福建省厦门双十中学2014届高三热身考数学(理)试卷(含答案)
2014年福建省厦门市高考一模数学试卷(理科)【解析版】

2014年福建省厦门市高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分共50分1.(5分)执行如图的程序框图,如果输人的x为3,那么输出的结果是()A.8B.6C.1D.﹣12.(5分)已知集合A={x|x2﹣x<0},集合B={x|2x<4},则“x∈A”是“x∈B”的()A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件3.(5分)函数y=1﹣2sin2x是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数4.(5分)学校为了了解学生每天课外阅读的时问(单位:分钟),抽取了n个学生进行调查,结果显示这些学生的课外阅读时间都在[10,50),其频率分布直方图如图所示,其中时间在[30,50)的学生有67人,则n的值是()A.100B.120C.130D.3905.(5分)已知点P在抛物线y2=4x上,且P到y轴的距离与到焦点的距离之比为,则点P到x轴的距离是()A.B.C.1D.26.(5分)已知α,β是两个不同的平面,m,n是两条不同的直线,则下列命题正确的是()A.α⊥β,m⊂α,则m⊥βB.m∥n,n⊂α,则m∥αC.m⊥α,m⊂β,则α⊥βD.m∥α,n⊂a,则m∥n7.(5分)设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.88.(5分)已知x,y满足,且x2+y2的最小值为8,则正实数a的取值范围是()A.(0,2]B.[2,5]C.[3,+∞)D.(0,5]9.(5分)已知a是非负实数,则函数f(x)=﹣2的图象不可能是()A.B.C.D.10.(5分)如图,在平面直角坐标系xoy中,圆A:(x+2)2+y2=36,点B(2,0),点D是圆A上的动点,线段BD的垂直平分线交线段AD于点F,设m,n分别为点F,D的横坐标,定义函数m=f(n),给出下列结论:①f(﹣2)=﹣2;②f(n)是偶函数;③f(n)在定义域上是增函数;④f(n)图象的两个端点关于圆心A对称.其中正确的个数是()A.1B.2C.3D.4二、填空题:本大题共5小题,每小题4分.共20分.11.(4分)若复数z满足(l+2i)z=|3+4i|(i为虚数单位),则复数z等于.12.(4分)()6的展开式中,常数项为.(用数字作答)13.(4分)已知数列{a n}中,a n+1=2a n,a3=8,则数列{log2a n}的前n项和等于.14.(4分)记曲线y=x2与y=围成的区域为D,若利用计算机产生(0,1)内的两个均匀随机数x,y,则点(x,y)恰好落在区域D内的概率等于.15.(4分)已知函数f(x)=x2(e x+e﹣x)﹣(2x+1)2(e2x+1+e﹣2x﹣1),则满足f (x)>0的实数x的取值范围为.三、解答题:本大助共5小题.共80分..16.(13分)如图,四边形ABCD和ABEF都是直角梯形,AD∥BC,AF∥BE,∠DAB=∠F AB=90°,且平面ABCD⊥平面ABEF,DA=AB=BE=2,BC =1.(Ⅰ)证明DA⊥EF;(Ⅱ)求直线BE与平面DCE所成角的正弦值.17.(13分)甲乙二人比赛投篮,每人连续投3次,投中次数多者获胜.若甲前2次每次投中的概率都是,第3次投中的概率;乙每次投中的概率都是,甲乙每次投中与否相互独立.(Ⅰ)求乙直到第3次才投中的概率;(Ⅱ)在比赛前,从胜负的角度考虑,你支持谁?请说明理由.18.(13分)已知函数f(x)=(Ⅰ)若a=﹣1,求函数f(x)的单调递增区间;(Ⅱ)对任意的正实数m,关于x的方程f(x)=m恒有实数解,求实数a的取值范围.19.(13分)某度假区以2014年索契冬奥会为契机,依山修建了高山滑雪场.