几何图形中的最值问题

合集下载

几何中的最值问题

几何中的最值问题

几何中的最值问题在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

变式1:A、B两点分别在直线L的两侧,在直线L上取一点P使P A-PB最大。

ALB例2、如图所示,△ABC中,AB=3,AC=2,以BC为边的△BCP是等边三角形,求AP的最大值、最小值。

A'例3、已知:如图⊙O1与⊙O2相交于C、D,A是⊙O1上一点,直线AD交⊙O2于点B。

⑴当点A在弧CAD上运动到A’点时,作直线A’D交⊙O2于点B’,连结A’C、B’C。

证明:△A’B’C ∽△ABC。

(2)问点A’在弧CAD上什么位置时,S△A’B’C最大,说明理由。

(3)当O1 O2=11,CD=9时,求S△A’B’C的最大值。

BB图1 图2例4、已知:如图△ABC是一块锐角三角形余料,边长BC=120mm,高AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设矩形的长QM=y mm ,宽MN=x mm(1)求证:y=120- x(2)当x与y分别取什么值时,矩形PQMN的面积最大?最大面积是多少?。

几何图形中的极值问题课件

几何图形中的极值问题课件

用于正方形
【例2】 正方形ABCD的边长是8,P是CD上的一点,且PD的长为2
,M是其对角线AC上的一个动点,则DM+MP的最小值是_1_0__.
【评析】本题考查了轴对称-最短路线问题和正方形的性质,根据两 点之间线段最短,确定点M的位置是解题关键.
[对应训练] 2.在△ABC中,AC=BC=6,∠ACB=90°, D是BC边的中点, E是AB上的一个动点,则EC+ED的最小值是_3___5____.
[对应训练] 3.如图,点P是矩形ABCD对角线BD上的一个动点,AB=6,AD=8
,则PA+PC的最小值为__1__0.
用于菱形
【例4】 如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB 的中点,F为AC上的一个动点,则EF+BF的最小值是_3__3_.
【评析】此题主要考查菱形是轴对称图形的性质,容易出现错误的地方 是对点F的运动状态不清楚,无法判断什么时候会使EF+BF成为最小值 .
[对应训练] 4.△ABC 中,有一点 P 在 AC 上移动.若 AB=AC=5,BC=6,AP
+BP+CP 的最小值为__9__._8_.
用于特殊三角形
【例5】 在△ABC中,∠BAC=30°,在AC,AB边上各取一点M,N ,AB=2,则BM+MN的最小值是__3__.
点拨:过点B作关于AC的对称点B1 , 过点B1作B1N⊥AB于点N交AC于点M, 连接AB1,BM,
∴AO=OB1=2,∴在 Rt△AOB1 中,由勾股定理有,AB1=2 2,
即 PA+PB 的最小值为 2 2
【评析】本题考查的是圆周角定理及勾股定理,解答此题的关键是根 据题意作出辅助线,构造出直角三角形,利用勾股定理求解.
Байду номын сангаас

