中考数学重难点专题讲座第八讲动态几何与函数问题

合集下载

中考数学专题8-动态几何和函数问题

中考数学专题8-动态几何和函数问题

中考数学专题8 动态几何与函数问题1 、如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E . (1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.2、已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.3、如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。

动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。

设运动的时间为t (秒)。

(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?(3)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由。

中考数学专题动态几何与函数问题

中考数学专题动态几何与函数问题

龙文教育个性化辅导教案提纲学生: 日期: 年 月 日 星期: 时段:中考数学专题8 动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。

整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。

而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。

但是这两种侧重也没有很严格的分野,很多题型都很类似。

所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。

其中通过图中已给几何图形构建函数是重点考察对象。

不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。

但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。

第一部分 真题精讲【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【例3】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。

初中数学专题讲座精编中考动态几何问题

初中数学专题讲座精编中考动态几何问题

中考动态几何问题动态几何问题通常包括:(1)动点;(2)动直线;(3)动型问题。

通过这些问题,有效的区分学生的档次,在做这类题前一定要基本知识扎实,“化动为静”,通常前两问较简单,有时是“静态”的题,所以一定要认真冷静,有时又需要用数学方法(分类讨论数形结合等),因此一定要多多训练,独立思考,充满信心。

练习:(注:题目难度按照动态几何题目难度编排,并非中考试卷难度) 1.(2000吉林省)如图,在矩形ABCD 中,BC=acm ,AB=bcm ,a>b,且a,b 是方程84231(5)5x x x x x -++=++的两个根,P 是BC 上一动点,动点Q 在PC 或其延长线上,BP=PQ ,以PQ为一边的正方形为PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP=x 。

cm ,正方形PQRS与矩形ABCD 重叠部分的面积为ycm 2. (1)求a 和b ;(2)分别求出0≤x ≤2和2≤x ≤4时,y 与x 之间的函数关系式.2.(2001吉林省)如图,A ,B 是直线l 的两点,AB =4厘米,过l 外一点C 作CD//l ,射线BC 与l 所成的锐角∠l =60°,线段BC= 2厘米.动点P,Q 分别从B ,C 同时出发,P 以每秒1厘米的速度沿由B 向C 的方向运动,Q 以每秒2厘米的速度沿由C 向D 的方向运动.设P ,Q 运动的时间为t (秒),当t >2时,PA 交CD 于E . (1)用含t 的代数式分别表示CE 和QE 的长; (2)求△APQ 的面积S 与t 的函数关系式;(3)当QE 恰好平分△APQ 的面积时,QE 的长是多少厘米?CPEQD 13. (江西2001)如图,正方形ABCD 中,有一直径为BC 的半圆,BC =2cm .现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1㎝/s 的速度向点A 运动,点F 沿折线A —D —C 以2㎝/s 的速度向点C 运动.设点E 离开点B 的时间为t (s ). (l)当t 为何值时,线段EF 与BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值.CABD4. (2001湖南长沙市)已知:Rt △AOC 中,∠AOB =90°,OA =3厘米,OB =4厘米.以O 为坐标原点建立如图所示的平面直角坐标系.设P 、Q 分别为AB 边、OB 边上的动点,它们同时分别从点A 、O 向B 点匀速移动,移动的速度都为1厘米/秒.设P 、Q 移动时间为t 秒(40≤≤t ).(l )过点P 作PM ⊥OA 于M .证明:ABAPBO PM AO AM ==,并求出P 点的坐标(用t 表示). (2)求△OPQ 的面积S (厘米2)与移动时间t (秒)之间的函数关系式;当t 为何值时,S 有最大值,并求出S 的最大值.(3)当t 为何值时,△OPQ 为直角三角形?(4)①试证明无论t 为何值,△OPQ 不可能为正三角形;②若点P 的移动速度不变,试改变点Q 的运动速度;使△OPQ 为正三角形,求出点Q 的运动速度和此时的t 值.yx5.(2002上海市)操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q . 探究:设A 、P 两点间的距离为x . (1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到的结论;(1) 当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,并写出函数的取值范围;(3)当点P 在线段AC 上滑动时,△P CQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.(图1、图2、图3的形状大小相同,图1供操作、实验用,图2和图3备用)6.(2000吉林省)如图,有一边长为5cm 的正方形ABCD 和等腰△PQR ,PQ=PR=5cm ,QR=8cm ,点B 、C 、Q 、R 在同一条直线l 上,当C 、Q 两点重合时,等腰△PQR 以1cm/秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为Scm 2.解答下列问题:(1)当t=3秒时,求S 的值; (2)当t=5秒时,求S 的值;(3)当5秒≤t ≤8秒时,求S 与t 的函数关系式,并求出S 的最大值.A B C D A B CD A B C D图2图1图37.(2002年吉林省)如图,菱形OABC的边长为4㎝,∠AOC=60°,动点P从O出发,以每秒1㎝的速度沿O→A→B路线运动,点P出发2s后。

中考数学专题 动态几何问题

中考数学专题 动态几何问题

中考数学专题动态几何问题【简要分析】函数是中学数学的一个重要概念.加强对函数概念、图象和性质,以及函数思想方法的考查是近年中考试题的一个显著特点.大量涌现的动态几何问题,即建立几何中元素的函数关系式问题是这一特点的体现.这类题目的三乱扣帽子解法是抓住变化中的“不变”.以“不变”应“万变”.同时,要善于利用相似三角形的性质定理、勾股定理、圆幂定理、面积关系,借助议程为个桥梁,从而得到函数关系式,问题且有一定的实际意义,因此,对函数解析式中自变量的取值范围必须认真考虑,一般需要有约束条件.动态几何综合题【典型考题例析】例1:如图2-4-37,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0)、B(18,6)、C(8,6),四边形OABC是梯形.点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.(1)求出直线OC的解析式.(2)设从出发起运动了t秒,如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.(3)设从出发起运动了t秒,当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由.例2:如图2-5-40,在Rt△PMN中,∠P=900,PM=PN,MN=8㎝,矩形ABCD的长和宽分别为8㎝和2㎝,C点和M点重合,BC和MN在一条直线上.令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1㎝的速度移动(图2-4-41),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y㎝2.求y与x之间的函数关系式.N 图2-4-40N 图2-4-41T图2-4-44图2-4-43M T.说明:此题是一个图形运动问题,解答方法是将各个时刻的图形分别画出,将图形则“动”这“静”,再设法分别求解.这种分类画图的方法在解动态几何题中非常有效,它可帮我们理清思路,各个击破.【提高训练】1.如图2-4-45,在ABCD中,∠DAB=600,AB=5,BC=3,鼎足之势P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P所以过的线段与绝无仅有AD、AP所围成图形的面积为y,y随x的函数关系的变化而变化.在图2-4-46中,能正确反映y与x的函数关系的是()A B C D2.如图2-4-47,四边形AOBC为直角梯形,OB=%AC,OC所在直线方程为2y x=,平行于OC的直线l为:2y x t=+,l是由A点平移到B点时,l与直角梯形AOBC两边所转成的三角形的面积记为S.(1)求点C的坐标.(2)求t的取值范围.(3)求出S与t之间的函数关系式.3.如图2-4-48,在△ABC中,∠B=900,点P从点A开始沿AB边向点B以1㎝/秒的速度移动,点Q从点B开始沿BC边向点C以2㎝/秒的速度移动.(1)如果P、Q分别从A、B同时出发,几秒后△PBQ的面积等于8㎝2?(2)如果P、Q分别从A、B同时出发,点P到达点B后又继续沿BC边向点C移动,点Q到达点C后又继续沿CA边向点A移动,在这一整个移动过程中,是否存在点P、Q,使△PBQ的面积等于9㎝2?若存在,试确定P、Q的位置;若不存在,请说明理由.4.如图2-4-49,在梯形ABCD中,AB=BC=10㎝,CD=6㎝,∠C=∠D=900.(1)如图2-4-50,动点P、Q同时以每秒1㎝的速度从点B出发,点P沿BA、AD、DC运动到点C停止.设P、Q同时从点B出发t秒时,△PBQ的面积为1y(㎝2),求1y(㎝2)关于t(秒)的函数关系式.(2)如图2-4-51,动点P以每秒1㎝的速度从点B出发沿BA运动,点E在线段CD上随之运动,且PC=PE.设点P从点B出发t秒时,四边形PADE的面积为2y(㎝2).求2y(㎝2)关于t(秒)的函数关系式,并写出自变量t的取值范围.第二部分真题精讲【例1】如图,在梯形ABCD中,AD BC∥,3AD=,5DC=,10BC=,梯形的高为4.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t(秒).CMB(1)当MN AB∥时,求t的值;(2)试探究:t为何值时,MNC△为等腰三角形.图2-4-47A图2-4-49【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。