为了适应不同人群的需要,从山上A处到山脚滑雪服务区P处修建了滑雪赛道A﹣C﹣P和滑雪练习道A﹣E﹣P(如图).已知cos∠ACP=一,cos∠APC=,cos∠APE=,公路AP长为10(单位:百米),滑道EP长为6(单位:百米).(Ⅰ)求滑道CP的长度;(Ⅱ)由于C,E处是事故的高发区,为及时处理事故,度假区计划在公路AP 上找一处D,修建连接道DC,DE,问DP多长时,才能使连接道DC+DE最短,最短为多少百米?20.(14分)如图,点A,B分别是椭圆E:+=1(a>b>0)的左、右顶点,圆B:(x一2)2十y2=9经过椭圆E的左焦点F1.(Ⅰ)求椭圆E的方程;(Ⅱ)过A作直线l与y轴交于点Q,与椭圆E交于点P(异于A).(i)求•的取值范围;(ii)是否存在定圆r,使得以P为圆心,PF1为半径的圆始终内切于圆r,若存在,求出圆r的方程;若不存在,说明理由.本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,共14分.如果多做,则按所做的前两题计分.选修4-2:矩阵与变换21.(7分)已知点A(1,2)在矩阵M=[](a,b,∈R)对应的变换作用下得到点A′(6,7).(Ⅰ)求矩阵M;(Ⅱ)求矩阵M的特征值及属于每个特征值的一个特征向量.选修4-4坐标系与参数方程22.(7分)在平面直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ2﹣8ρcosθ+12=0,直线l的参数方程为(t为参数).(Ⅰ)写出圆C的直角坐标方程;(Ⅱ)若点P为圆C上的动点,求点P到直线l距离的最大值.选修4一5:不等式选讲23.已知函数f(x)=|x﹣a|(a∈R).(Ⅰ)若a=2,求不等式f(x)<1的解集;(Ⅱ)若不等式f(x)+|x+1|≥3在R上恒成立,求实数a的取值范围.2014年福建省厦门市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分共50分1.(5分)执行如图的程序框图,如果输人的x为3,那么输出的结果是()A.8B.6C.1D.﹣1【解答】解:由程序框图知:程序第一次运行x=3﹣2=1;第二次运行x=1﹣2=﹣1,满足x<0,∴执行y=(﹣1)3=﹣1.∴输出y=﹣1.故选:D.2.(5分)已知集合A={x|x2﹣x<0},集合B={x|2x<4},则“x∈A”是“x∈B”的()A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵A={x|x2﹣x<0}={x|0<x<1},B={x|2x<4}={x|x<2},∴A⊊B,即“x∈A”是“x∈B”充分不必要条件.故选:A.3.(5分)函数y=1﹣2sin2x是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数【解答】解:y=1﹣2sin2x=cos2x,∵ω=2,∴T==π,∵余弦函数为偶函数,∴函数为最小正周期为π的偶函数.故选:B.4.(5分)学校为了了解学生每天课外阅读的时问(单位:分钟),抽取了n个学生进行调查,结果显示这些学生的课外阅读时间都在[10,50),其频率分布直方图如图所示,其中时间在[30,50)的学生有67人,则n的值是()A.100B.120C.130D.390【解答】解:由频率分布直方图得,每天课外阅读时间在[10,20)和[20,30)的频率分别为0.010×(20﹣10)=0.10,0.023×(30﹣20)=0.23;∴每天课外阅读时间在[30,50)的频率为:1﹣(0.10+0.23)=0.67,∴抽取的学生数n=67÷0.67=100;故选:A.5.(5分)已知点P在抛物线y2=4x上,且P到y轴的距离与到焦点的距离之比为,则点P到x轴的距离是()A.B.C.1D.2【解答】解:设P到y轴的距离为a,则P到焦点的距离为2a,∴由抛物线的定义可得a+1=2a,∴a=1,即P的横坐标为1,代入抛物线方程,可得P的纵坐标为±2,∴点P到x轴的距离是2.