几何图形中的最值问题

合集下载

初中数学几何最值问题综合题

初中数学几何最值问题综合题

知识板块几何最值问题专项考点一:几何图形中的最小值问题方法:1.找对称点求线段的最小值;步骤:①找点的对称点,动点在哪条线上动,就是对称轴;②连接对称点与另一个点;③与对称轴的交点即是要找的点;通常用勾股定理求线段长;2.利用三角形三边关系:两边之差小于第三边:3.转化成其他线段,间接求线段的最小值:例如:用点到直线的距离最短,通过作垂线求最值;4.用二次函数中开口向上的函数有最小值:考点二:几何图形中的最大值问题方法:1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值:2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值;3.利用三角形三边关系:两边之和大于第三边;4.用二次函数中开口向下的函数有最大值:例题板块考点一:几何图形中的最小值问题例1.如图1,在正方形ABCD中,E是AB上一点,BE=2, AE=3BE, P是AC上一动点,那么PB+PE的最小值是 .例2.如图2,在锐角二ABC中,AB=4V2» LBAC=45°,匚BAC的平分线交BC于点D, M、N分别是AD 和AB 上的动点,那么BM+MN的最小值是.例3.如图3,点P是RtiZABC斜边AB上的一点,PE二AC于E, PF二BC于F, BC=6, AC=8,那么线段EF 长的最小值为:例4,如图,在Rt/kABC 中,AB=BC=6,点E, F 分别在边AB, BC 上,AE=3, CF=1, P 是斜边AC 上的 一个动点,那么aPEF 周长的最小值为.例5,如图,在平面直角坐标系中,RtA OAB 的顶点A 的坐标为(9, 0),点C 的坐标为(2, 0) , tanZBOA= —,点P 为斜边OB 上的一个动点,那么PA+PC 的最小值为( ) 3C.6D. 3 + V19例6.如图6,等腰RS ABC 中,NACB=90.,AC=BC=4, 0c 的半径为1,点P 在斜边AB 上,PQ 切OO 于点Q,那么切线长PQ 长度的最小值为( )考点二:几何图形中的最大值问题例1,点A (1, 2)、B (4, 4) , P 为x 轴上一动点. (1)假设IPAI+IPBI 有最小值时,求点P 的坐标; (2)假设IPBUPAI 有最大值时,求点P 的坐标.例2 .如图8所示,A (!,yJ, B(2,yJ 为反比例函数y =,图像上的两点,动点P(x,O)在x 正半轴 2 ~ x上运动,当线段AP 与线段BP 之差到达最大时,点P 的坐标是 L A. V67 例7.如图7,矩形ABCD 中,AB=4, BC=8, E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当 CQ= 时,四边形APQE 的周长最小.例3,如图,在平面直角坐标系中,0M过原点O,与x轴交于A 〔4, 0〕,与y轴交于B 〔0, 3〕,点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.〔1〕求匚M的半径:〔2〕证实:BD为二M的切线:〔3〕在直线MC上找一点P,使|DP-AP|最大.练习板块1.如图1,正方形ABCD的面积为18, △ ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,那么PD+PE的最小值为 .2. 〔2021•徐州一模〕如图2,在矩形ABCD中,AB=2, AD=4. E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最小值为.3. 