2022年中考数学专题复习:动态几何问题

2022年中考数学专题复习:动态几何问题

2022年中考数学专题复习:动态几何问题1.如图,在Rt ABC △中,8AB =,90ACB ∠=︒,60A ∠=︒,点P 从点A 出发以每秒2个单位的速度沿AB 向终点B 运动,当点P 不与点A ,B 重合时,作120BPD ∠=︒,边PD 交折线AC CB -于点D ,点A 关于直线PD 的对称点为E ,连结ED ,EP 得到PDE △.设点P 的运动时间为t (秒).(1)直接写出线段PD 的长(用含t 的代数式表示);(2)当点E 落在边BC 上时,求t 的值;(3)设PDE △与ABC 重合部分图形的面积为S ,求S 与t 的函数关系式;(4)设M 为AB 的中点,N 为ED 的中点,连结MN .当MN 与ABC 的边垂直时,直接写出t 的值.2.如图,在Rt ABC 中,90ACB ∠=︒,60A ∠=︒,2cm =AC ,CD 是边AB 上的中线.P ,Q 两点同时从点A 出发,点P 在AC 上以1cm/s 的速度向终点C 运动;点Q 在AB 上以2cm/s 的速度向终点B 运动,以AP ,AQ 为邻边作APEQ .设点P 的运动时间为x (s ),APEQ 与ACD △重叠部分图形的面积为y (cm 2).(1)点P 到AB 的距离为_______cm .(用含x 的代数式表示)(2)当点E 落在中线CD 上时,求x 的值.(3)当02x <<时,求y 关于x 的函数解析式,并写出自变量x 的取值范围.(4)连接PQ ,当直线PQ 经过中线CD 上的三等分点时,直接写出x 的值.3.如图1,点P 、Q 分别是等边△ABC 边AB 、BC 上的动点(端点除外),点P 从顶点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ 、CP 交于点M .(1)求证:ABQ CAP ≌△△:(2)当点P 、Q 分别在AB 、BC 边上运动时,△QMC 的大小变化吗?若变化,请说明理由:若不变,求出它的度数.(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 相交于点M ,则△QMC 的大小变化吗?若变化,请说明理由:若不变,则求出它的度数.4.如图1,ABC 与AEF 都是等边三角形,边长分别为4,FC AD 为ABC 高,连接CE ,N 为CE 的中点.(1)求证:ACF ABE ≌;(2)将AEF 绕点A 旋转,当点E 在AD 上时,如图2,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(3)连接BN ,在AEF 绕点A 旋转过程中,求BN 的最大值.5.有一边长为6cm 的正方形ABCD 和等腰直角PQR ,PQ =PR ,QR =8cm .点B ,C ,Q ,R 在同一条直线l 上.当C ,Q 两点重合时,等腰直角PQR 以1cm/秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰直角PQR 重合部分的面积为S cm 2.解答下列问题.(1)当t =3秒时,求S 的值;当t =6秒时,求S 的值;(2)当6秒≤t ≤8秒时,求s 与t 的函数关系式.(3)若重合部分的面积为152cm 时,求t 的值.6.以BC 为斜边在它的同侧作Rt DBC 和Rt ABC ,其中90A D ∠=∠=︒,AB AC =,AC 、BD 交于点P .(1)如图1,BP 平分ABC ∠,求证:BC AB AP =+;(2)如图2,过点A 作AE BP ⊥,分别交BP 、BC 于点E 、点F ,连接AD ,过A 作AG AD ⊥,交BD 于点G ,连接CG ,CG 交AF 于点H ,求证:GH CH =; (3)如图3,点M 为边AB 的中点,点Q 是边BC 上一动点,连接MQ ,将线段MQ 绕点M 逆时针旋转90︒得到线段MK ,连接PK 、CK ,当15DBC ∠=︒,4AP =时,求PK CK +的最小值.7.如图,长方形ABCD 中(长方形的对边平行且相等,每个角都是90°),AB =6cm ,AD =2cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以2cm/s 的速度向终点B 移动,点Q 以1cm/s 的速度向点D 移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t (s ),问:(1)当t =1s 时,四边形BCQP 面积是多少?(2)当t 为何值时,点P 和点Q 距离是3cm ?(3)当t = s 时,以点P ,Q ,D 为顶点的三角形是等腰三角形.(直接写出答案)8.如图,AE 与BD 相交于点C ,AC EC =,BC DC =,6cm AB =,点P 从点A 出发,沿A B A →→方向以3cm s 的速度运动,点Q 从点D 出发,沿D E →方向以1cm s 的速度运动,P 、Q 两点同时出发,当点P 到达点A 时,P 、Q 两点同时停止运动.设点P 的运动时间为()s t .(1)求证://AB DE .(2)写出线段BP 的长(用含t 的式子表示).(3)连接PQ ,当线段PQ 经过点C 时,求t 的值.9.如图,在Rt ABC 中,△C =90°,△A =30°,AB =4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动,过点P 作PD △AC 于点D (点P 不与点A 、B 重合),作△DPQ =60°,边PQ 交射线DC 于点Q ,设点P 的运动时间为t 秒. (1)用含t 的代数式表示线段PD = ;PQ = ;CD = .(2)当点Q与点C重合时,求t的值;(3)当线段PQ的垂直平分线经过ABC一边中点时,直接写出t的值.10.在△ABC中,AB=AC=10cm.(1)如图1,AM是△ABC的中线,MD△AB于D点,ME△AC于E点,MD=3cm,则ME=cm.(2)如图2,在(1)的条件下,连接DE交AM于点F,试猜想:△FD FE(填“>”、“=”或“<”);△AM DE(填位置关系).(3)如图3,BC=8cm,点D为AB的中点.点P在线段BC上由B向C运动,同时点Q在线段CA上以每秒2cm的速度由C向A运动,设点P的运动时间为t秒.问:运动时间t为多少时,△BDP与△PQC全等?11.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP、BP,求CP、DP的长;(2)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的项点Q恰好在边BC上?求出此时平行四边形的面积;(3)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数(直按写出答案).12.如图,在四边形ABCD 中,//AD BC ,90B ∠=︒,8cm AB =,12cm AD =,18cm BC =,点P 从点A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 同时出发,以2cm/s 的速度向点B 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P ,Q 运动的时间为ts .(1)CD 边的长度为________cm ,t 的取值范围为________.(2)从运动开始,当t =________时,PQ CD =.(3)在整个运动过程中是否存在t 值,使得四边形PQCD 是菱形.若存在,请求出t 值;若不存在,请说明理由.13.如图所示,四边形ABCD 为矩形,AB =6cm ,AD =4cm ,若点Q 从A 点出发沿AD 以1cm/s 的速度向D 运动,P 从B 点出发沿BA 以2cm/s 的速度向A 运动,如果P 、Q 分别同时出发,当一个点到达终点时,另一点也同时停止.设运动的时间为t (s ).(1)当t为何值时,△P AQ为等腰三角形?(2)当t为何值时,△APD的面积为6cm2?(3)五边形PBCDQ的面积能否达到20cm2?若能,请求出t的值;若不能,请说明理由.(4)当t为何值时,P、Q两点之间的距离为?14.(1)如图1,在平行四边形ABCD中,对角线AC、BD相交于O点,过点O的直线l与边AB、CD分别交于点E、F,绕点O旋转直线l,猜想直线l旋转到什么位置时,四边形AECF是菱形.证明你的猜想.(2)若将(1)中四边形ABCD改成矩形ABCD,使AB=4cm,BC=3cm,△如图2,绕点O旋转直线l与边AB、CD分别交于点E、F,将矩形ABCD沿EF折叠,使点A与点C重合,点D的对应点为D′,连接DD′,求△DFD′的面积.△如图3,绕点O继续旋转直线l,直线l与边BC或BC的延长线交于点E,连接AE,将矩形ABCD沿AE折叠,点B的对应点为B′,当△CEB′为直角三角形时,求BE 的长度.请直接写出结果,不必写解答过程.15.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转.若B、P在直线a的异侧,BM△直线a于点M,CN△直线a于点N,连接PM、PN;(1)延长MP交CN于点E(如图2).△求证:△BPM△△CPE;△求证:PM=PN;(2)若直线a烧点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变.此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 还成立吗?(不必说明理由)16.边长为4的正方形ABCD 绕顶点A ,按顺时针方向旋转至正方形111AB C D ,记旋转角为α.(1)如图1,当60α=︒时,求弧1CC 的长度和线段AC 扫过的扇形面积;(2)如图2,当45α=︒时,记BC 与11D C 的交点为E ,求线段1D E 的长度; (3)如图3,在旋转过程中,若F 为线段1CB 的中点,求线段DF 长度的取值范围.17.如图,在四边形ABCD 中,△B =60°,AB =DC =4,AD =BC =8,延长BC 到E ,使CE =4,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 运动的时间为t 秒(t >0).(1)当t =3时,BP = ;(2)当t = 时,点P 运动到△B 的角平分线上;(3)当0<t <6时,请用含t 的代数式表示△ABP 的面积S ;(4)当0<t <6时,直接写出点P 到四边形ABED 相邻两边距离相等时t 的值.18.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点,过点P作PE△PB,PE交射线DC于点E,过点E作EF垂直AC所在的直线,垂足为点F.(1)如图,当E点在线段DC上时,求证:PB=PE;(2)在点P的运动过程中,△PEC能否为等腰三角形?如果能,直接写出此时AP的长,如果不能,说明理由;(3)在点P的运动过程中,AP、PF、FC的长度是否满足某种数量关系?若满足,试写出解答过程;若不满足,试说明理由.19.已知:正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在的直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图1,当点P在对角线AC上时,请你猜想PE与PB有怎样的数量关系,并加以证明;(2)如图2,当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图2,当点P运动到CA的反向延长线上时,请你利用图3画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)20.已知正方形ABCD,△EAF=45°,将△EAF绕顶点A旋转,角的两边始终与直线CD交于点E,与直线BC交于点F,连接EF.(1)如图△,当BF=DE时,求证:△ABF△△ADE;(2)若△EAF旋转到如图△的位置时,求证:△AFB=△AFE;(3)若BC=4,当边AE经过线段BC的中点时,在AF的右侧作以AF为腰的等腰直角三角形AFP,直接写出点P到直线AB的距离.。