故选:D.6.(5分)已知α,β是两个不同的平面,m,n是两条不同的直线,则下列命题正确的是()A.α⊥β,m⊂α,则m⊥βB.m∥n,n⊂α,则m∥αC.m⊥α,m⊂β,则α⊥βD.m∥α,n⊂a,则m∥n【解答】解:若α⊥β,m⊂α,则m与β可能平行,可能相交,也可能线在面内,故A错误;若m∥n,n⊂α,则m∥α或m⊂α,故B错误;若m⊥α,m⊂β,则α⊥β,故C正确;若m∥α,n⊂a,则m与n可能平行也可能异面,故D错误;故选:C.7.(5分)设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.8【解答】解:∵A,B,C三点共线,∴,共线,∴存在实数λ,使得可解得,b=2﹣2a∵a>0,b>0∴0<a<1∴==当a=时,取最小值为4故选:B.8.(5分)已知x,y满足,且x2+y2的最小值为8,则正实数a的取值范围是()A.(0,2]B.[2,5]C.[3,+∞)D.(0,5]【解答】解:作出不等式组对应的平面区域如图:圆心(0,0)到直线x+y﹣4=0的距离d=,此时d2=8,由,解得,即O在直线x+y﹣4=0的垂足为B(2,2),则(2,2)满足不等式ax﹣y﹣2≤0即可.即2a﹣2﹣2≤0,解得a≤2,即正实数a的取值范围是0<a≤2,故选:A.9.(5分)已知a是非负实数,则函数f(x)=﹣2的图象不可能是()A.B.C.D.【解答】解:由1>>0,∴函数f(x)=﹣2<0,函数的图象在x轴下方,∴B正确.a=0时D正确.由a是实数,函数f(x)=﹣2∴当a→0时,y→﹣1,当a≠0时,由无限的思想可知,当x→+∞时,y→﹣2,当x→﹣∞时,y→﹣1,A正确;∴满足题目要求的图象,A、B、D.故选:C.10.(5分)如图,在平面直角坐标系xoy中,圆A:(x+2)2+y2=36,点B(2,0),点D是圆A上的动点,线段BD的垂直平分线交线段AD于点F,设m,n分别为点F,D的横坐标,定义函数m=f(n),给出下列结论:①f(﹣2)=﹣2;②f(n)是偶函数;③f(n)在定义域上是增函数;④f(n)图象的两个端点关于圆心A对称.其中正确的个数是()A.1B.2C.3D.4【解答】解:①∵m,n分别为点F,D的横坐标,定义函数m=f(n),∴f(﹣2)=﹣2正确;②∵m=f(n),n∈[﹣8,4]不关于原点对称,∴f(n)是偶函数错误;③由图形知,点D向右移动,点F也向右移动,f(n)在定义域上是增函数,正确;④由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(﹣8,﹣3),右端点(4,3),故f(n)图象的两个端点关于圆心A对称,正确.故选:C.二、填空题:本大题共5小题,每小题4分.共20分.11.(4分)若复数z满足(l+2i)z=|3+4i|(i为虚数单位),则复数z等于1﹣2i.【解答】解:∵复数z满足(l+2i)z=|3+4i|,∴(1﹣2i)(1+2i)z=,化为5z=5(1﹣2i),∴z=1﹣2i.故答案为:1﹣2i.12.(4分)()6的展开式中,常数项为15.(用数字作答)【解答】解:∵T r+1=(﹣1)r•,∴由6﹣3r=0得r=2,从而得常数项C6r=15,故答案为:15.13.(4分)已知数列{a n}中,a n+1=2a n,a3=8,则数列{log2a n}的前n项和等于.【解答】解:∵数列{a n}中,a n+1=2a n,∴=2,∴{a n}是公比为2的等比数列,∵a3=8,∴,解得a1=2,∴,∴log2a n=n,∴数列{log2a n}的前n项和:S n=1+2+3+…+n=.故答案为:.14.(4分)记曲线y=x2与y=围成的区域为D,若利用计算机产生(0,1)内的两个均匀随机数x,y,则点(x,y)恰好落在区域D内的概率等于.【解答】解:根据积分的几何意义可知区域D的面积为=()|=,正方形OABC的面积为1×1=1,则由几何概型的概率公式可得点(x,y)恰好落在区域D内的概率等于,故答案为:15.