第八讲动态几何与函数问题(含答案)
中考数学专题8_动态几何和函数问题(附含答案解析)

中考数学专题8 动态几何与函数问题【例1】如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【解】(1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==,; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线,∴4CO = ∴直角梯形OABC 的面积为:()()112441222AB OC OA +⋅=+⨯=..... (3分) (2)当24t <<时,阴影部分的面积=直角梯形OABC 的面积-ODE ∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S OD OE =-⋅∵142OD OD t OE ==-, ∴()24OE t =- .∴()()()21122441242S t t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记O E F E C F S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【解析】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22k y x =.1111122S x y k ∴==,2221122S x y k ==.12S S ∴=,即AOE △与FOB △的面积相等. (2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, 1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值. (3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,90EMN FMB FMB MFB ∠+∠=∠+∠=,EMN MFB ∴∠=∠. 又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.EN EM MB MF ∴=,11414312311331412k k MB k k⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭, 94MB ∴=.D图1222MB BF MF +=,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =. 21432k BF ∴==. ∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.【例3】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
中考数学专题8-动态几何和函数问题

中考数学专题8 动态几何与函数问题1 、如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E . (1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.2、已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.3、如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?(3)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由。
2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题1.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=(x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.2.如图,在平面直角坐标系中,一次函数 与反比例函数 相交于点 ,与 轴相交于点 ,点 的横坐标为-2.(1)求 的值;(2)直接写出当 且 时, 的取值范围;(3)设点 是直线AB 上的一点,过点 作 轴,交反比例函数 的图象于点 .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 的坐标.k x12y x =-+2(0)k y x x=<B x A B k 0x <12y y <x M M //MN x 2(0)k y x x=<N M3.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (,1)在反比例函数y = 的图象上.(1)求反比例函数y = 的表达式; (2)在x 轴上是否存在一点P ,使得S △AOP =S △AOB ,若存在,求所有符合条件点P 的坐标;若不存在,简述你的理由.4.如图,点 , 在 轴上,以 为边的正方形 在 轴上方,点 的坐标为 ,反比例函数 的图象经过 的中点 , 是 上的一个动点,将 沿 所在直线折叠得到 .(1)求反比例函数 的表达式; (2)若点 落在 轴上,求线段 的长及点 的坐标.k x k x12A B x AB ABCD x C (14),(0)k y k x=≠CD E F AD DEF EF GEF (0)k y k x=≠G y OG F5.如图,已知反比例函数y=(x >0)的图象经过点A (4,2),过A 作AC ⊥y 轴于点C .点B 为反比例函数图象上的一动点,过点B 作BD ⊥x 轴于点D ,连接AD .直线BC 与x 轴的负半轴交于点E .(1)求k 的值;(2)连接CD ,求△ACD 的面积;(3)若BD =3OC ,求四边形ACED 的面积.6.已知:如图1,点是反比例函数图象上的一点.(1)求的值和直线的解析式;(2)如图2,将反比例函数的图象绕原点逆时针旋转后,与轴交于点,求线段的长度;(3)如图3,将直线绕原点逆时针旋转,与反比例函数的图象交于点,求点的坐标.k x(4)A n ,8(0)y x x=>n OA 8(0)y x x =>O 45︒y M OM OA O 45︒8(0)y x x=>B B7.