面的线图,
试画出f(t)的振幅谱和相位谱。
解 f(t)为周期信号,题中所给的f(t)表达式可视为f(t)的傅里
叶级数展开式。据
f
ห้องสมุดไป่ตู้
(t)
A0 2
n1
An cos(nt
n )
可知,其基波频率Ω=π(rad/s),基本周期T=2 s,ω=2π、3π、 6 π分别为二、 三、六次谐波频率。且有
A0 1 2
A1 3
T 相邻谱线的间隔 零,周期信号的
离散频谱 非周期信号的连续频谱。
f (t) =T/4
0
Tt
f (t) =T/ 8
1/ 4
Fn
2/
0
4/
8/
1/ 8
Fn
0
Tt
f (t)
=T/16
0
2/
4/
1/16
Fn
0
Tt
0
2/
图3.3-4 脉冲宽度与频谱的关系
16/ 8/ 4/
f (t) T=4
1/ 4
3
5
n
f t
n 1,3,5,
1
T
0
T
t
1
看作是周期性矩形脉冲
T 2
时的情况,其偶次谐
波恰恰落在频谱包络线的零值点,所以它的频谱只
包含基波和奇次谐波分量。
周期锯齿脉冲信号的傅里叶级数:
f
t
E
sint
1 2
sin2t
1 3
sin3t
1 4
sin4t
E 1 n1 1 sinnt
n1
f (t)
Fne jnt
n
T
n
Sa (
n
2
)e jnt
Fn
1
4
T
Sa
2
4
2
0
2
4
图4.3-4 周期矩形脉冲的频谱(T=4)
T 4
Fn
1
4
T
Sa
2
4
2
0
2
4
相邻谱线的间隔: 2
T
零点的位置: n k n k 2
2
第一个零点的位置:
n
2
k 0
图 3.3-1 (a)振幅谱; (b) 相位谱
30 ° 30 °
20 °
|F n |
2
1.5
1.5
1
1
1
0.4 0.2
0.4 0.2
- 6- 5 - 4- 3- 2 - o 2 3 4 5 6
(a)
n 45 °
45 °
30 ° 30 °
20 °
15° 10°
- 6- 5 - 4- 3- 2 -
便可清楚而直观地看出各频率分量的相对大小及各
分量的相位,分别称为幅度谱和相位谱(单边)。
如果将 Fn ~ n,n ~ n的关系绘成下面的线图,
同样可清楚而直观地看出各频率分量的相对大小及各 分量的相位,也分别称为幅度谱和相位谱(双边)。
例 3.3-1 f (t) 1 3cos(t 10) 2 cos(2t 20) 0.4 cos(3t 45) 0.8cos(6t 30),
Fn
0 T 2T 3T 4T t
0
f (t) T=8
1/ 8
2/ Fn
0
T
f (t) T=16
2T t
0
2/
1/16
Fn
0
f (t) T
Tt
0
/T
2/ Fn
0
t
0
2/
图3.3-5 周期与频谱的关系
4/ 4/ 4/ 4/
思考:
f t 4 [sint 1 sin3t 1 sin5t .... 1 sinnt ...]
n
f t
E 2
T
0
T
t
E 2
周期三角脉冲信号的傅里叶级数:
f
t
E 2
4E
2
cost
1 32
cos3t
1 52
cos5t
f t
E
t
T
0
T
三、 周期信号的功率
2T
t
图 3.3-3 周期矩形脉冲
f t
1
T 2 0 2 T
2T
t
Fn
1 T
T
2 T
f (t )e jnt dt
2
1
T
2
e jnt dt
2
1 e jnt 2
1
e
j
n
2
e
j
n
2
T jn jTn
2
1 jTn
2
j
sin
n
2
T
sin
n
2
n
2
T sa
n
2
Fn
T
S
a
A2 2
1 0 1 10 2 20
A3 0.4
3 45
A6 0.8
6 30
其余 An 0
An 3 3
o 2 3 4 5 6
(a)
n 45 °
45 °
2 2
30 ° 30 °
20 °
1
0.8
15° 10°
0.4
o 2 3 4 5 6
(a)
o
2
3
4 5
6
(b)
n 45 °
45 °
于零。
2、周期矩形脉冲信号包含无限多条谱线,也就是说,
它可分解为无限多个频率分量。
通常把频率范围
0
f
1
(0
2
)
称为周期矩形脉冲
信号的带宽,用符号 F 表示,即周期矩形脉冲信
号的频带宽度为 F 1 。
3、周期相同,脉冲宽度不同时信号的频谱: 谱线间隔不变,但零点位置变化。
周期不同,脉冲宽度相同时信号的频谱: 零点位置不变,谱线间隔变化。