(4分)已知函数f(x)=x2(e x+e﹣x)﹣(2x+1)2(e2x+1+e﹣2x﹣1),则满足f (x)>0的实数x的取值范围为(﹣1,﹣).【解答】解:构造函数g(x)=x2(e x+e﹣x),则g(x)=x2(e x+e﹣x)为偶函数,且当x>0时,g(x)单调递增,则由f(x)>0,得x2(e x+e﹣x)>(2x+1)2(e2x+1+e﹣2x﹣1),即g(x)>g(2x+1),∴不等式等价为g(|x|)>g(|2x+1|),即|x|>|2x+1|,即x2>(2x+1)2,∴3x2+4x+1<0,解得﹣1,故答案为:(﹣1,).三、解答题:本大助共5小题.共80分..16.(13分)如图,四边形ABCD和ABEF都是直角梯形,AD∥BC,AF∥BE,∠DAB=∠F AB=90°,且平面ABCD⊥平面ABEF,DA=AB=BE=2,BC =1.(Ⅰ)证明DA⊥EF;(Ⅱ)求直线BE与平面DCE所成角的正弦值.【解答】(Ⅰ)证明:∵∠DAB=90°,∴DA⊥AB,又平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,∴DA⊥平面ABEF,∵EF⊂平面ABEF,∴DA⊥EF.(Ⅱ)DA⊥平面ABEF,AB⊥AF,以AF为x轴,以AB为y轴,以AD为z轴,建立空间直角坐标系,∴B(0,2,0),E(2,2,0),D(0,0,2),C(0,2,1),∴,设平面DCE的法向量,则,令x=1,得平面DCE的一个法向量,又,cos<>=,∴直线BE与平面DCE所成角的正弦值为.17.(13分)甲乙二人比赛投篮,每人连续投3次,投中次数多者获胜.若甲前2次每次投中的概率都是,第3次投中的概率;乙每次投中的概率都是,甲乙每次投中与否相互独立.(Ⅰ)求乙直到第3次才投中的概率;(Ⅱ)在比赛前,从胜负的角度考虑,你支持谁?请说明理由.【解答】解:(1)设事件A i表示“乙第i次投中”,(i=1,2,3)则P(A i)=,(i=1,2,3),事件A1,A2,A3相互独立,P(乙直到第3次才投中)=P()=(1﹣)•(1﹣)•=.(2)设乙投中的次数为η,则η~B(3,),∴乙投中次数的数学期望Eη=3×=.设甲投中的次数为ξ,ξ的可能取值为0,1,2,3,∵甲前2次每次投中的概率都是,第3次投中的概率,∴甲前2次投中次数股从二项分布B(2,),且每次投中与否相互独立,P(ξ=0)=(1﹣)•(1﹣)•(1﹣)=,P(ξ=1)=+=,P(ξ=2)=+=,P(ξ=3)==,∴甲投中次数的数学期望Eξ==,∴Eη>Eξ,∴在比赛前,从胜负的角度考虑应该支持乙.18.(13分)已知函数f(x)=(Ⅰ)若a=﹣1,求函数f(x)的单调递增区间;(Ⅱ)对任意的正实数m,关于x的方程f(x)=m恒有实数解,求实数a的取值范围.【解答】解:(Ⅰ)x≤0时,f(x)=x2+2x+3,其单调递增区间为[﹣1,0];x>0时,f(x)=x2e﹣x,∴f′(x)=﹣x2e﹣x(x﹣2)令f′(x)>0,可得x<2,∴单调递增区间为(0,2),∴函数f(x)的单调递增区间为[﹣1,0]和(0,2);(Ⅱ)对任意的正实数m,关于x的方程f(x)=m恒有实数解,等价于函数f (x)的值取遍每一个正数.注意到x≤0时,f(x)=x2+2x+3=(x+1)2+2≥2,∴x>0时,f(x)的值域必须包含(0,2).x>0时,f′(x)=xe ax(ax+2)①a≥0,f′(x)>0,函数在(0,+∞)上递增,f(x)的值域为(0,+∞),符合题意;②a<0,f′(x)>0,可得0<x<﹣,令f′(x)<0,可得x>﹣,∴函数在(0,﹣)上单调递增,在(﹣,+∞)上递减,∴f(x)max=f(﹣)=,∴(x)的值域为(0,],∴(0,]⊃(0,2),∴≥2,∴﹣≤a<0,综上,实数a的取值范围是[﹣,+∞).19.