已知:反比例函数的图像过点A ( , ),B ( , )且 (1)求m 的值;(2)点C 在x 轴上,且 ,求C 点的坐标;(3)点Q 是第一象限内反比例函数图象上的动点,且在直线AB 的右侧,设直线QA ,QB 与y 轴分别交于点E 、D ,试判断DE 的长度是否变化,若变化请说明理由,若不变,请求出长度.8.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点,叫做整点,点,在反比例函数的图象上;(1)m= ;(2)已知,过点、D 点作直线交双曲线于E 点,连接OB ,若阴影区域(不包括边界)内有4个整点,求b 的取值范围.m y x =1x 121m --2x 45m-120x x +=16ABC s ∆=()22A ,()1B m ,()0k y x x=>0b >()40C b -,()0b ,()0k y x x=>9.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 坐标为(3,6),反比例函数的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求m 的值及点E 的坐标;(2)点M 为y 轴正半轴上一点,若△MBO 的面积等于△ODE 的面积,求点M 的坐标;(3)平面直角坐标系中是否存在一点N ,使得O ,D ,E ,N 四点顺次连接构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.10.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M的坐标.m y x=1y x =+()0m y x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=11.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,与双曲线交于点,直线分别与直线和双曲线交于点、.(1)求和的值;(2)当点在线段上时,如果,求的值;(3)点是轴上一点,如果四边形是菱形,求点的坐标.12.如图,等边和等边的一边都在x 轴上,双曲线经过的中点C 和的中点D .已知等边的边长为4.(1)求k 的值;(2)求等边的边长;(3)将等边绕点A 任意旋转,得到等边,P 是的中点(如图2所示),连结,直接写出的最大值.xOy 34l y x b =+:x y A B x k H y =:922P ⎛⎫ ⎪⎝⎭,x m =H E D k b E AB ED BO =m C y BCDE C OAB AEF ()0k y k x=>OB AE OAB AEF AEF AE F '' E F ''BP BP13.如图,点A 、B 是反比例函数y = 的图象上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =- 的图象于点C 、D ,四边形ACBD 是平行四边形. (1)若点A 的横坐标为-4.①直接写出线段AC 的长度;②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD 可能是矩形;②□ACBD 可能是菱形;③□ACBD 可能是正方形;④□ACBD 的周长始终不变;⑤□ACBD 的面积始终不变.其中所有正确结论的序号是 .8x2x14.在平面直角坐标系 中,正比例函数 与反比例函数 的图象相交于点 与点Q . (1)求点Q 的坐标;(2)若存在点 ,使得 ,求c 的值; (3)过点 平行于x 轴的直线,分别与第一象限内的正比例函数 、反比例函数数 的图象相交于点 、点 ,当 时,请直接写出a 的取值范围.15.在平面直角坐标系中,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,并与反比例函数y=(k≠0)的图象在第一象限相交于点C ,且点B 是AC 的中点xOy ()1110y k x k =≠()2220k y k x=≠(11)P ,(0)C c ,2PQC S = (0)M a ,()1110y k x k =≠()2220k y k x =≠()11A x y ,()22B x y ,1252x x +≤kx(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG 的顶点E 在直线AB 上,顶点F 在点C 右侧的反比例函数y=(k≠0)图象上,顶点H ,G 在x 轴上,且EF=4.①求点F 的坐标;②若点M 是反比例函数的图象第一象限上的动点,且在点F 的左侧,连结MG ,并在MG 左侧作正方形GMNP .当顶点N 或顶点P 恰好落在直线AB 上,直接写出对应的点M 的横坐标.16.如图,动点P 在函数y (x >0)的图象上,过点P 分别作x 轴和y 轴的平行线,交函数y 的图象于点A 、B ,连接AB 、OA 、OB .设点P 横坐标为a .(1)直接写出点P 、A 、B 的坐标(用a 的代数式表示);(2)点P 在运动的过程中,△AOB 的面积是否为定值?若是,求出此定值;若不是,请说明理由;(3)在平面内有一点Q (,1),且点Q 始终在△PAB 的内部(不包含边),求a 的取值范围.k xk x 3x =1x =-1317.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y=(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.18.如图1所示,已知 图象上一点 轴于点 ,点 ,动点 是 轴正半轴点 上方的点,动点 在射线AP 上,过点 作AB 的垂线,交射线AP 于点 ,交直线MN 于点 ,连结AQ ,取AQ 的中点 . m x6(0)y x x=>P PA x ⊥,(0)A a ,(0)(0)B b b >,M y B N B D Q C(1)如图2,连结BP ,求 的面积;(2)当点 在线段BD 上时,若四边形BQNC 是菱形,面积为 .①求此时点Q ,P 的坐标;②此时在y 轴上找到一点E ,求使|EQ-EP|最大时的点E 的坐标.19.已知反比例函数y=的图象经过点A (6,1).(1)求该反比例函数的表达式;(2)如图,在反比例函数y=在第一象限的图象上点A 的左侧取点C ,过点A 作x 轴的垂线交x 轴于点H ,过点C 作y 轴的垂线CE ,垂足为点E ,交直线AH 于点D .①过点A 、点C 分别作y 轴、x 轴的垂线,两条垂线相交于点B ,求证:O 、B 、D 三点共线;②若AC=2CO ,求证:∠OCE=3∠CDO .PAB Q k xk x20.