〔2021•萧山区模拟〕如图3,直角三角形ABC中,ZC=90% AC=h BC=2, P为斜边AB上一动点.PE1BC, PF±CA,那么线段EF长的最小值为.4. 〔2021•武汉〕如图4, NAOB=30.,点M、N 分别在边OA、OB 上,且OM=1, ON=3,点P、Q分别在边OB、OA上,那么MP+PQ+QN的最小值是:5.如下列图1,反比例函数y = ' (x>0)图象上的两点A、B的横坐标分别为1, 3,点P为x轴x正半轴上一点,假设PA-PB的最大值为2及,贝ijk=x图36.如图2,在△ ABC中,ZC=90°> AC=4, BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是( )A.、疗+ 2B. 2屈C. 275D. 272 + 27.如图3,直线1与半径为4的二0相切于点A, P是二0上的一个动点(不与点A重合),过点P 作PB」垂足为B,连接PA.设PA=x, PB=y,那么(x-y)的最大值是.如图,四边形ABCD是正方形,△ ABE是等边三角形,M为对角线BD (不含B点)上任意一点,将BM绕点B逆时针旋转60.得到BN,连接EN、AM、CM.(1)求证:△ AMB^AENB:(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由:(3)当AM+BM+CM的最小值为6 + 1时,求正方形的边长.8.己知:如图,把矩形OCBA放置于直角坐标系中,0C=3, BC=2,取AB的中点M,连接MC, 把^MBC沿x轴的负方向平移0C的长度后得到△ DAO.〔1〕试直接写出点D的坐标:〔2〕点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ_Lx 轴干点Q,连接0P.①假设△ OQP S^DAO,试求出点P的坐标:②试问在抛物线的对称轴上是否存在一点T,使得ITO-TBI的值最大?作业板块1.如图1,在△ ABC中,AB=1O, AC=8, BC=6,经过点C且与边AB相切的动圆与CB, CA分别相交于点E, F,那么线段EF长度的最小值是.2.如图2,在RtA ABC 中,ZBAC=90% AB=3, AC=4,点P 为BC 边上一动点,PE1AB 于点E,PFLAC于点F,连结EF,点M为EF的中点,那么AM的最小值为A3.如图3,在△ ABC中,ZACB=90°, AC=8, BC=3,点A、C分别在x轴、y轴上,当点A在x 轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为.4.如图4,在边长为2的菱形ABCD中,NA=60.,M是AD边的中点,N是AB边上的一动点, 将△ AMN沿MN所在直线翻折得到△ ANIN,连接AC,那么AC长度的最小值是 .5..如图1,抛物线y=ax2+bx+c 〔a对〕的顶点为C 〔1, 4〕,交x轴于A、B两点,交y轴于点D, 其中点B的坐标为〔3, 0〕.〔1〕求抛物线的解析式;〔2〕如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,假设直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,那么x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?假设存在,求出这个最小值及点G、H的坐标:假设不存在,请说明理由:。