(13分)某度假区以2014年索契冬奥会为契机,依山修建了高山滑雪场.为了适应不同人群的需要,从山上A处到山脚滑雪服务区P处修建了滑雪赛道A﹣C﹣P和滑雪练习道A﹣E﹣P(如图).已知cos∠ACP=一,cos∠APC=,cos∠APE=,公路AP长为10(单位:百米),滑道EP长为6(单位:百米).(Ⅰ)求滑道CP的长度;(Ⅱ)由于C,E处是事故的高发区,为及时处理事故,度假区计划在公路AP 上找一处D,修建连接道DC,DE,问DP多长时,才能使连接道DC+DE最短,最短为多少百米?【解答】解:(Ⅰ)∵cos∠ACP=一,cos∠APC=,∴sin∠ACP=,sin∠APC=,∴sin∠P AC=sin(∠ACP+∠APC)=,∵,∴CP=5,即滑道CP的长度为5百米;(Ⅱ)设DP=x,x∈[0,10],∵EP=6,CP=5,cos∠APC=,cos∠APE=,∴DE==,DC==∴DE+DC=+=,当且仅当x=4时,(DE+DC)min=3+2.20.(14分)如图,点A,B分别是椭圆E:+=1(a>b>0)的左、右顶点,圆B:(x一2)2十y2=9经过椭圆E的左焦点F1.(Ⅰ)求椭圆E的方程;(Ⅱ)过A作直线l与y轴交于点Q,与椭圆E交于点P(异于A).(i)求•的取值范围;(ii)是否存在定圆r,使得以P为圆心,PF1为半径的圆始终内切于圆r,若存在,求出圆r的方程;若不存在,说明理由.【解答】解:(Ⅰ)依题意知a=2,圆B:(x﹣2)2+y2=9中,令y=0,得F1(﹣1,0),∴b2=4﹣1=3,∴椭圆E:.(Ⅱ)(i)当直线为x轴时,.设直线AP:x=ty﹣2,与E:联立,得(3t2+4)y2﹣12ty=0,∴y p=,x p=,AP:x=ty﹣2中,令x=0,得,∴=(1,)•()=,综上所述,的取值范围是[0,2).(ii)假设存在定圆r满足题意,根据椭圆的对称性,猜想定圆r的圆心在x轴上,当P恰好为B时,圆P就是定圆B:(x﹣2)2+y2=9,交x轴于D(5,0),当P无限接近于A时,圆P就是圆A:(x+2)2+y2=1,交x轴于C(﹣3,0).∴定圆r的圆心为CD中点F2(1,0),恰好为E:的右焦点,∴猜想定圆r:(x﹣1)2+y2=16.下证:圆P始终内切于定圆r,∵|PF2|+|PF1|=4,∴|PF2|=4﹣|PF1|得证.本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,共14分.如果多做,则按所做的前两题计分.选修4-2:矩阵与变换21.(7分)已知点A(1,2)在矩阵M=[](a,b,∈R)对应的变换作用下得到点A′(6,7).(Ⅰ)求矩阵M;(Ⅱ)求矩阵M的特征值及属于每个特征值的一个特征向量.【解答】解:(Ⅰ)由题意,[]=,∴,∴,∴M=;(Ⅱ)M的特征多项式为f(λ)=(λ﹣1)(λ﹣4),令f(λ)=0,可求得特征值为λ1=1,λ2=4,设λ1=1对应的一个特征向量为=,则由λ1=M,得﹣x﹣2y=0可令x=2,则y=﹣1,所以矩阵M的一个特征值λ1=1对应的一个特征向量为=,同理可得矩阵M的一个特征值λ2=4对应的一个特征向量为=.选修4-4坐标系与参数方程22.(7分)在平面直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ2﹣8ρcosθ+12=0,直线l的参数方程为(t为参数).(Ⅰ)写出圆C的直角坐标方程;(Ⅱ)若点P为圆C上的动点,求点P到直线l距离的最大值.【解答】解:(Ⅰ)由ρ2=x2+y2,ρcosθ=x,可得x2+y2﹣8x+12=0,即(x﹣4)2+y2=4;(Ⅱ)直线l的参数方程为(t为参数),普通方程为x﹣y﹣2=0.圆心到直线的距离等于=,故圆上的动点到直线的距离的最大值等于+2.选修4一5:不等式选讲23.已知函数f(x)=|x﹣a|(a∈R).(Ⅰ)若a=2,求不等式f(x)<1的解集;(Ⅱ)若不等式f(x)+|x+1|≥3在R上恒成立,求实数a的取值范围.【解答】解:(Ⅰ)a=2,不等式f(x)<1,化为|x﹣2|<1,解得1<x<3.不等式的解集为:{x|1<x<3}.(Ⅱ)由f(x)=|x﹣a|,设g(x)=f(x)+|x+1|,即g(x)=|x﹣a|+|x+1|,其几何意义就是数轴上的点到a与﹣1的距离之和,不等式f(x)+|x+1|≥3在R上恒成立,就是距离之和的最小值也大于3,即|a+1|≥3,解得,a≥2或a≤﹣4,∴a的取值范围是(﹣∞,﹣4]∪[2,+∞).。