2020年中考数学复习 初中数学动态几何问题 (29张PPT)

2020年中考数学复习  初中数学动态几何问题  (29张PPT)
ACB=90°,AC=6,BC=8,点D 以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止 运动,M,N分别是AD,CD的中点,连结MN,设点D运动的时间为 t.
(3)若△DMN是等腰三角形,求t的值.
[解析] (3)根据等腰三角形的腰的情况 进行分类讨论,从而求出t的值.
初中数学动态几何问题
动态几何问题是指以几何知识和图形为背景,蕴涵一些运动变化的 几何元素,主要研究几何图形在运动中所遵循的规律,如图形的形状、 位置、数量关系等.
就运动对象而言,有点动(点在线段或弧线上运动)、线动(直线或线 段的平移、旋转)和面动(部分图形的平移、旋转、翻折)等,而且在运动 过程中大多是动中有静,动静结合.
(3)根据题意可知,MD=12AD,DN=12DC,MN=12AC=3.
i)当MD=MN=3时,△DMN为等腰三角形,此时AD=AC=6,
∴t=6;
ii)当MD=DN时,AD=DC,
1 过D作DH⊥AC交AC于H,则AH=2AC=3, ∵AC=6,BC=8, ∴AB=10,
∵cosA=AAHD=AACB=35,
例 2 已知:如图①,抛物线 y=ax2+bx+c 与 x 轴正半轴交 于 A,B 两点,与 y 轴交于点 C,直线 y=x-2 经过 A、C 两 点,且 AB=2.
(2)若直线 DE 平行于 x 轴并从 C 点开始以每秒 1 个单位的 速度沿 y 轴正方向平移,且分别交 y 轴、线段 BC 于点 E、D, 同时动点 P 从点 B 出发,沿 BO 方向以每秒 2 个单位的速度运 动.当点 P 运动到原点 O 时,直线 DE 与点 P 都停止运动,连结
位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD 的中点,连结MN,设点D运动的时间为t.

2020年中考数学热点冲刺8 动态几何问题(含解析)

2020年中考数学热点冲刺8 动态几何问题(含解析)