如图,一次函数与反比例函数的图象交于点和,与y 轴交于点C .(1) , ;(2)过点A 作轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线与线段交于点E ,当时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形是矩形时,求出点M 的坐标.21.如图1,将函数的图象T 1向左平移4个单位得到函数的图象T 2,T 2与y 轴交于点.(1)若,求k 的值(2)如图2,B 为x 轴正半轴上一点,以AB 为边,向上作正方形ABCD ,若D 、C 恰好落在T 1上,线段BC 与T 2相交于点E①求正方形ABCD 的面积;②直接写出点E 的坐标.114y k x =+22k y x=()2A m ,()62B --,1k =2k =AD x ⊥OP AD Δ41ODE ODAC S S =四边形::ABMN ()0k y x x =>()44k y x x =>-+()0A a ,3a =22.如图1,直线的图像与x 轴、y 轴分别交于A 、B 两点,点D 是线段AB 上一点,过D 点分别作OA 、OB 的垂线,垂足分别是C 、E ,矩形OCDE 的面积为4,且.(1)求D 点坐标;(2)将矩形OCDE 以1个单位/秒的速度向右平移,平移后记为矩形MNPQ ,记平移时间为t 秒.①如图2,当矩形MNPQ 的面积被直线AB 平分时,求t 的值;②如图3,当矩形MNPQ 的边与反比例函数的图像有两个交点,记为T 、K ,若直线TK 把矩形面积分成1:7两部分,请直接写出t 的值.23.如图1,在平面直角坐标系中,点,点,直线与反比例函数的图象在第一象限相交于点,26y x =-+CD DE >12y x=()40A -,()04B ,AB ()0k y k x=≠()6C a ,(1)求反比例函数的解析式;(2)如图2,点是反比例函数图象上一点,连接,试问在x 轴上是否存在一点D ,使的面积与的面积相等,若存在,请求点D 的坐标;若不存在,请说明理由;(3)新定义:如图3,在平面内,如果三角形的一边等于另一边的3倍,这两条边中较长的边称为“麒麟边”,两条边所夹的角称为“麒麟角”,则称该三角形为“麒麟三角形”,如图所示,在平面直角坐标系中,为“麒麟三角形”, 为“麒麟边”, 为“麒麟角”,其中A ,B 两点在反比例函数 图象上,且A 点横坐标为,点C 坐标为,当为直角三角形时,求n 的值.24.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足 +(a +b +3)2=0,平等四边形ABCD的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线y =经过C 、D 两点. (1)a = ,b = ;(2)求D 点的坐标;(3)点P 在双曲线y = 上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;(4)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时, 的值是否发生改变?若改变,求出其变化范围;若()6E m ,()0k y k x=≠CE AE ,ACD ACE ABC AB BAC ∠n y x=1-()02,ABC k x k xMN HT不改变,请求出其值,并给出你的证明.25.在平面直角坐标系中,已知点,点.(1)若将沿轴向右平移个单位,此时点恰好落在反比例函数的图象上,求的值;(2)若绕点按逆时针方向旋转度.①当时,点恰好落在反比例函数图象上,求的值;②问点能否同时落在(1)中的反比例函数的图象上?若能,直接写出的值;若不能,请说明理由.26.如图,已知直线与双曲线交第一象限于点.(1)求点的坐标和反比例函数的解析式;(2)将点绕点逆时针旋转至点,求直线的函数解析式;(3)在(2)的条件下,若点C 是射线上的一个动点,过点作轴的平行线,交双曲线xOy ()A -()60B -,OAB x m A y =m OAB O α()0α180<<α30= B k y x=k A B ,α2y x =(0)k y k x=≠(4)A m ,A O A 90︒B OB OB C y的图像于点,交轴于点,且,求点的坐标.27.如图,一次函数的图象与反比例函数的图象交于点,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.28.如图1,反比例函数与一次函数的图象交于两点,已知.(1)求反比例函数和一次函数的表达式;(2)一次函数的图象与轴交于点,点(未在图中画出)是反比例函数图象上的一个动点,若,求点的坐标:(0)k y k x=≠D x E 23DCO DEO S S = ::C 112y x =+()0k y x x =>()3A a ,k y x=y x b =+A B ,()23B ,y x b =+x C D 3OCD S = D(3)若点是坐标轴上一点,点是平面内一点,是否存在点,使得四边形是矩形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.29.如图,已知直线y=-2x 与双曲线y=(k<0)上交于A 、B 两点,且点A 的纵坐标为-2 (1)求k 的值;(2)若双曲线y= (k<0)上一点C 的纵坐标为 ,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。
中考数学专题-----动态几何与函数问题共23页文档

55、 为 中 华 之 崛起而 读书。 ——周 恩来
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
题
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
中考数学专题-----动态几何与函数问
•
ቤተ መጻሕፍቲ ባይዱ
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
中考数学专题 动态几何与函数10题-含答案

动态几何与函数10题(1)请直接写出1y ,2y 与t 之间的函数关系式以及对应的t 的取值范围;
(2)请在平面直角坐标系中画出1y ,2y 的图象,并写出1y 的一条性质;
(3)求当12y y >时,t 的取值范围.