几何中的最值问题

几何中的最值问题

几何中的最值问题在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

变式1:A、B两点分别在直线L的两侧,在直线L上取一点P使P A-PB最大。

ALB例2、如图所示,△ABC中,AB=3,AC=2,以BC为边的△BCP是等边三角形,求AP的最大值、最小值。

A'例3、已知:如图⊙O1与⊙O2相交于C、D,A是⊙O1上一点,直线AD交⊙O2于点B。

⑴当点A在弧CAD上运动到A’点时,作直线A’D交⊙O2于点B’,连结A’C、B’C。

证明:△A’B’C ∽△ABC。

(2)问点A’在弧CAD上什么位置时,S△A’B’C最大,说明理由。

(3)当O1 O2=11,CD=9时,求S△A’B’C的最大值。

BB图1 图2例4、已知:如图△ABC是一块锐角三角形余料,边长BC=120mm,高AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设矩形的长QM=y mm ,宽MN=x mm(1)求证:y=120- x(2)当x与y分别取什么值时,矩形PQMN的面积最大?最大面积是多少?。

几何图形中的极值问题课件

几何图形中的极值问题课件

用于正方形
【例2】 正方形ABCD的边长是8,P是CD上的一点,且PD的长为2
,M是其对角线AC上的一个动点,则DM+MP的最小值是_1_0__.
【评析】本题考查了轴对称-最短路线问题和正方形的性质,根据两 点之间线段最短,确定点M的位置是解题关键.
[对应训练] 2.在△ABC中,AC=BC=6,∠ACB=90°, D是BC边的中点, E是AB上的一个动点,则EC+ED的最小值是_3___5____.
[对应训练] 3.如图,点P是矩形ABCD对角线BD上的一个动点,AB=6,AD=8
,则PA+PC的最小值为__1__0.
用于菱形
【例4】 如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB 的中点,F为AC上的一个动点,则EF+BF的最小值是_3__3_.
【评析】此题主要考查菱形是轴对称图形的性质,容易出现错误的地方 是对点F的运动状态不清楚,无法判断什么时候会使EF+BF成为最小值 .
[对应训练] 4.△ABC 中,有一点 P 在 AC 上移动.若 AB=AC=5,BC=6,AP
+BP+CP 的最小值为__9__._8_.
用于特殊三角形
【例5】 在△ABC中,∠BAC=30°,在AC,AB边上各取一点M,N ,AB=2,则BM+MN的最小值是__3__.
点拨:过点B作关于AC的对称点B1 , 过点B1作B1N⊥AB于点N交AC于点M, 连接AB1,BM,
∴AO=OB1=2,∴在 Rt△AOB1 中,由勾股定理有,AB1=2 2,
即 PA+PB 的最小值为 2 2
【评析】本题考查的是圆周角定理及勾股定理,解答此题的关键是根 据题意作出辅助线,构造出直角三角形,利用勾股定理求解.
Байду номын сангаас

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

几何最值问题解题技巧

几何最值问题解题技巧

几何最值问题解题技巧
几何最值问题是一个常见的数学问题,它涉及到在给定的几何形状中找到一个或多个点的最大或最小值。

解决这类问题需要一定的技巧和策略。

以下是一些解决几何最值问题的技巧:
1. 转化问题:将最值问题转化为几何问题,例如求点到直线的最短距离,可以转化为求点到直线的垂足。

2. 建立数学模型:根据问题的具体情况,建立适当的数学模型,例如利用勾股定理、三角函数等。

3. 寻找对称性:在几何图形中寻找对称性,例如利用轴对称、中心对称等性质,可以简化问题。

4. 利用基本不等式:利用基本不等式(如AM-GM不等式)可以求出某些量的最大或最小值。

5. 转化为一元函数:将问题转化为求一元函数的最大或最小值,然后利用导数等工具求解。

6. 构造辅助线:在几何图形中构造辅助线,可以改变问题的结构,从而更容易找到最值。

7. 尝试特殊情况:在某些情况下,尝试特殊情况(例如旋转、对称等)可以找到最值。

8. 逐步逼近:如果无法直接找到最值,可以尝试逐步逼近的方法,例如二分法等。

以上技巧并不是孤立的,有时候需要综合运用多种技巧来解决一个问题。

在解决几何最值问题时,需要灵活运用各种方法,不断尝试和调整,才能找到最合适的解决方案。

几何图形中的最值问题

几何图形中的最值问题

几何图形中的最值问题引言:最值问题可以分为最大值和最小值。

在初中包含三个方面的问题:1.函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。

2.不等式: ①如x ≤7,最大值是7;②如x ≥5,最小值是5.3.几何图形: ①两点之间线段线段最短。

②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。

一、最小值问题例1. 如图4,已知正方形的边长是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。

解: 作点D 关于AC 的对称点D /,则点D /与点B 重合,连BM,交AC 于N ,连DN ,则DN+MN 最短,且DN+MN=BM 。

∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM=6822 =10,∴DN+MN 的最小值是10。

例2,已知,MN 是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300,B 是弧AN 的中点,P 是MN 上的一动点,则PA+PB 的最小值是解:作A 点关于MN 的对称点A /,连A /B,交MN 于P ,则PA+PB 最短。

连OB ,OA /,∵∠AMN=300,B 是弧AN 的中点, ∴∠BOA /=300, 根据对称性可知 ∴∠NOA /=600, ∴∠MOA /=900, 在Rt △A /BO 中,OA /=OB=1, ∴A /B=2 即PA+PB=2图4CDMNMMNB例3. 如图6,已知两点D(1,-3),E(-1,-4),试在直线y=x 上确定一点P ,使点P 到D 、E 两点的距离之和最小,并求出最小值。