热点专题8动点几何问题考向1图形的运动与最值1. (2019 江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P是⊙C上一个动点,连接AP交BD于点T,则的最大值是.【解析】如图,过点P作PE⊙BD交AB的延长线于E,⊙⊙AEP=⊙ABD,⊙APE⊙⊙ATB,⊙,⊙AB=4,⊙AE=AB+BE=4+BE,⊙,⊙BE最大时,最大,⊙四边形ABCD是矩形,⊙BC=AD=3,CD=AB=4,过点C作CH⊙BD于H,交PE于M,并延长交AB于G,⊙BD是⊙C的切线,⊙⊙GME=90°,在Rt⊙BCD中,BD==5,⊙⊙BHC=⊙BCD=90°,⊙CBH=⊙DBC,⊙⊙BHC⊙⊙BCD,⊙,⊙,⊙BH=,CH=,⊙⊙BHG=⊙BAD=90°,⊙GBH=⊙DBA,⊙⊙BHG⊙⊙BAD,⊙=,⊙,⊙HG=,BG=,在Rt⊙GME中,GM=EG•sin⊙AEP=EG×=EG,而BE=GE﹣BG=GE﹣,⊙GE最大时,BE最大,⊙GM最大时,BE最大,⊙GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,⊙GP'=HP'+HG=,过点P'作P'F⊙BD交AB的延长线于F,⊙BE最大时,点E落在点F处,即:BE 最大=BF ,在Rt⊙GP 'F 中,FG ====,⊙BF =FG ﹣BG =8, ⊙最大值为1+=3,故答案为:3.2. (2019 江苏省无锡市)如图,在ABC ∆中,5AB AC ==,BC =D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ∆面积的最大值为 .【解析】过D 作DG ⊙BC 于G ,过A 作AN ⊙BC 于N ,过E 作EH ⊙HG 于H ,延长ED 交BC 于M .易证⊙EHD ⊙⊙DGC ,可设DG =HE =x ,⊙AB =AC =5,BC =AN ⊙BC ,⊙BN =12BC =,AN ⊙G ⊙BC ,AN ⊙BC , ⊙DG ⊙AN , ⊙2BG BNDG AN==,⊙BG =2x ,CG =HD =- 2x ;易证⊙HED ⊙⊙GMD ,于是HE HDGM GD =,x GM =MG 2= ,所以S ⊙BDE= 12BM ×HD =12×(2x 2)×(4- 2x )=252x -+=2582x ⎛-+ ⎝⎭,当x 时,S ⊙BDE 的最大值为8. 因此本题答案为8. 3. (2019 江苏省宿迁市)如图,⊙MAN =60°,若⊙ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当⊙ABC 是锐角三角形时,BC 的取值范围是 .【解析】如图,过点B作BC1⊙AN,垂足为C1,BC2⊙AM,交AN于点C2在Rt⊙ABC1中,AB=2,⊙A=60°⊙⊙ABC1=30°⊙AC1=AB=1,由勾股定理得:BC1=,在Rt⊙ABC2中,AB=2,⊙A=60°⊙⊙AC2B=30°⊙AC2=4,由勾股定理得:BC2=2,当⊙ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.4. (2019 江苏省宿迁市)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边⊙EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将⊙EFB绕点E旋转60°,使EF与EG重合,得到⊙EFB⊙⊙EHG从而可知⊙EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊙HN,则CM即为CG的最小值作EP⊙CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.5.(2019 江苏省扬州市)如图,已知等边⊙ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把⊙ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1⊙AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,⊙ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求⊙ACB′面积的最大值.【解析】(1)如图1中,⊙⊙ABC是等边三角形,⊙⊙A=60°,AB=BC=AC=8,⊙PB=4,⊙PB′=PB=P A=4,⊙⊙A=60°,⊙⊙APB′是等边三角形,⊙AB′=AP=4.故答案为4.(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.⊙PE⊙AC,⊙⊙BPE=⊙A=60°,⊙BEP=⊙C=60°,⊙⊙PEB是等边三角形,⊙PB=5,⊙⊙B,B′关于PE对称,⊙BB′⊙PE,BB′=2OB⊙OB=PB•sin60°=,⊙BB′=5.故答案为5.(3)如图3中,结论:面积不变.⊙B,B′关于直线l对称,⊙BB′⊙直线l,⊙直线l ⊙AC , ⊙AC ⊙BB ′, ⊙S ⊙ACB ′=S ⊙ACB =•82=16.(4)如图4中,当B ′P ⊙AC 时,⊙ACB ′的面积最大,设直线PB ′交AC 于E ,在Rt⊙APE 中,⊙P A =2,⊙P AE =60°, ⊙PE =P A •sin60°=,⊙B ′E =6+,⊙S ⊙ACB ′的最大值=×8×(6+)=4+24.6. (2019 江苏省苏州市) 已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP=.如图⊙,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm²),S 与t 的函数关系如图⊙所示:(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图⊙,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ⊙求动点N 运动速度()/v cm s 的取值范围;⊙试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【解析】(1)2/cm s ;10cm(2)⊙解:⊙在边BC 上相遇,且不包含C 点 ⊙57.515 2.5C vB v⎧⎪⎪⎨⎪≥⎪⎩<在点在点⊙2/6/3cm s v cm s ≤<⊙如右图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊙AC,则12MH CM ==①(图)PBCDAS (cm²)t (s )②图O2.57.515-2x2x-5(N )⊙ ⊙22S x =()122152S S x x ⋅=-+⋅ =2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.7. (2019 江苏省扬州市)如图,四边形ABCD 是矩形,AB =20,BC =10,以CD 为一边向矩形外部作等腰直角⊙GDC ,⊙G =90°.点M 在线段AB 上,且AM =a ,点P 沿折线AD ﹣DG 运动,点Q 沿折线BC ﹣CG 运动(与点G 不重合),在运动过程中始终保持线段PQ ⊙A B .设PQ 与AB 之间的距离为x . (1)若a =12.⊙如图1,当点P 在线段AD 上时,若四边形AMQP 的面积为48,则x 的值为 ; ⊙在运动过程中,求四边形AMQP 的最大面积;(2)如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取值范围.【解析】 ⊙P 在线段AD 上,PQ =AB =20,AP =x ,AM =12,112152S MH AP x =⋅=-+四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;⊙当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,⊙0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH⊙AB于M,交CD于N,作GE⊙CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,⊙⊙GDC是等腰直角三角形,⊙DE=CE,GE=CD=10,⊙GF=GE+EF=20,⊙GH=20﹣x,由题意得:PQ⊙CD,⊙⊙GPQ⊙⊙GDC,⊙=,即=,解得:PQ=40﹣2x,⊙梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,⊙当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,⊙0≤x≤20,⊙10≤10+≤15,对称轴在10和15之间,⊙10≤x≤20,二次函数图象开口向下,⊙当x=20时,S最小,⊙﹣202+×20≥50,⊙a≥5;综上所述,a的取值范围为5≤a≤20.考向2动点与函数的结合问题1.(2019 江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分⊙PCR.若OQ⊙PR,求出点Q的坐标.【解析】(1)将x=2代入y=﹣x2﹣x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣1),C(0,﹣3)代入y=x2+bx+c,得,解得,⊙抛物线L1:y=x2﹣2x﹣3;(2)设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,⊙当点Q在点P右侧时,则点Q的坐标为(x+2,﹣2x﹣3),将Q(x+2,﹣2x﹣3)代入y=﹣x2﹣x+2,得﹣2x﹣3=﹣(x+2)2﹣(x+2)+2,解得,x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);⊙当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y=﹣x2﹣x+2,得y=﹣x2﹣x+2,得x2﹣2x﹣3=﹣(x﹣2)2﹣(x﹣2)+2,解得,x=3,或x=﹣,此时点P的坐标为(3,0)或(﹣,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y=﹣x2﹣x+2,得﹣x2+2x﹣3═﹣(2﹣x)2﹣(2﹣x)+2,解得,x=0或x=﹣3,因为x=0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(﹣3,12),综上所述,点P的坐标为(﹣1,0)或(3,0)或(﹣,)或(﹣3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分⊙PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊙TR于点H,则有⊙PSC=⊙RTC=90°,由CA平分⊙PCR,得⊙PCA=⊙RCA,则⊙PCS=⊙RCT,⊙⊙PSC⊙⊙RTC,⊙,设点P坐标为(x1,),点R坐标为(x2,),所以有,整理得,x1+x2=4,在Rt⊙PRH中,tan⊙PRH==过点Q作QK⊙x轴于点K,设点Q坐标为(m,),若OQ⊙PR,则需⊙QOK=⊙PRH,所以tan⊙QOK=tan⊙PRH=2,所以2m=,解得,m=,所以点Q坐标为(,﹣7+)或(,﹣7﹣).2.(2019 江苏省常州市)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:⊙半径为1的圆:;⊙如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.⊙若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);⊙若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【解析】(1)⊙半径为1的圆的宽距离为1,故答案为1.⊙如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt⊙ODC中,OC===⊙OP+OC≥PC,⊙PC≤1+,⊙这个“窗户形“的宽距为1+.故答案为1+.(2)⊙如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.⊙如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊙x轴于T.⊙AC≤AM+CM,又⊙5≤d≤8,⊙当d=5时.AM=4,⊙AT==2,此时M(2﹣1,2),当d=8时.AM=7,⊙AT==2,此时M(2﹣1,2),⊙满足条件的点M的横坐标的范围为2﹣1≤x≤2﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣2+1≤x﹣2+1.考向3运动过程中的定值问题1.(2019 江苏省宿迁市)如图⊙,在钝角⊙ABC中,⊙ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将⊙BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图⊙,当0<α<180时,连接AD、CE.求证:⊙BDA⊙⊙BEC;(2)如图⊙,直线CE、AD交于点G.在旋转过程中,⊙AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将⊙BDE从图⊙位置绕点B逆时针方向旋转180°,求点G的运动路程.【解析】(1)如图⊙中,由图⊙,⊙点D为边AB中点,点E为边BC中点,⊙DE⊙AC,⊙=,⊙=,⊙⊙DBE=⊙ABC,⊙⊙DBA=⊙EBC,⊙⊙DBA⊙⊙EBC.(2)⊙AGC的大小不发生变化,⊙AGC=30°.理由:如图⊙中,设AB交CG于点O.⊙⊙DBA⊙⊙EBC,⊙⊙DAB=⊙ECB,⊙⊙DAB+⊙AOG+⊙G=180°,⊙ECB+⊙COB+⊙ABC=180°,⊙AOG=⊙COB,⊙⊙G=⊙ABC=30°.(3)如图⊙﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边⊙ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,⊙⊙AGC=30°,⊙AOC=60°,⊙⊙AGC=⊙AOC,⊙点G在⊙O上运动,以B 为圆心,BD 为半径作⊙B ,当直线与⊙B 相切时,BD ⊙AD , ⊙⊙ADB =90°, ⊙BK =AK , ⊙DK =BK =AK , ⊙BD =BK , ⊙BD =DK =BK , ⊙⊙BDK 是等边三角形, ⊙⊙DBK =60°, ⊙⊙DAB =30°,⊙⊙DOG =2⊙DAB =60°, ⊙的长==,观察图象可知,点G 的运动路程是的长的两倍=.2.(2019 江苏省无锡市)如图1,在矩形ABCD 中,3BC =,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称PAB ∆',设点P 的运动时间为()t s .(1)若AB =⊙如图2,当点B '落在AC 上时,显然PAB ∆'是直角三角形,求此时t 的值;⊙是否存在异于图2的时刻,使得PCB ∆'是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB '与直线CD 相交于点M ,且当3t <时存在某一时刻有结论45PAM ∠=︒成立,试探究:对于3t >的任意时刻,结论“45PAM ∠=︒”是否总是成立?请说明理由.【解析】(1)⊙勾股求的易证CB P CBA'V:V,故''43B P=解得⊙1°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=22°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=6B'CB'CBA A BDPD33°当⊙CPB’=90 °时,易证四边形ABP’为正方形,解得(2)如图,⊙⊙PAM=45°⊙⊙2+⊙3=45°,⊙1+⊙4=45°又⊙翻折⊙⊙1=⊙2,⊙3=⊙4又⊙⊙ADM=⊙AB’M(AAS)⊙AD=AB’=AB即四边形ABCD是正方形如图,设⊙APB=xB'CA BDA⊙⊙PAB=90°-x ⊙⊙DAP=x易证⊙MDA⊙⊙B’AM (HL ) ⊙⊙BAM=⊙DAM ⊙翻折⊙⊙PAB=⊙PAB’=90°-x⊙⊙DAB’=⊙PAB’-⊙DAP=90°-2x ⊙⊙DAM=21⊙DAB’=45°-x ⊙⊙MAP=⊙DAM+⊙PAD=45°4321MB'BCB'A D PP。