(1)求出12,y y与x的函数关系式,并注明
(2)先补全表格中1y的值,再画出
x123456
y12632
1
(3)在直角坐标系内直接画出2y的函数图像,结合1y和2y的函数图像,x的取值范围.(结果取精确值)
(1)请求出1y 和2y 关于x 的函数解析式,并说明x 的取值范围;
(2)在图2中画出1y 关于x 的函数图象,并写出一条这一函数的性质:(3)若12103
y y -≥,请结合函数图像直接写出x 的取值范围(近似值保留一位小数,误差不超过0.2)
4.
(2023春·重庆江津·九年级校联考期中)如图,在矩形ABCD 中,3AB =,4BC =,点P 从点A 出发,以每秒2个单位的速度沿折线A B C D →→→运动,当它到达D 点时停止运动;同时,点Q 从点A 出发,以每秒1个单位的速度沿射线AD 运动,过Q 点做直线l 平行于AB ,点M 为直线l 上的一点,满足AMQ △的面积为2,设点P 点Q 的运动时间为t (0t >),ADP △的面积为1y ,QM 的长度为2y .
(1)分别求出1y ,2y 与t 的函数关系,并注明t 的取值范围;
(2)在坐标系中画出1y ,2y 的函数图象;
(3)结合函数图象,请直接写出当12y y <时t 的取值范围.。
初中数学动态几何定值问题(word版+详解答案)

动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。
在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F . ①写出旋转角α的度数; ②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB=2,求线段PA +PF 的最小值.(结果保留根号) 【举一反三】如图(1),已知∠=90MON ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PAC ABOPS S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,ABy BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。
初中数学二次函数的应用题型分类——动态几何图形问题8( 附答案)

高,正方形 DEFG 的边 DE 在高 CH 上,F ,G 两点分别在 AC , AH 上.将正方形
DEFG 以每秒1cm 的速度沿射线 DB 方向匀速运动,当点 G 与点 B 重合时停止运
动.设运动时间为 ts ,正方形 DEFG 与 BHC 重叠部分的面积为 Scm2 ,则能反映 S 与
t 的函数关系的图象( )
2.二次函数 y= 2 3x2 的图象如图所示,点 O 为坐标原点,点 A 在 y 轴的正半轴上,
点 B. C 在函数图象上,四边形 OBAC 为菱形,且∠AOB=30 0 ,则点 C 的坐标为( )
A.
1 2
,
3
B.
1 2
,
3 2
C.
1,
3 2
D. 1, 3
3.如图,在等腰直角三角形 ABC 中,ACB 90 , AB 8cm ,CH 是 AB 边上的
初中数学二次函数的应用题型分类——动态几何图形问题 8(附答案)
1.汽车刹车后行驶的距离 s(单位:米)关于行驶的时间 t(单位:秒)的函数解析式
为 s=-6t2+bt(b 为常数).已知 t= 1 时,s=6,则汽车刹车后行驶的最大距离为( ) 2
A. 15 米 2
B.8 米
C. 75 米 8
D.10 米
的大小变化情况是( ).
A.一直减小
B.一直不变
C.先减小后增大
D.先增大后减小
9.在▭ABCD 中,对角线 AC=4,BD=6,P 是线段 BD 上一动点,过 P 作 EF∥AC,与
▱ ABCD 的两边分别交于 E、F.设 BP=x,EF=y,则反映 y 与 x 之间关系的图象是( )
A.