解:作点E 关于直线y=x 的对称点M , 连MD 交直线y=x 于P ,连PE , 则PE+PD 最短;即PE+PD=MD 。

∵E(-1,-4), ∴M(-4,-1),过M 作MN ∥x 轴的直线交过D 作DN ∥y 轴的直线于N , 则MN ⊥ND, 又∵D(1,-3),则N(1,-1),在Rt △MND 中,MN=5,ND=2, ∴MD=2522+=29。

初中几何最值问题常用解法

初中几何最值问题常用解法

初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。

以下将介绍9种常用的解法,帮助您更好地理解和学习。

一、轴对称法轴对称法是一种常用的解决最值问题的方法。

通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。

二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。

例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。

三、两点之间线段最短两点之间线段最短是几何学中的基本原理。

在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。

四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

利用这个关系,可以解决一些与三角形相关的最值问题。

五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。

通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。

六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。

利用这个不等式,可以解决一些与数列相关的最值问题。

七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。

例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。

八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。

例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。

九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。

利用几何变换的方法,可以解决一些与图形变换相关的最值问题。

例如,在矩形中,要使矩形的面积最大。

几何中的最值问题的解决策略

几何中的最值问题的解决策略

几何中的最值问题的解决策略
在几何中,最值问题通常是要找到一个几何对象的最大值或最小值。

以下是几何中解决最值问题的一些常用策略:
1. 利用性质或定理:利用已知的几何性质或定理来推导出最值问题的解。

例如,利用三角形的角度和性质来证明某个角度或边长的最大值或最小值。

2. 利用几何画图法:通过绘制几何图形,并观察图形的性质来解决最值问题。

例如,通过绘制直角三角形来找到两条边长之和固定时,两条边长的乘积的最大值。

3. 利用代数方法:将几何问题转化为代数问题,并通过求导、求解方程等代数方法来求解最值问题。

例如,通过代数方法来证明一个函数的极值点是函数的最大值或最小值。

4. 利用不等式:通过建立合适的不等式关系来限制几何对象的取值范围,并通过求解不等式来解决最值问题。

例如,通过利用三角不等式来推导出三角函数的最值问题。

5. 利用等式的极值性质:利用等式的极值性质来解决最值问题。

例如,通过证明函数的取值范围,并找到函数在取值范围边界处的最大值或最小值。

综上所述,解决几何中的最值问题需要运用几何性质和定理,绘制几何图形观察性质,以及运用代数方法、不等式关系和极
值性质等。

同时,解决最值问题还需要对几何对象的性质有深刻的理解和运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 共1页 几何图形中的最值问题举例
1、 在菱形ABCD 中,AB=10,∠BAD=60 ,点M 从点A 以每秒1个单位长的速度沿着AD 边
向点D 移动,设点M 移动的时间为t 秒(0≤≤t 10)。

点N 为BC 边上任意一点,(1)在点M 移动过程中,线段MN 是否一定可以将菱形分割成面积相等的两部分?并说明理由,(2)点N 从点B (与点M 出发的时刻相同)以每秒2个单位长的速度沿着BC 边向点C 移动,在什么时刻,梯形ABNM 的面积最大?并求出面积的最大值。

2、E 、F 分别是边长为4的正方形ABCD 的边BC 、CD 上的点, CE=1,CF=3
4,直线FE 交AB 的延长线于G ,过线段FG 上的一个动点H 作HM ⊥AG ,HN ⊥AD ,垂足分别为M 、N ,设HM=x,矩形AMNH 面积为y,(1)求y 与x 之间的函数关系式,(2)当x 取何值时,矩形AMHN 的面积最大?并求出最大值。

3、已知:2
)102(-+b a 与132+-b a 互为相反数,且a 、b 的值恰好为矩形ABCD 的长与宽,点P 是AD 边上的一个动点(P 与A 、D 不重合),以BC 为直径的半圆O 交PB 于Q 点,连结QC ,(1)求矩形ABCD 的长与宽,(2)设PB=x,△BQC 的面积S BQC ∆=y 试求y 与x 之间的函数关系式,并写出自变量x 的取值范围,(3)当S BQC ∆最大时,求PB 的长。

第1题 第2题 第3题
A
A
B N M
b B C A。

相关文档
最新文档