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

几何最值问题解题技巧

几何最值问题解题技巧

几何最值问题解题技巧
几何最值问题是一个常见的数学问题,它涉及到在给定的几何形状中找到一个或多个点的最大或最小值。

解决这类问题需要一定的技巧和策略。

以下是一些解决几何最值问题的技巧:
1. 转化问题:将最值问题转化为几何问题,例如求点到直线的最短距离,可以转化为求点到直线的垂足。

2. 建立数学模型:根据问题的具体情况,建立适当的数学模型,例如利用勾股定理、三角函数等。

3. 寻找对称性:在几何图形中寻找对称性,例如利用轴对称、中心对称等性质,可以简化问题。

4. 利用基本不等式:利用基本不等式(如AM-GM不等式)可以求出某些量的最大或最小值。

5. 转化为一元函数:将问题转化为求一元函数的最大或最小值,然后利用导数等工具求解。

6. 构造辅助线:在几何图形中构造辅助线,可以改变问题的结构,从而更容易找到最值。

7. 尝试特殊情况:在某些情况下,尝试特殊情况(例如旋转、对称等)可以找到最值。

8. 逐步逼近:如果无法直接找到最值,可以尝试逐步逼近的方法,例如二分法等。

以上技巧并不是孤立的,有时候需要综合运用多种技巧来解决一个问题。

在解决几何最值问题时,需要灵活运用各种方法,不断尝试和调整,才能找到最合适的解决方案。

几何图形中的最值问题

几何图形中的最值问题

几何图形中的最值问题引言:最值问题可以分为最大值和最小值。

在初中包含三个方面的问题:1.函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。

2.不等式: ①如x ≤7,最大值是7;②如x ≥5,最小值是5.3.几何图形: ①两点之间线段线段最短。

②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。

一、最小值问题例1. 如图4,已知正方形的边长是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。

解: 作点D 关于AC 的对称点D /,则点D /与点B 重合,连BM,交AC 于N ,连DN ,则DN+MN 最短,且DN+MN=BM 。

∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM=6822 =10,∴DN+MN 的最小值是10。

例2,已知,MN 是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300,B 是弧AN 的中点,P 是MN 上的一动点,则PA+PB 的最小值是解:作A 点关于MN 的对称点A /,连A /B,交MN 于P ,则PA+PB 最短。

连OB ,OA /,∵∠AMN=300,B 是弧AN 的中点, ∴∠BOA /=300, 根据对称性可知 ∴∠NOA /=600, ∴∠MOA /=900, 在Rt △A /BO 中,OA /=OB=1, ∴A /B=2 即PA+PB=2图4CDMNMMNB例3. 如图6,已知两点D(1,-3),E(-1,-4),试在直线y=x 上确定一点P ,使点P 到D 、E 两点的距离之和最小,并求出最小值。

解:作点E 关于直线y=x 的对称点M , 连MD 交直线y=x 于P ,连PE , 则PE+PD 最短;即PE+PD=MD 。

∵E(-1,-4), ∴M(-4,-1),过M 作MN ∥x 轴的直线交过D 作DN ∥y 轴的直线于N , 则MN ⊥ND, 又∵D(1,-3),则N(1,-1),在Rt △MND 中,MN=5,ND=2, ∴MD=2522+=29。