B.
2020年中考数学热点冲刺8 动态几何问题(含解析)

热点专题8动点几何问题考向1图形的运动与最值1. (2019 江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P是⊙C上一个动点,连接AP交BD于点T,则的最大值是.【解析】如图,过点P作PE⊙BD交AB的延长线于E,⊙⊙AEP=⊙ABD,⊙APE⊙⊙ATB,⊙,⊙AB=4,⊙AE=AB+BE=4+BE,⊙,⊙BE最大时,最大,⊙四边形ABCD是矩形,⊙BC=AD=3,CD=AB=4,过点C作CH⊙BD于H,交PE于M,并延长交AB于G,⊙BD是⊙C的切线,⊙⊙GME=90°,在Rt⊙BCD中,BD==5,⊙⊙BHC=⊙BCD=90°,⊙CBH=⊙DBC,⊙⊙BHC⊙⊙BCD,⊙,⊙,⊙BH=,CH=,⊙⊙BHG=⊙BAD=90°,⊙GBH=⊙DBA,⊙⊙BHG⊙⊙BAD,⊙=,⊙,⊙HG=,BG=,在Rt⊙GME中,GM=EG•sin⊙AEP=EG×=EG,而BE=GE﹣BG=GE﹣,⊙GE最大时,BE最大,⊙GM最大时,BE最大,⊙GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,⊙GP'=HP'+HG=,过点P'作P'F⊙BD交AB的延长线于F,⊙BE最大时,点E落在点F处,即:BE 最大=BF ,在Rt⊙GP 'F 中,FG ====,⊙BF =FG ﹣BG =8, ⊙最大值为1+=3,故答案为:3.2. (2019 江苏省无锡市)如图,在ABC ∆中,5AB AC ==,BC =D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ∆面积的最大值为 .【解析】过D 作DG ⊙BC 于G ,过A 作AN ⊙BC 于N ,过E 作EH ⊙HG 于H ,延长ED 交BC 于M .易证⊙EHD ⊙⊙DGC ,可设DG =HE =x ,⊙AB =AC =5,BC =AN ⊙BC ,⊙BN =12BC =,AN ⊙G ⊙BC ,AN ⊙BC , ⊙DG ⊙AN , ⊙2BG BNDG AN==,⊙BG =2x ,CG =HD =- 2x ;易证⊙HED ⊙⊙GMD ,于是HE HDGM GD =,x GM =MG 2= ,所以S ⊙BDE= 12BM ×HD =12×(2x 2)×(4- 2x )=252x -+=2582x ⎛-+ ⎝⎭,当x 时,S ⊙BDE 的最大值为8. 因此本题答案为8. 3. (2019 江苏省宿迁市)如图,⊙MAN =60°,若⊙ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当⊙ABC 是锐角三角形时,BC 的取值范围是 .【解析】如图,过点B作BC1⊙AN,垂足为C1,BC2⊙AM,交AN于点C2在Rt⊙ABC1中,AB=2,⊙A=60°⊙⊙ABC1=30°⊙AC1=AB=1,由勾股定理得:BC1=,在Rt⊙ABC2中,AB=2,⊙A=60°⊙⊙AC2B=30°⊙AC2=4,由勾股定理得:BC2=2,当⊙ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.4. (2019 江苏省宿迁市)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边⊙EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将⊙EFB绕点E旋转60°,使EF与EG重合,得到⊙EFB⊙⊙EHG从而可知⊙EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊙HN,则CM即为CG的最小值作EP⊙CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.5.(2019 江苏省扬州市)如图,已知等边⊙ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把⊙ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1⊙AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,⊙ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求⊙ACB′面积的最大值.【解析】(1)如图1中,⊙⊙ABC是等边三角形,⊙⊙A=60°,AB=BC=AC=8,⊙PB=4,⊙PB′=PB=P A=4,⊙⊙A=60°,⊙⊙APB′是等边三角形,⊙AB′=AP=4.故答案为4.(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.⊙PE⊙AC,⊙⊙BPE=⊙A=60°,⊙BEP=⊙C=60°,⊙⊙PEB是等边三角形,⊙PB=5,⊙⊙B,B′关于PE对称,⊙BB′⊙PE,BB′=2OB⊙OB=PB•sin60°=,⊙BB′=5.故答案为5.(3)如图3中,结论:面积不变.⊙B,B′关于直线l对称,⊙BB′⊙直线l,⊙直线l ⊙AC , ⊙AC ⊙BB ′, ⊙S ⊙ACB ′=S ⊙ACB =•82=16.(4)如图4中,当B ′P ⊙AC 时,⊙ACB ′的面积最大,设直线PB ′交AC 于E ,在Rt⊙APE 中,⊙P A =2,⊙P AE =60°, ⊙PE =P A •sin60°=,⊙B ′E =6+,⊙S ⊙ACB ′的最大值=×8×(6+)=4+24.6. (2019 江苏省苏州市) 已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP=.