初三数学专项复习之动态几何

初三数学专项复习之动态几何

初三数学专项复习之动态几何知识精讲一.与函数结合动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与知量间的一种变化关系,这种变化关系确实是动点问题中的函数关系.那么,我们一样用以下几种方法建立函数:(1)应用勾股定理建立函数解析式;(2)应用比例式建立函数解析式;(3)应用求图形面积的方法建立函数关系式.二.动态几何型压轴题动态几何特点----问题背景是专门图形,考查问题也是专门图形,因此要把握好一样与专门的关系;分析过程中,专门要关注图形的特性(专门角、专门图形的性质、图形的专门位置)动点问题一直是中考热点,近几年考查探究运动中的专门性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、专门角或其三角函数、线段或面积的最值.动态几何常见的题型有三大类:(1)点动问题;(2)线动问题;(3)面动问题.解决动态几何问题的常见方法有:(1)专门探路,一样推证;(2)动手实践,操作确认;(3)建立联系,运算说明.动态几何习题的共性:1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数;2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究专门情形下的函数值.三.双动点问题点动、线动、形动构成的问题称之为动态几何问题.它要紧以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力,其中以灵活多变而著称的双动点问题更成为今年中考试题的热点.常以双动点为载体,探求函数图象问题、探求结论开放性问题、探求存在性问题、探求函数最值问题.双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们猎取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观看和研究问题,挖掘运动、变化的全过程,并专门关注运动与变化中的不变量、不变关系或专门关系,动中取静,静中求动.三点剖析一.考点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.二.重难点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.题模精讲题模一:三角形与动点问题例1.1 如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②假如BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,此题可解.请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.并直截了当写出当AC=BC=4时,PA+PB+PC的最小值.【答案】(1)①②33(2)见解析,2226【解析】(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=A D,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,(2)证明:如图所示,以点A为旋转中心,将△ABP顺时针旋转6 0°得到△AMN,连接BN.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN差不多上等边三角形,∴PA=PM,∴PA+PB+PC=CP+PM+MN,当AC=BC=4时,当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,∴,例1.2 以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中(1)点E、F、M分别是AC、CD、DB的中点,连接EM.①如图1,当点D、C分别在AO、BO_;②如图2,将图1中的△AOB论进行证明;(2)如图3N在线段OD P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.【答案】 (12【解析】(1)①连接EF ,∵点E 、F 、M 分别是AC 、CD 、DB 的中位线, ∴EF 、FM 分别是△ACD 和△DBC 的中位线,∴EF//AD,FM//CB ,EFM EM//CD.∵Rt △AOB∵Rt △COD∴△AOD ∽△BOC .例1.3 在△ABCABC 绕顶点C 顺(1)如图1AC AB 相交于点D .证明:△BC D 是等边三角形;(2)如图2(3)如图3,设AC 中点为EP EP ,求:EP 长度最大,并求出EP 的最大值.【答案】 (123E P 【解析】 (11,∵在△ABCAC ,∴在△CDB∴△BCD 是等边三角形;(2)解:如图2(3EP 例1.4 在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC 和ED 重合),在BC 边上有一动点P .(1)当点P 运动到∠CFB 的角平分线上时,连接AP ,求线段AP 的长;(2)当点PPAB 的度数. 探究二:如图④,将△DEF 的顶点D 放在△ABC 的BC 边上的中点处,并以点D 为旋转中心旋转△DEF ,使△DEF 的两直角边与△ABC 的两直角边分别交于M 、N 两点,连接MN .在旋转△DEF 的过程中,△A MN 的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.【答案】 见解析【解析】 探究一:(1)依题意画出图形,如图所示:FP 为角平分线,过点A 作AG ⊥BC 于点G在Rt △APG(2)由(1 如图所示,以点A BC 交于点过点 在Rt∴∠PAB 的度数为15°或75°.探究二:△AMN 的周长存在有最小值.如图所示,连接AD∵△ABC ∵在△AMD 与△∴△AMD ≌△CND在Rt △AMN . 例1.5 如图,在△,DE=4c m .动线段DE (端点D 从点B 开始)沿BC 边以1cm/s 的速度向点C 运动,当端点E 到达点C 时运动停止.过点E 作EF ∥AC 交AB 于点F (当点E 与点C 重合时,EF 与CA 重合),连接DF ,设运动的时刻为t 秒(t ≥0).(1)直截了当写出用含t 的代数式表示线段BE 、EF 的长;(2)在那个运动过程中,△DEF 能否为等腰三角形?若能,要求出t 的值;若不能,请说明理由;(3)设M 、N 分别是DF 、EF 的中点,求整个运动过程中,MN 所扫过的面积.【答案】 (1)t+4)(cm )(2)t=03【解析】 (1)∵DE=4cm ,∴BE=BD+DE=(t+4)cm ,∵EF ∥AC ,∴△BEF ∽△BCA ,∴EF :CA=BE :BC ,即EF :t+4):16,解得:t+4)(cm ); (2①如图1,∵当DF=EF 时,∴∠EDF=∠DEF ,∵AB=AC ,∴∠B=∠C ,∵EF ∥AC ,∴∠DEF=∠C ,∴∠EDF=∠B ,∴点B 与点D 重合,∴t=0;,当DE=EF 时,则),DE=DF 时,有∠DFE=∠DEF=∠B=∠C , ABC .综上所述,当t=0DEF为等腰三角形.(3)如图4,设P BP,∵EF∥AC,∴△FBE∽△ABC.又∵∠BEN=∠C,∴△NBE∽△PBC,∴∠NBE=∠PBC.∴点B,N,P共线,∴点N沿直线BP运动,MN也随之平移.如图5,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形.∵M、N分别是DF、EF∴MN∥DE,且.分别过点T、P作TK⊥K,PL⊥BC,垂足为L,延长ST 交PL于点R TKLR∵当t=0时,0+4)当t=12时,,•10•∴PR=PL﹣RL=PL﹣TK=3∴S平行四边形PQST=ST•∴整个运动过程中,MN.题模二:四边形与动点问题例2.1 如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,连结AM、CM.(1)当M点在何处时,AM+CM的值最小;(2)当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM【答案】(1)见解析(2)见解析(3【解析】该题考查的是四边形综合.(1)当M点落在BD小.……………………………1分(2)如图,连接CE,当M点位于BD与CE的交点处时……………………………2分理由如下:∵M是正方形ABCD对角线上一点∴△ABM≌△CBM3分EC上取一点N BN∴△BNE≌△ABM……………………3分∴△BMN是等边三角形.4分∴当M点位于BD与CE于EC的长.……………………………5分(3)过E设正方形的边长为x6分在Rt△EFC中,7分例2.2 如图1B关于直线AC的对称点是点D,点E为射线CADE,BE.C关于直线BD的对称点为点F,连接FD、F(2B.将△CDE绕点D顺时针旋转αC①如图2②如图3,点M为DC中点,点P究:在此旋转过程中,线段PM长度的取值范畴?【答案】(1)如图1,证明见解析;(2)①见解析;②【解析】(1)补全图形,如图1所示;证明:由题意可知:射线CA垂直平分BD∴△EBD是等边三角形(2)①证明:如图2又∵点C与点F关于BD对称∴四边形BCDF为正方形,由(1)△BDE为等边三角形SAS)∴△EDF②线段PM设射线CA交BD于点O,I:如图3(1)DC,MP D、M、P、C共线时,PM有最小值II:如图3(2)P、D、M、C共线时,PM有最大值.当点P∴线段PM例2.3 如图1,在菱形ABCD中,tan∠ABC=2,点E从点D动身,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时刻为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BC D),得到对应线段CF.(1)求证:BE=DF;(2)当t=___秒时,DF的长度有最小值,最小值等于___;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BC D),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直截了当写出点F到直线AD的距离y关于时刻t的函数表达式.【答案】(1)见解析(2),12(3)6(4)﹣12ECF=∠BCD得∠DCF=∠BCE,结合DC =BC、CE=CF证△DCF≌△BCE即可得;(2)当点E运动至点E′时,由DF=BE′知现在DF最小,求得B E′、AE′即可得答案;(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,依照tan∠ABC=tan∠ADC=2即可求得D E;②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得(4)连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD 于点H,证△DCE≌△GCF可得∠3=∠4=∠1=∠2,即GF∥CD,从而知四边形CDMN是平行四边形,由平行四边形得CGN=∠DCN=∠CNG知tan∠ABC=tan∠CGN=2可得,由GF=DE=t得FM=t﹣12,利用tan∠FMH=tan∠ABC=2即可得FH.(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,现在DF最小,在Rt△ABE′中,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴则AE′=6∴DE′,DF=BE′=12,故答案为:,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴∴(4﹣12如图GF AD、BC于点M、N,过点F作FH⊥A D于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴∵tan∠ABC=tan∠CGN=2,∴GN=12,∴,∵GF=DE=t,∴FM=t﹣12,∵tan∠ABC=2,∴t﹣12),即﹣12例中,点E是对角线AC的中点,点F在边C D上,连接DE、AF,点G在线段AF上(1)如图①,若DG是△ADFD的中线,DG=2.5,DF=3,连接E G,求EG的长;(2)如图②,若DG⊥AF交AC于点H,点F是CD的中点,连接F H,求证:∠CFH=∠AFD;(3)如图③,若DG⊥AF交AC于点H,点F是CD上的动点,连接EG.当点F在边CD上(不含端点)运动时,∠EGH的大小是否发生EGH的度数;若发生改变,请说明理由.