福建省厦门双十中学2014届高中毕业班能力测试

厦门双十中学 理科综合能力测试 第1页(共5页)福建省厦门双十中学2014届高中毕业班能力测试相对原子质量:H -1、N -14、O -16、Ag -1087.含氮废水中的NH 4+在一定条件下可与O 2发生以下反应:① NH 4+(aq)+3/2O 2(g)=NO 2-(aq)+2H +(aq)+H 2O(l) ΔH =-273 kJ·mol -1② NO 2-(aq)+1/2O 2(g)=NO 3-(aq) ΔH =-73 kJ·mol -1 下列叙述不正确的是A .升高温度,可使①②反应速率均加快B .室温下时0.1 mol·L -1 HNO 2(aq) pH >1,则NaNO 2溶液显碱性C .NH 4+(aq)+2O 2(g)=NO 3-(aq)+2H +(aq)+H 2O(l) ΔH =-346 kJ·mol -1D .1 mol NH 4+在①反应中与1 mol NO 2-在②反应中失电子数之比为1:38.下列液体均处于25℃,有关叙述正确的是A .某物质的溶液pH <7,则该物质属于酸或强酸弱碱盐B .pH =4.5的番茄汁中c (H +)是pH =6.5的牛奶中c (H +)的100倍C .pH =5.6的CH 3COOH 与CH 3COONa 混合溶液中,c (Na +)>c (CH 3COO -) D .AgCl 在同浓度的CaCl 2和NaCl 溶液中的溶解度相同 9.下图表示汽车尾气净化处理过程。
有关叙述正确的是A .产生22.4 L 氮气(标准状况)时,转移4x mol e -B .上述过程中,NO x 只被CO 还原C .安装该净化器的汽车使用含铅汽油不会造成污染D .Pt-Rh 催化剂可提高尾气的平衡转化率10.根据下列操作及现象,所得结论正确的是11.高效净水剂聚合氯化铝铁(PAFC )的组成可表示为[AlFe(OH)n Cl 6-n ]m ,该物质广泛应用于日常生活用水和工业废水的净化处理。
2019届福建省厦门双十中学高三热身考试数学(理)试题(带答案解析)

2019届福建省厦门双十中学高三热身考试数学(理)试题第I 卷(选择题)一、单选题1.已知A ={x|lgx >0},B ={x||x −1|<2},则A ∪B =( ) A .{x|x <−1或x ≥1} B .{x|1<x <3} C .{x|x >3}D .{x|x >−1}2.已知复数(1)z a a i =+-(i 为虚数单位,a R ∈),则“(0,2)a ∈”是“在复平面内复数z 所对应的点位于第一象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.如图是一位发烧病人的体温记录折线图,下列说法不正确的是( )A .病人在5月13日12时的体温是38℃B .从体温上看,这个病人的病情在逐渐好转C .病人体温在5月14日0时到6时下降最快D .病人体温在5月15日18时开始逐渐稳定4.已知点P 在抛物线y 2=4x 上,那么点P 到点Q(2,−1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .(14,−1)B .(14,1)C .(1,2)D .(1,−2)5.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .4π3+4B .4π3+8C .8π3+4D .8π3+86.