如图⊙,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm²),S 与t 的函数关系如图⊙所示:(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图⊙,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ⊙求动点N 运动速度()/v cm s 的取值范围;⊙试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【解析】(1)2/cm s ;10cm(2)⊙解:⊙在边BC 上相遇,且不包含C 点 ⊙57.515 2.5C vB v⎧⎪⎪⎨⎪≥⎪⎩<在点在点⊙2/6/3cm s v cm s ≤<⊙如右图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊙AC,则12MH CM ==①(图)PBCDAS (cm²)t (s )②图O2.57.515-2x2x-5(N )⊙ ⊙22S x =()122152S S x x ⋅=-+⋅ =2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.7. (2019 江苏省扬州市)如图,四边形ABCD 是矩形,AB =20,BC =10,以CD 为一边向矩形外部作等腰直角⊙GDC ,⊙G =90°.点M 在线段AB 上,且AM =a ,点P 沿折线AD ﹣DG 运动,点Q 沿折线BC ﹣CG 运动(与点G 不重合),在运动过程中始终保持线段PQ ⊙A B .设PQ 与AB 之间的距离为x . (1)若a =12.⊙如图1,当点P 在线段AD 上时,若四边形AMQP 的面积为48,则x 的值为 ; ⊙在运动过程中,求四边形AMQP 的最大面积;(2)如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取值范围.【解析】 ⊙P 在线段AD 上,PQ =AB =20,AP =x ,AM =12,112152S MH AP x =⋅=-+四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;⊙当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,⊙0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH⊙AB于M,交CD于N,作GE⊙CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,⊙⊙GDC是等腰直角三角形,⊙DE=CE,GE=CD=10,⊙GF=GE+EF=20,⊙GH=20﹣x,由题意得:PQ⊙CD,⊙⊙GPQ⊙⊙GDC,⊙=,即=,解得:PQ=40﹣2x,⊙梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,⊙当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,⊙0≤x≤20,⊙10≤10+≤15,对称轴在10和15之间,⊙10≤x≤20,二次函数图象开口向下,⊙当x=20时,S最小,⊙﹣202+×20≥50,⊙a≥5;综上所述,a的取值范围为5≤a≤20.考向2动点与函数的结合问题1.(2019 江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分⊙PCR.若OQ⊙PR,求出点Q的坐标.【解析】(1)将x=2代入y=﹣x2﹣x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣1),C(0,﹣3)代入y=x2+bx+c,得,解得,⊙抛物线L1:y=x2﹣2x﹣3;(2)设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,⊙当点Q在点P右侧时,则点Q的坐标为(x+2,﹣2x﹣3),将Q(x+2,﹣2x﹣3)代入y=﹣x2﹣x+2,得﹣2x﹣3=﹣(x+2)2﹣(x+2)+2,解得,x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);⊙当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y=﹣x2﹣x+2,得y=﹣x2﹣x+2,得x2﹣2x﹣3=﹣(x﹣2)2﹣(x﹣2)+2,解得,x=3,或x=﹣,此时点P的坐标为(3,0)或(﹣,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y=﹣x2﹣x+2,得﹣x2+2x﹣3═﹣(2﹣x)2﹣(2﹣x)+2,解得,x=0或x=﹣3,因为x=0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(﹣3,12),综上所述,点P的坐标为(﹣1,0)或(3,0)或(﹣,)或(﹣3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分⊙PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊙TR于点H,则有⊙PSC=⊙RTC=90°,由CA平分⊙PCR,得⊙PCA=⊙RCA,则⊙PCS=⊙RCT,⊙⊙PSC⊙⊙RTC,⊙,设点P坐标为(x1,),点R坐标为(x2,),所以有,整理得,x1+x2=4,在Rt⊙PRH中,tan⊙PRH==过点Q作QK⊙x轴于点K,设点Q坐标为(m,),若OQ⊙PR,则需⊙QOK=⊙PRH,所以tan⊙QOK=tan⊙PRH=2,所以2m=,解得,m=,所以点Q坐标为(,﹣7+)或(,﹣7﹣).2.(2019 江苏省常州市)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:⊙半径为1的圆:;⊙如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.