【答案】(1(2(3)不改变,∠EGH=45°【解析】(1)解:∵四边形ABCD是正方形,∴AD=CD=BC,∠ADF=∠BCD=90°,∠DAC=∠ACB=∠ACD=4 5°,∵DG是△ADF的中线,DG=2.5,∴AF=2DG=5,∴,∴CF=CD﹣DF=1,∵点E是对角线AC的中点,G是AF的中点,∴EG的中位线,∴(2DH交BC于M,如图所示,∵DG⊥AF,∴∠AGH=∠DGA=∠DGF=90°,∴∠AFD+∠FDG=90°,∵∠DMC+∠FDG=90°,∴∠AFD=∠DMC,在△CDM 和△DAF∴△CDM ≌△DAF (∴CM=DF ,∵点F 是CD 的中点, ∴DF=CF , ∴CM=CF ,在△CMH和△CFH ,∴△CMH ≌△CFH (∴∠CMH=∠CFH , ∴∠CFH=∠AFD ;(3)解:∠EGH 的大小不发生改变,∠EGH=45°;理由如下: ∵点AC 的中点,∠ADC=90°, ∴,∴∠∠DAC=45°, ∴∠AED=90°=∠AGD , ∴A 、D 、G 、E 四点共圆, ∴∠AGE=∠ADE=45°, ∴∠EGH=90°﹣45°=45°.例2.5 如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC=6cm ,BD=8cm ,动点P ,Q 分别从点B ,D 同时动身,运动速度均为1cm/s ,点P 沿B →C →D 运动,到点D 停止,点Q 沿D →O →B 运动,到点O 停止1s 后连续运动,到点B 停止,连接AP ,AQ ,PQ .设△APQ 的面积为y (cm2)(那个地点规定:线段是面积0的几何图形),点P 的运动时刻为x (s ).(1)填空:AB=______cm ,AB 与CD 之间的距离为______cm ; (2)当4≤x ≤10时,求y 与x 之间的函数解析式;(3)直截了当写出在整个运动过程中,使PQ 与菱形ABCD 一边平行的所有x 的值.【答案】 (1)5(2)(3AC=6cm,BD=8cm,∴AC∴,设AB∴△ABC的面积•h,又∵△ABC的面积菱形•6×8=1 2,,∠CDB=θ,则易得:sinθcosθ①当4≤x≤5时,如答图1﹣1与点O P在线段BC上.∵PB=x,∴PC=BC﹣PB=5﹣x.过点P作PH于点H•cosθ﹣x).∴y=S△•35﹣x);②当5<x≤92OB上,点P 在线段CD上.PC=x﹣5,PD=CD﹣PC=5﹣(x﹣5)=10﹣x过点P作PH⊥BD于点H,则PH=PD•sinθ10﹣x).∴y=S△APQ=S菱形ABCD﹣S△ABQ﹣S BCPQ﹣S△APDABQ BCD﹣)﹣S△••OA•OC•PH×h6×x)×38×3x﹣1)•﹣x)]x1﹣3所示,现在点Q 与点B 重合,点P 5.x 之间的函数解析式为:1所示.现在BP=QD=x ,则BQ=8﹣x . ,BC ,如答图2﹣2所示. 现在PD=10﹣x ,QD=x ﹣1.x随堂练习随练1.1 在平面直角坐标系中,O 为原点,点A (4,0),点B(0,3),把△ABO 绕点B 逆时针旋转,得△A ′BO ′,点A ,O 旋转后的对应点为A ′,O ′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA ′的长; (Ⅱ)如图②,若α=120°,求点O ′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA 上 的一点P 旋转后的对应点为P ′,当O ′P+BP ′取得最小值时,求点P ′的坐标(直截了当写出结果即可)(2 (3【解析】 (1)如图①,∵点A (4,0),点B (0,3), ∴OA=4,OB=3, ∴,∵△ABO 绕点B 逆时针旋转90°,得△A ′BO ′, ∴BA=BA ′,∠ABA ′=90°, ∴△ABA ′为等腰直角三角形, ∴AA ′(2)作O ′H ⊥y 轴于H ,如图②,∵△ABO 绕点B 逆时针旋转120°,得△A ′BO ′, ∴BO=BO ′=3,∠OBO ′=120°, ∴∠HBO ′=60°,在RtBO ′HBO ′=30°, ∴′∴∴O(3)∵△ABO120°,得△A ′BO ′,点P 的对应点为P ′,∴BP=BP′,∴O ′P+BP ′=O ′P+BP ,作B 点关于x 轴的对称点C ,连结O ′C 交x 轴于P 点,如图②, 则O ′P+BP=O ′P+PC=O ′C ,现在O ′P+BP 的值最小, ∵点C 与点B 关于x 轴对称, ∴C (0,﹣3),设直线y=kx+b ,把OC (0∴直线当﹣3=0),∴∴O′P′作P′D⊥O′,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP=30∴O′′P′∴DH=O﹣O′∴P随练1.2点M为对角线BD(不含点B)上任意一点,△ABE是等边三角形,将B M绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①直截了当回答:当点M②当点M【答案】(1)见解析;(2)连接AC,当点M位于BD与AC的3)当点M位于BD、CE的交点处时,EC的长.理由见解析在△AMB和△ENB中,∴△AMB≌△ENB(SAS);(2)①依照“两点之间线段最短”,连接AC,当点M位于BD与AC②连接CE,当点M位于BD、CE理由如下:如图,连接CE交BD于点M,连接AM,在EM上取一点N在△ABD和△CBD中,∴△ABD≌△CBD(SSS),在△EBN和△CBM中,∴△EBN≌△CBM(ASA),∴现在BN由BM绕点B逆时针旋转60°得到,由(1)知:△AMB≌△ENB,∴△BMN是等边三角形,∴依照“两点之间线段最短”可知当点M位于BD、CE的交点处EC的长.为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,A D与AE在同一直线上,AB与AG在同一直线上.(1)小明发觉DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出现在BE的长.(3)如图3,小明将正方形ABCD绕点A连续逆时针旋转,线段D G与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.【答案】(1)见解析(2(3)6【解析】(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,在△EDH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=9 0°,∵BD为正方形ABCD的对角线,∴∠MDA=45°,在Rt△MDA=45°,∴cos45°∵AD=2,∴在Rt△AMG中,依照勾股定理得:,∵,∴(3)△GHE和△BHD面积之和的最大值为6,理由为:关于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;关于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.随练1.4 正方形ABCD的边长为3,点E,F分别在射线DC,DA 上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直截了当写出线段CK长的最大值.=(2)成立,证明见解析(3)323+【答案】(1)CH AB=.…………………………………1分【解析】(1)CH AB(2)结论成立.…………………………………2分证明:如图11,连接BE.在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=9 0°.[来∵DE=DF,∴AF=CE.在△ABF和△CBE中,∴△ABF≌△CBE.∴∠1=∠2.…………………………………………3分∵EH⊥BF,∠BCE=90°,∴H,C两点都在以BE为直径的圆上.∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC.∴CH=C B.…………………………………………………………………5分∴CH=A B.…………………………………………………………………6分(3)+.………………………………………………………………………7分323随练1.5 已知,如图①,在▱ABCD 中,AB=3cm ,BC=5cm .AC ⊥AB .△ACD 沿AC 的方向匀速平移得到△PNM ,速度为1cm/s ;同时,点Q 从点C 动身,沿CB 方向匀速运动,速度为1cm/s ,当△PNM 停止平移时,点Q 也停止运动.如图②,设运动时刻为t (s )(0<t <4).解答下列问题:(1)当t 为何值时,PQ ∥MN ?(2)设△QMC 的面积为y (cm2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使S △QMC :S 四边形ABQP=1:4?若存在,求出t 的值;若不存在,请说明理由.(4)是否存在某一时刻t ,使PQ ⊥MQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】 (1)2)y=3)2;(4)当时,PQ ⊥MQ【解析】 如图1,在Rt △ABC 中,由勾股定理得:,由平移性质可得MN ∥AB ; ∵PQ ∥MN ,,2PF ⊥由S ×5AE , ∴∵PF ⊥BC ,AE ⊥BC ∴AE ∥PF ,,解得:∵PM∥M因此,△QCM是面积×t(3)∵PM∥BC,∴S△PQC=S△MQC,∵S△QMC:S四边形ABQP=1:4,∴S△:5,则54×3,t2﹣解得:t1=t2=2,∴当t=2时,S△QMC:S四边形ABQP=1:4;(4)如图2,∵PQ⊥MQ,∴∠MQP=∠PFQ=90°,∵MP∥BC,∴∠MPQ=∠PQF,∴△MQP∽△PFQ,∴PQ2=PM×FQ,解得答:当PQ⊥随练1.6 ABCD中,AB=4,AD=8,点E、F分别在线段BC、CD上,将△CEF沿EF翻折,点C的落点为M(1)如图1,当CE=5,M点落在线段AD上时,求MD的长(2)如图2,若点F是CD的中点,点E在线段BC上运动,将△C EF沿EF折叠,①连接BM,△BME是否能够是直角三角形?假如能够,求现在CE 的长,假如不能够,说明理由②连接MD,如图3,求四边形ABMD的周长的最小值和现在CE的长【答案】(1)MD(2)①能够;CE=2②四边形ABMD),现在CE的长为4【解析】(1)如图1,作EN⊥AD于点N,∴∠ANE=∠ENM=90°.∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB=CD=4,AD=BC=8,∴∠A=∠B=∠ANE=90°,∴AB=NE=4,AN=BE.∵EC=5,∴BE=3,∴AN=3.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM=5.在Rt△EMN中,由勾股定理,得MN=3,∴MD=8﹣3﹣3=2.答:MD的长为2;(2)①如图2,当∠BME=90°时,∵∠EMF=90°,∴∠BMF=180°,∴B、M、F在同一直线上.∵F是BC∴.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴MF=CF=2,EC=EM.在Rt△BCF中,由勾股定理,得∴2.设EC=EM=x,则BE=8﹣x,在Rt△BME中,由勾股定理,得(8﹣2)2,∴如图°时,∴∠MEC=90°∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴∠EMF=∠C=90°,CF=FM=2,∴四边形ECFM是正方形,∴∴CE=2②如图4ABMD的周长最小,∴BM+MD最小,∴B、M、D在同一直线上,∴点M在BD上.连结MC,∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM,FC=FM.∴EF垂直平分MC,∴MG=CG,∴GF是△CDM的中位线,∴FG∥BD,∴BE=CE.∵BC=8,∴CE=4.在Rt△ABD中,由勾股定理,得∴四边形ABMD的周长的最小值为:.答:四边形ABMD的周长的最小值为(),现在CE的长为4.随练1.7 如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,现在PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ= 2.当四边形MEQG的周长最小时,求最小周长值.