初中几何最值问题常用解法

初中几何最值问题常用解法

初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。

以下将介绍9种常用的解法,帮助您更好地理解和学习。

一、轴对称法轴对称法是一种常用的解决最值问题的方法。

通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。

二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。

例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。

三、两点之间线段最短两点之间线段最短是几何学中的基本原理。

在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。

四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

利用这个关系,可以解决一些与三角形相关的最值问题。

五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。

通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。

六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。

利用这个不等式,可以解决一些与数列相关的最值问题。

七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。

例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。

八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。

例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。

九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。

利用几何变换的方法,可以解决一些与图形变换相关的最值问题。

例如,在矩形中,要使矩形的面积最大。

几何中的最值问题的解决策略

几何中的最值问题的解决策略
在几何中,最值问题通常是要找到一个几何对象的最大值或最小值。

以下是几何中解决最值问题的一些常用策略:
1. 利用性质或定理:利用已知的几何性质或定理来推导出最值问题的解。

例如,利用三角形的角度和性质来证明某个角度或边长的最大值或最小值。

2. 利用几何画图法:通过绘制几何图形,并观察图形的性质来解决最值问题。

例如,通过绘制直角三角形来找到两条边长之和固定时,两条边长的乘积的最大值。

3. 利用代数方法:将几何问题转化为代数问题,并通过求导、求解方程等代数方法来求解最值问题。

例如,通过代数方法来证明一个函数的极值点是函数的最大值或最小值。

4. 利用不等式:通过建立合适的不等式关系来限制几何对象的取值范围,并通过求解不等式来解决最值问题。

例如,通过利用三角不等式来推导出三角函数的最值问题。

5. 利用等式的极值性质:利用等式的极值性质来解决最值问题。

例如,通过证明函数的取值范围,并找到函数在取值范围边界处的最大值或最小值。

综上所述,解决几何中的最值问题需要运用几何性质和定理,绘制几何图形观察性质,以及运用代数方法、不等式关系和极
值性质等。

同时,解决最值问题还需要对几何对象的性质有深刻的理解和运用。

初中几何最值问题类型

初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。

求抛物线的最高点或最低点,即顶点的坐标。

2.极值问题:
求函数图像与坐标轴的交点。

求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。

3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。

4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。

5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。

这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。

对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。


过多做练习和思考,培养几何思维和解决问题的能力。

武汉中考 几何中的最值问题 2

二、几何中的最值问题几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形周长或面积)等的最大值或最小值,求几何最值问题的基本方法有: 1、几何定理(公理)法; 2、特殊位置与极端位置法; 求最小值适用于:(1)轴对称模型:两点之间,线段最短(2)直角三角形模型:垂线段最短(直角三角形斜边大于直角边) 求最大值适用于:(1)不等式模型:222a b ab +≤(0,0)2a b a b +≤≥≥ (2)三角形两边之差小于第三边 A 、轴对称模型求最小值 模型理解1、在直线l 上找一点P ,使得其到直线同侧两点A 、B 的距离之和最小。

2、直线12l l 、交于O 、P 是两直线间的一点,在直线12l l 、上分别找一点A 、B ,使得△PAB的周长最短。

3、直线12l l 、交于O ,A 、B 是两直线间的两点,从点A 出发,先到1l 上一点P ,再从P 点到2l 上一点Q ,再回到B 点,求作P 、Q 两点,使四边形APQB 周长最小。

lAB24、从A 点出发,先移动到直线l 上的一点P ,再在l 上移动一段固定的距离PQ ,再回到点B ,求作点P ,使移动的距离最短。

5、A 、B 是位于河两岸的两个村庄,要在这条宽度为d 的河上垂直建一座桥,使得从A 村庄经过桥到B 村庄所走的路程最短。

模型运用16、如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点,则PB PE +的最小值是___________17、如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB上一动点,则PA PC +的最小值是__________18、如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,则PQR △周长的最小值是__________ABABEBAOPBC的周长最小,请求出点的正半轴上,OA=3,OB=4,D为边OB的中点。

2024年中考数学重难点《几何最值问题》题型及答案解析

重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。

考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。

1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形中的最值问题引言:最值问题可以分为最大值和最小值。

在初中包含三个方面的问题:1. 函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。

2. 不等式:①如x w 7最大值是7;②如x> 5,最小值是5.3.几何图形:①两点之间线段线段最短。

②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。

一、最小值问题B镇*A镇♦' -------------------------- '燃气管例1.如图4,已知正方形的边长是8, M在DC上,且DM=2 N为线段AC 上的一动点,求DN+MN勺最小值。

解:作点D关于AC的对称点D,则点D与点B重合,连BM交AC于N,连DN 贝U DN+MN t短,且DN+MN=BM•/ CD=BC=8,DM=2, /• MC=6,在Rt △ BCM中,BM= 82 62=10,••• DN+MN勺最小值是10。

例2,已知,MN是O O直径上,MN=2点A在O O上,/ AMN=3&B是弧AN的中点,P是MN上的一动点,贝U PA+PB的最小值是__________ 解:作A点关于MN的对称点A,连AB,交MN于P,贝U PA+PB最短。

连OB oA,•••/ AMN=30B是弧AN的中点,•••/ BOA=30°,根据对称性可知:丄 NOA=60°,:丄 MOA=900, DDMBNAMOA在 Rt △ A ’BO 中,OA=OB=1,••• A B =、2 即 PA+PB= 2作点A 关于杯上沿 MN 的对称点B ,连接BC 交MN 于点P ,连接BM 过点C 作AB 的垂线交剖开线 MA 于点Do由轴对称的性质和三角形三边关系知例3.如图6,已知两点 D(1,-3),E(-1,-4), 试在直线y=x 上确定一点 P,使点P 到DE 两点的距离之和最小,并求出最小值。