⊙若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);⊙若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【解析】(1)⊙半径为1的圆的宽距离为1,故答案为1.⊙如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt⊙ODC中,OC===⊙OP+OC≥PC,⊙PC≤1+,⊙这个“窗户形“的宽距为1+.故答案为1+.(2)⊙如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.⊙如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊙x轴于T.⊙AC≤AM+CM,又⊙5≤d≤8,⊙当d=5时.AM=4,⊙AT==2,此时M(2﹣1,2),当d=8时.AM=7,⊙AT==2,此时M(2﹣1,2),⊙满足条件的点M的横坐标的范围为2﹣1≤x≤2﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣2+1≤x﹣2+1.考向3运动过程中的定值问题1.(2019 江苏省宿迁市)如图⊙,在钝角⊙ABC中,⊙ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将⊙BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图⊙,当0<α<180时,连接AD、CE.求证:⊙BDA⊙⊙BEC;(2)如图⊙,直线CE、AD交于点G.在旋转过程中,⊙AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将⊙BDE从图⊙位置绕点B逆时针方向旋转180°,求点G的运动路程.【解析】(1)如图⊙中,由图⊙,⊙点D为边AB中点,点E为边BC中点,⊙DE⊙AC,⊙=,⊙=,⊙⊙DBE=⊙ABC,⊙⊙DBA=⊙EBC,⊙⊙DBA⊙⊙EBC.(2)⊙AGC的大小不发生变化,⊙AGC=30°.理由:如图⊙中,设AB交CG于点O.⊙⊙DBA⊙⊙EBC,⊙⊙DAB=⊙ECB,⊙⊙DAB+⊙AOG+⊙G=180°,⊙ECB+⊙COB+⊙ABC=180°,⊙AOG=⊙COB,⊙⊙G=⊙ABC=30°.(3)如图⊙﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边⊙ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,⊙⊙AGC=30°,⊙AOC=60°,⊙⊙AGC=⊙AOC,⊙点G在⊙O上运动,以B 为圆心,BD 为半径作⊙B ,当直线与⊙B 相切时,BD ⊙AD , ⊙⊙ADB =90°, ⊙BK =AK , ⊙DK =BK =AK , ⊙BD =BK , ⊙BD =DK =BK , ⊙⊙BDK 是等边三角形, ⊙⊙DBK =60°, ⊙⊙DAB =30°,⊙⊙DOG =2⊙DAB =60°, ⊙的长==,观察图象可知,点G 的运动路程是的长的两倍=.2.(2019 江苏省无锡市)如图1,在矩形ABCD 中,3BC =,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称PAB ∆',设点P 的运动时间为()t s .(1)若AB =⊙如图2,当点B '落在AC 上时,显然PAB ∆'是直角三角形,求此时t 的值;⊙是否存在异于图2的时刻,使得PCB ∆'是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB '与直线CD 相交于点M ,且当3t <时存在某一时刻有结论45PAM ∠=︒成立,试探究:对于3t >的任意时刻,结论“45PAM ∠=︒”是否总是成立?请说明理由.【解析】(1)⊙勾股求的易证CB P CBA'V:V,故''43B P=解得⊙1°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=22°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=6B'CB'CBA A BDPD33°当⊙CPB’=90 °时,易证四边形ABP’为正方形,解得(2)如图,⊙⊙PAM=45°⊙⊙2+⊙3=45°,⊙1+⊙4=45°又⊙翻折⊙⊙1=⊙2,⊙3=⊙4又⊙⊙ADM=⊙AB’M(AAS)⊙AD=AB’=AB即四边形ABCD是正方形如图,设⊙APB=xB'CA BDA⊙⊙PAB=90°-x ⊙⊙DAP=x易证⊙MDA⊙⊙B’AM (HL ) ⊙⊙BAM=⊙DAM ⊙翻折⊙⊙PAB=⊙PAB’=90°-x⊙⊙DAB’=⊙PAB’-⊙DAP=90°-2x ⊙⊙DAM=21⊙DAB’=45°-x ⊙⊙MAP=⊙DAM+⊙PAD=45°4321MB'BCB'A D PP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学重难点专题讲座第八讲 动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
【例1】如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。
很多考生看到图二的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。
其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。
脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。