(运算结果保留根号)【答案】(1)5(23【解析】(1为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,则点F即为所求,过点E作EN⊥AD,垂足为N,∵AM=AD﹣MP﹣PD=12﹣5﹣3=4,∴AM=AM′=4,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴∠CEP=∠MEP,而∠CEP=∠MPE,∴∠MEP=∠MPE,∴ME=MP=5,在Rt△ENM中,∴NM′=11,∵AF∥NE,,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,现在MG+EQ最小,四边形MEQG的周长最小,在Rt△M′RN中,NR=4﹣2=2,M′∵ME=5,GQ=2,∴四边形MEQGA、C分别在正方形EFG随练1.8 边长为2H的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB边交DF于点M,BC边交DG于点N.(1(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD 旋转的度数;(3)如图3p,在旋转正方形ABCD的过程中,p23)见解析【答案】(1(12分..............................5分(3.............6分.......................................7分化............................8分课后作业作业1 已知,点O是等边△ABC内的任一点,连接OA,OB,O C.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C 按顺时针方向旋转60°得△ADC.①∠DAO的度数是;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直截了当写出OA+OB+OC的最小值.【答案】(1)①90°;②OA2+OB2=OC2;证明见解析(2)①α=β=120°,OA+OB+OC有最小值;图形见解析【解析】(1)①∠AOB=150°,∠BOC=120°,∴∠AOC=360°﹣120°﹣150°=90°,∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠OCD=60°,∠D=∠BOC=120°,∴∠DAO=360°﹣∠AOC﹣∠OCD﹣∠D=90°,故答案为:90°;②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2,如图1,连接OD,∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°,∴CD=OC,∠ADC=∠BOC=120°,AD=OB,∴△OCD是等边三角形,∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°,∴∠DAO=90°,在Rt△ADO中,∠DAO=90°,∴OA2+OB2=OD2,∴OA2+OB2=OC2;(2)①当α=β=120°时,OA+OB+OC有最小值.如图2,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′,∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°,∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OC O′是等边三角形,∴OC=O′C=OO′,∠COO′=∠CO′O=60°,∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°,∴∠BOO′=∠OO′A′=180°,∴四点B,O,O′,A′共线,∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;②∵∠AOB=∠BOC=120°,∴∠AOC=120°,∴O为△ABC的中心,∵四点B,O,O′,A′共线,∴BD⊥AC,∵将△AOC绕点C按顺时针方向旋转60°得△A′O′C,∴A′C=AC=BC,∴A′B=2BD,在Rt△BCD中,∴A′∴当等边△ABC的边长为1时,OA+OB+OC的最小值A′作业2 几何模型:条件:如图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连结A′B交l于点P,则P A+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC 上一动点.连结BD,由正方形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB+PE的最小值是____;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.【答案】(12)3)【解析】(1)由题意知:连接ED交AC于点P,现在PB+PE最小,最小值为ED,∵点E是AB的中点,∴AE=1,由勾股定理可知:ED2=AE2+AD2=5,∴∴PB+PE(2)延长AO交⊙O于点D,连接DC,AC,∴AD=4,∵∠AOC=60°,OA=OC,∴△AOC是等边三角形,∴AC=OA=2,∵AD是⊙O直径,∴∠ACD=90°,∴由勾股定理可求得:∴PA+PC的最小值为(3)作点C,使得点P与点C关于OB对称,作点D,使得点P与点D关于OA对称,连接OC、OD、CD,CD交OA、OB于点Q、R,现在PR+RQ+PQ最小,最小值为CD的长,∵点P与点C关于OB对称,∴∠BOP=∠COB,OP=OC=10,同理,∠DOA=∠POA,OP=OD=10,∵∠BOP+∠POA=45°,∴∠COD=2(∠BOP+∠POA)=90°,由勾股定理可知:∴△PQR周长的最小值为作业3 如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,作正方形MNPQ,使点A、C分别在MQ和MN上,连接AN、BQ.(1)直截了当写出线段AN和BQ的数量关系是______.(2)将正方形MNPQ绕点M逆时针方向旋转θ(0°<θ≤36 0°)①判定(1)的结论是否成立?请利用图2证明你的结论;②若BC=MN=6,当θ(0°<θ≤360°)为何值时,AN取得最大值,请画出现在的图形,并直截了当写出AQ的值.【答案】(1)BQ=AN(2)【解析】(1)BQ=AN.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,∴AM⊥BC,BM=AM,∴∠AMB=∠AMC=90°.∵四边形PQMN是正方形,∴QM=NM.在△QMB和△NMA中,∴△QMB≌△NMA(SAS),∴BQ=AN.故答案为:BQ=AN;(2)①BQ=AN成立.理由:如图2,连接AM,∵在Rt△BAC中,M为斜边BC中点,∴AM=BM,AM⊥BC,∴∠AMQ+∠QMB=90°.∵四边形PQMN为正方形,∴MQ=NM,且∠QMN=90°,∴∠AMQ+∠NMA=90°,∴∠BMQ=∠AMN.在△BMQ和△AMN中,∴△BMQ≌△AMN(SAS),∴BQ=AN;②由①得,BQ=AN,∴当BQ取得最大值时,AN取得最大值.如图3,当旋转角θ=270°时,BQ=AN(最大),现在∠AMQ=9 0°.∵BC=MN=6,BC的中点,∴MQ=6,,∴在Rt△AMQ作业4 (1)发觉:如图1,点A为线段BC外一动点,且BC=a,A B=b.填空:当点A位于_________时,线段AC的长取得最大值,且最大值为_________(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直截了当写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM= PB,∠BPM=90°,请直截了当写出线段AM长的最大值及现在点P的坐标.【答案】(1)CB的延长线上;a+b(2)见解析(3)见解析【解析】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N 在线段BA 的延长线时,线段BN 取得最大值, 最大值=AB+AN , ∵∴最大值为;如图2,过P 作PE ⊥x 轴于E , ∵△APN 是等腰直角三角形, ∴∴OE=BO3=2∴P (2作业5(1当写出你得到的结论.(21)中的结论是否仍旧成立?假如成立,请予以证明;假如不成立,请说明理由.若DEFG 绕点D【答案】 (1)垂直且相等(2【解析】 (1)如图(1∵△ABC D 是BC 的中点,∵在△BDG 和△ADE∴△BDG ≌△ADE (SAS 延长EA 到BG 于一点M∴线段BG 和AE 相等且垂直; (2)成立,如图(2),延长EA 分别交DG 、BG ∵△ABC D 是BC 的中点,∵在△BDG和△ADE∴△BDG≌△ADE(SASBG⊥AE(3)由(2)知,要使AE最大,只要将正方形绕点D逆时针旋旋转270°,即A,D,E在一条直线上时,AE最大;∵正方形DEFG在绕点D旋转的过程中,E点运动的图形是以点D为圆心,DE为半径的圆,∴当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG 绕点D为最大值时,1,已知B点坐标是(6),BA⊥x轴于A,BC⊥y轴于C,D在线段OA上,E在y轴的正半轴上,DE⊥BD,M是DE中点,且M在OB上.(1)点M的坐标是(____,____),DE=____;(2)小明在研究动点问题时发觉,假如有两点分别在两条互相垂直的直线上做匀速运动,连接这两点所得线段的中点将在同一条直线上运动,利用这一事实解答下列问题,如图2,假如一动点F从点B动身以每秒1个单位长度的速度向点A运动,同时有一点G从点D个单位长度的速度向点O运动,点H从点E开始沿y轴正方向自由滑动,并始终保持GH=DE,P为FG的中点,Q为GH的中点,F与G两个点分别运动到各自终点时停止运动,分别求出在运动过程中点P、Q运动的路线长.(3)连接PQ,求当运动多少秒时,【答案】(1)(2),8(23【解析】∵点B的坐标为(6∴tan∠∴∠BOA=30∵在M是ED的中点,∴∴∠°,∵BD⊥ED,∴∠EDB=90°.∴∠EDO+∠BDA=90°.∵∠BDA+∠DBA=90°,∴∠EDO=∠DBA=30°∴AD=AB•tan30°=6∴∴OE=ODtan30°.∵M是DE的中点,2).(2)依照题意画出点PD的运动时刻秒;点F运动的时刻=6÷1=6∵点P是BD∴点P P的坐标为(3),P1的坐标为(1)∴P;∵M EOD=90°∴∴点ME.∵∠BOA=30°,∴∠EOM=60°.∴点M运动的路线长∵GH=DE,∴点G(3P、Q分别为GH的中点,∴.∴当PQ最小,当FH⊥y轴时,FH最小值如图2,连接FH.设现在运动时刻为t秒,则AF=6﹣t,∴OG=(4﹣t在Rt△HOG中,由勾股定理得:OH2=GH2﹣OG2∴OH2=82﹣3(4﹣t)2.∵OH=AF,∴(6.PQ最小值作业AB= 8.问题摸索:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,要求出;若不是,要求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB 为边作正方形ABCD ,动点P 、Q 在正方形ABC D 的边上运动,且PQ=8.若点P 从点A 动身,沿A →B →C →D 的线路,向点D 运动,求点P 从A 到D 的运动过程中,PQ 的中点O 所通过的路径的长.(4)如图3,在“问题摸索”中,若点M 、N 是线段AB 上的两点,且AM=BN=1,点G 、H 分别是边CD 、EF 的中点,请直截了当写出点P 从M 到N 的运动过程中,GH 的中点O 所通过的路径的长及OM+OB 的最小值.【答案】 (1)不是,最小值为32(2)存在两个面积始终相等的三角形,它们是△APK 与△DFK (3)6π(4【解析】(1)当点P 运动时,这两个正方形的面积之和不是定值. 设AP=x ,则PB=8-x ,依照题意得这两个正方形面积之和=x2+(8-x )2 =2x2-16x+64 =2(x-4)2+32,因此当x=4时,这两个正方形面积之和有最小值,最小值为32. (2)存在两个面积始终相等的三角形,它们是△APK 与△DFK . 依题意画出图形,如答图2所示. 设AP=a ,则PB=BF=8-a .AB8(8)8a ,∴DK=PD-PK=a-APK=1PK 2S △ •EF,(3)当点P 从点A 动身,沿A →B →C →D 的线路,向点D 运动时,不妨设点Q 在DA 边上,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学重难点专题讲座 第八讲 动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。