解:作点E 关于直线y=x 的对称点M 连MD 交直线y=x 于P,连PE, 贝U PE+PD 最短;即 PE+PD=MD ••• E(-1,-4),• M(-4,-1),过M 作MN/ x 轴的直线交过 D 作DN/ y 轴的直线于 N, 则 MN_ ND,又 T D(1,-3),则 N(1,-1),在 Rt △ MND 中 ,MN=5,ND=2, • MD= 5? 2 = .. 29。

•••最小值是.29 。

练习1. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm 底面周长为18cm,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁, 离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cmII \41订一干4 />is【解】如图,圆柱形玻璃杯展开(沿点A 竖直剖开)后侧面是一个长 18宽12的矩形,AP+ PC为蚂蚁到达蜂蜜的最短距离,且AP=BP由已知和矩形的性质,得DC=9 BD=12在Rt△ BCD中,由勾股定理得BC DC2 BD2. 92 122 15。

••• AP+ PC=BPF PC=BC=15即蚂蚁到达蜂蜜的最短距离为15cm。

2.正方形ABCD边长是4,/ DAC的平分线交CD与点E,点P,Q分别是AD,AE上的动点(两动点不重合),则PQ+DQ勺最小值是解:过点D作DF丄AC垂足为F,则DF即为PQ+DQ勺最小值.•••正方形ABCD的边长是4,• AD=4 / DAC=45 ,在直角△ ADF 中,/ AFD=90 , / DAF=45 , AD=4,••• DF=AD?sin45 =4 二22故答案为23. (2009?陕西)如图,在锐角厶ABC中,AB= 4 , / BAC=45°,/ BAC的平分线交BC于点D, M N分别是AD和AB上的动点,贝U BM + MN的最小值是 ____ .解:过B作关于AD的对称点B,则B在AC上,且AB=A B=4.,MB=M B,B/M N最短,即为B Z H最短。