第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。
动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。
【解】(1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==,; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为:()()112441222AB OC OA +⋅=+⨯=..... (3分) (2)当24t <<时,阴影部分的面积=直角梯形OABC 的面积-ODE ∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S OD OE =-⋅∵142OD OD t OE ==-, ∴()24OE t =- .∴()()()21122441242S t t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少? (3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。
所以直接设点即可轻松证出结果。
第二问有些同学可能依然纠结这个△EOF 的面积该怎么算,事实上从第一问的结果就可以发现这个矩形中的三个RT △面积都是异常好求的。
于是利用矩形面积减去三个小RT △面积即可,经过一系列化简即可求得表达式,利用对称轴求出最大值。
第三问的思路就是假设这个点存在,看看能不能证明出来。
因为是翻折问题,翻折之后大量相等的角和边,所以自然去利用三角形相似去求解,于是变成一道比较典型的几何题目,做垂线就OK.【解析】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S , 由题意得11k y x =,22ky x =.1111122S x y k ∴==,2221122S x y k ==. 12S S ∴=,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, (想不到这样设点也可以直接用X 去代入,麻烦一点而已)1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值. (3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.(将已知和所求的量放在这一对有关联的三角形当中)EN EM MB MF ∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭,94MB ∴=. 222MB BF MF +=,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =. 21432k BF ∴==. ∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.【例3】ABDP图1如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?(3)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由。
【思路分析】 本题是一道和一元二次方程结合较为紧密的代几综合题,大量时间都在计算上。
第三讲的时候我们已经探讨过解决动点问题的思路就是看运动过程中哪些量发生了变化,哪些量没有变化。
对于该题来说,当P,Q 运动时,△BPQ 的高的长度始终不变,即为CD 长,所以只需关注变化的底边BQ 即可,于是列出函数式。
第二问则要分类讨论,牢牢把握住高不变这个条件,通过勾股定理建立方程去求解。
第三问很多同学画出图形以后就不知如何下手,此时不要忘记这个题目中贯穿始终的不动量—高,过Q 做出垂线以后就发现利用角度互余关系就可以证明△PEQ 和△BCD 是相似的,于是建立两个直角三角形直角边的比例关系,而这之中只有PE 是未知的,于是得解。
这道题放在这里是想让各位体会一下那个不动量高的作用,每一小问都和它休戚相关,利用这个不变的高区建立函数,建立方程组乃至比例关系才能拿到全分。
【解析】解: (1)如图1,过点P 作PM ⊥BC ,垂足为M ,则四边形PDCM 为矩形。
∴PM =DC =12∵QB =16-t ,∴S =12×12×(16-t)=96-t(2)由图可知:CM =PD =2t ,CQ =t 。
热以B 、P 、Q 三点 为顶点的三角形是等腰三角形,可以分三种情况。
①若PQ =BQ 。
在Rt △PMQ 中,22212PQ t =+,由PQ2=BQ2得 22212(16)t t +=-,解得t =72; ②若BP =BQ 。
在Rt △PMB 中,222(162)12BP t =-+。
由BP2=BQ2 得:222(162)12(16)t t -+=- 即23321440t t -+=。
由于Δ=-704<0∴23321440t t -+=无解,∴PB ≠BQ …③若PB =PQ 。
由PB2=PQ2,得222212(162)12t t +=-+整理,得23642560t t -+=。
解得1216163t t ==,(舍)(想想看为什么要舍?函数自变量的取值范围是多少?)综合上面的讨论可知:当t =71623t =秒或秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形。
(3)设存在时刻t ,使得PQ ⊥BD 。
如图2,过点Q 作QE ⊥ADS ,垂足为E 。
由Rt △BDC ∽Rt △QPE ,得DC PE BC EQ =,即121612t =。
解得t =9 所以,当t =9秒时,PQ ⊥BD 。
【例4】在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.图2AP【思路分析】依然是一道放在几何图形当中的函数题。