整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。

而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。

但是这两种侧重也没有很严格的分野,很多题型都很类似。

所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。

其中通过图中已给几何图形构建函数是重点考察对象。

不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。

但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。

【例1】如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。

很多考生看到图二的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。

其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。

脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。

第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。

动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。

【解】(1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==,; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为:()()112441222AB OC OA +⋅=+⨯=..... (3分) (2)当24t <<时,阴影部分的面积=直角梯形OABC 的面积-ODE ∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) ∴1122S OD OE =-⋅∵142OD OD t OE ==-, ∴()24OE t =- .∴()()()21122441242S t t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。

所以直接设点即可轻松证出结果。

第二问有些同学可能依然纠结这个△EOF 的面积该怎么算,事实上从第一问的结果就可以发现这个矩形中的三个RT △面积都是异常好求的。

于是利用矩形面积减去三个小RT △面积即可,经过一系列化简即可求得表达式,利用对称轴求出最大值。

第三问的思路就是假设这个点存在,看看能不能证明出来。

因为是翻折问题,翻折之后大量相等的角和边,所以自然去利用三角形相似去求解,于是变成一道比较典型的几何题目,做垂线就OK. 【解析】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S , 由题意得11k y x =,22ky x =.1111122S x y k ∴==,2221122S x y k ==. 12S S ∴=,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, (想不到这样设点也可以直接用X 去代入,麻烦一点而已)1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值. (3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.(将已知和所求的量放在这一对有关联的三角形当中)EN EM MB MF ∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭, 94MB ∴=. 222MB BF MF +=,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.21432k BF ∴==. ∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.ABD P图1【例3】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。

动点P从点D 出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB 上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。

设运动的时间为t(秒)。

(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由。

【思路分析】本题是一道和一元二次方程结合较为紧密的代几综合题,大量时间都在计算上。

第三讲的时候我们已经探讨过解决动点问题的思路就是看运动过程中哪些量发生了变化,哪些量没有变化。

对于该题来说,当P,Q运动时,△BPQ的高的长度始终不变,即为CD长,所以只需关注变化的底边BQ即可,于是列出函数式。

第二问则要分类讨论,牢牢把握住高不变这个条件,通过勾股定理建立方程去求解。

第三问很多同学画出图形以后就不知如何下手,此时不要忘记这个题目中贯穿始终的不动量—高,过Q做出垂线以后就发现利用角度互余关系就可以证明△PEQ和△BCD是相似的,于是建立两个直角三角形直角边的比例关系,而这之中只有PE是未知的,于是得解。

这道题放在这里是想让各位体会一下那个不动量高的作用,每一小问都和它休戚相关,利用这个不变的高区建立函数,建立方程组乃至比例关系才能拿到全分。

【解析】解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形。

∴PM=DC=12∵QB=16-t,∴S=12×12×(16-t)=96-t(2)由图可知:CM=PD=2t,CQ=t。

热以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况。

①若PQ =BQ 。

在Rt △PMQ 中,22212PQ t =+,由PQ2=BQ2 得 22212(16)t t +=-,解得t =72; ②若BP =BQ 。

在Rt △PMB 中,222(162)12BP t =-+。

由BP2=BQ2 得:222(162)12(16)t t -+=- 即23321440t t -+=。

由于Δ=-704<0∴23321440t t -+=无解,∴PB ≠BQ …③若PB =PQ 。

由PB2=PQ2,得222212(162)12t t +=-+ 整理,得23642560t t -+=。

解得1216163t t ==,(舍)(想想看为什么要舍?函数自变量的取值范围是多少?)综合上面的讨论可知:当t =71623t =秒或秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形。

(3)设存在时刻t ,使得PQ ⊥BD 。

如图2,过点Q 作QE ⊥ADS ,垂足为E 。

由Rt △BDC ∽Rt △QPE ,得DC PE BC EQ =,即121612t =。

解得t =9 所以,当t =9秒时,PQ ⊥BD 。

【例4】在Rt△ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成图2为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【思路分析】依然是一道放在几何图形当中的函数题。

但是本题略有不同的是动点有一个折返的动作,所以加大了思考的难度,但是这个条件基本不影响做题,不需要太专注于其上。

相关文档
最新文档