在Rt△ AHB中,/ BAH= 45°, AB=4- ,• B H=4,• BM+ MN的最小值是 4.4. 如图,菱形ABCD中, AB=2, / A=120°,点P, Q K分别为线段BC, CD, BD上的任意一点,贝U PK+QK勺最小值为 _____解:•••四边形ABCD是菱形,• AD// BC•••/ A=120 ,•••/ B=180 -Z A=180 - 120° =60°,作点P 关于直线BD 的对称点 P ,连接 PQ PC 则P /Q 的长即为PK+Q 啲最小值,由图可知, 当点Q 与点C 重合,CP 丄AB 时PK+QK 勺值最小, 在 Rt △ BCP /中,T BC=AB=2 Z B=60° , ••CP /=BC?si nB=2X25. (2012 兰州)如图,四边形 ABCD 中,Z BAD= 120°,Z B =Z D = 90°,在 BC CD 上 分别找一点 M 汕使厶AMN 周长最小时,则Z AMI ^Z ANM 的度数为【 】A. 130° B . 120° C . 110°D . 100°解:作A 关于BC 和 ED 的对称点A', A 〃,连接A A 〃,交 BC 于M,交CD 于N,则A A 〃即为△ AMN 的周长最小值.作 DA 延长线AHT Z EAB= 120°,• Z HAA = 60°,• Z AA M+Z A "=Z HAA = 60°, •/Z MA A =Z MAA ,Z NAD =Z A ",故选:B .6. (2011?贵港)如图所示,在边长为 2的正△ ABC 中,E 、F 、G 分别为AB AC BC的中点,点P 为线段EF 上一个动点,连接 BP 、GP 则厶BPG 的周 长的最小值是 ______解:要使厶PBG 的周长最小,而 BG=1一定,且Z MA A +Z MAA =ZAMN ZNADF Z(A 〃=Z IANM • Z AMN-Z ANI =Z MA A +Z MAA +Z I NA +Z /_A=2( Z AA M +Z A " ) = 2X 60°= 120°,Rt △ OAB 勺顶点 A的坐标是(9,0) ,tan/ BOA —3 ,3点C 的坐标为(2,0),点P 为斜边OB 上的一个动点,则 解:作A 关于OB 的对称点D,连接CD 交OB 于 P,连接AP,过D 作DN L OA 于N,则此时PA+PQ 的值最小, ••• Rt △ OABI 的顶点 A 的坐标为(9, 0),.・. OA=9 •/ tan / BOA 念 /• AB=3^3,/ B=60°,3•••/ AOB=30 ,••• OB=2AB=^31 1 由三角形面积公式得: &OA E =- X OA< AB=- X OB< AM22即9X3后=6后AM ,9 9 • AM=— , • AD=2X — =9,22•••/ AMB=90,/ B=60°,A Z BAM=30 , •••/ BAO=90,•/ OAM=6°0 ,PA+PC 的最小值为 “ 677.(第二阶段十三)在平面直角坐标系中,1 •/ DN± OA NDA=30 , • AN=-2^67AD=9,由勾股定理得:2DN=.、AD 2 AN 2 9 =9/32 "V5 2 --9 22令在Rt △ DNC 中,由勾股定理得: DC=、.DN 2 CN 2即PA+PC 的最小值是.67 , 解:作A 关于OB 的对称点D,连接CD 交OB 于P ,连接AP, vl■r \ /£ —过D 作DNL OA 于N,则此时PA+PC 勺值最小,• DP=PA 「・ PA+PC=PD+PC=CD 0CA工8. (2013苏州)如图,在平面直角坐标系中, Rt △ OAB 的顶点A 在x 轴的正半轴上,顶点 B 的坐标为(3, J3),点C 的坐标为( -,0),点P 为斜边OB 上的一动点,则△ PAC2 周长的最小值为( ) • B (3 ,「), ••• AB={% OA=3 / B=60°,由勾股定理得:OB=2 ';,由三角形面积公式得: 一X OAK AB 」X OBK AM 2 23 3 • AM 丄,• AD=2X =3, ::, :', •••/ AMB=90,/ B=60°,A ZBAM=30 , •••/ BAO=90,•/ OAM=6°O , •/ DNL OA NDA=30 , • AN-Ag ,由勾股定理得:DN 「:;, 0), • CN =3_~2 在Rt △ DNC 中,由勾股定理得:即厶PAC周长的最小值为5+丄2 29. ( 2013?徐州模拟.仿真一)在平面直角坐标系中,矩形ABCD勺顶点A,B,C的坐标分别是(0, 0),( 20, 0)( 20 , 10)。

在线段AC AB上各有一动点M N,则当BM+M为最小值时,点M的坐标是( )解:如图,作点B关于AC的对称点B',过点B'作B' N丄OB于N, B'N交AC于M贝UB' N=B M+MN=BM+MN N 的长就是BM+MN勺最小值•连接OB ,交DC于P.•••四边形ABCD是矩形,••• DC/ AB, •••/ BAC=/ PCA•••点B关于AC的对称点是B', •••/ PAC=/ BAC•••/ PAC玄PCA •- PA=PC令PA=x,贝U PC=x PD=20-x.在Rt△ ADP中,T PA=PD+A[5,2 2 2二x = (20-x ) +10 ,• x=.•/ cos / B' ON=co3 OPD •- ON OB =DP OP• ON 20=:, • ON=12J yD cO s X O (A) N B得厶 B' GB^A ABCB /G ABB /B ACB' G=16 故 BM+M 的最小值是 16cm. 故答案为:16cm.11.如图,已知正方形 ABCD 勺边长为10,点P 是对角线BD 上的一个动点,M N 分别是BC CD 边上的中点,贝U PM+PN 勺最小值是 解:作点N 关于BD 的对称点N',交AD 与N ,连接N M 贝U N M =AB 最短。

相关文档
最新文档