设126log a =,14log 12b =,15log 15c =,则( ) A .a b c <<B .c b a <<C .b a c <<D .c a b <<7.如图Rt ABC ∆中,2ABC π∠=,2AC AB =,BAC ∠平分线交△ABC 的外接圆于点D ,设AB a =u u u v v ,AC b =u u u v v ,则向量AD =u u u v( )A .a b +v vB .12a b +v vC .12a b +v vD .23a b +v v8.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )A .12B .13C .41π- D .42π-9.函数()sin()f x A x ωϕ=+的部分图象如图中实线所示,图中圆C 与()f x 的图象交于,M N 两点,且M 在y 轴上,则下列说法中正确的是A .函数()f x 的最小正周期是2πB .函数()f x 的图象关于点,034⎛⎫π ⎪⎝⎭成中心对称 C .函数()f x 在2(,)36ππ--单调递增 D .函数()f x 的图象向右平移512π后关于原点成中心对称10.2019年4月25日-27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为 ( ) A .198B .268C .306D .37811.已知点12,F F 分别是双曲线2222:1(0,0)x y M a b a b-=>>的左、右焦点,以2F 为圆心且过点1F 的圆N 与双曲线M 在第一象限的交点为P ,圆N 与x 轴的另一个交点为Q ,若1||a PF b PQ =,则双曲线的离心率为( )A B .2C .54D .5312.设*n N ∈,函数1()xf x xe =,21()()f x f x '=,32()()f x f x '=,…,1()()n n f x f x +'=,曲线()n y f x =的最低点为n P ,12n n n P P P ++V 的面积为n S ,则( ) A .{}n S 是常数列 B .{}n S 不是单调数列C .{}n S 是递增数列 D .{}n S 是递减数列第II 卷(非选择题)二、填空题13.非零向量,a b v 满足:a b a -=r r r ,()0a a b ⋅-=r r r ,则a b -v v 与b v 夹角的大小为_______14.设锐角ABC ∆三个内角、、A B C 所对的边分别为a b c 、、,若cos cos )2sin a B b A c C +=,1b =,则c 的取值范围为__________.15.回收1吨废纸可以生产出0.8吨再生纸,可能节约用水约100吨,节约用煤约1.2吨,回收1吨废铅蓄电池可再生铅约0.6吨,可节约用煤约0.8吨,节约用水约120吨,回收每吨废铅蓄电池的费用约0.9万元,回收1吨废纸的费用约为0.2万元.现用于回收废纸和废铅蓄电池的费用不超过18万元,在保证节约用煤不少于12吨的前提下,最多可节约用水约__________吨.16.已知球D 的半径为3,圆A 与圆C 为该球的两个小圆,MN 为圆A 与圆C 的公共弦,MN =B 是弦MN 的中点,则四边形ABCD 的面积的最大值为__________.三、解答题17.数列{}n a 中,12a =,112pn n n a a ++=(p 为常数).(1)若1a -,212a ,4a 成等差数列,求p 的值; (2)是否存在p ,使得{}n a 为等比数列?并说明理由.18.某公司销售部随机抽取了1000名销售员1天的销售记录,经统计,其柱状图如图. 该公司给出了两种日薪方案.方案1:没有底薪,每销售一件薪资20元;方案2:底薪90元,每日前5件的销售量没有奖励,超过5件的部分每件奖励20元. (1)分别求出两种日薪方案中日工资y (单位:元)与销售件数n 的函数关系式; (2)若将频率视为概率,回答下列问题:(Ⅰ)根据柱状图,试分别估计两种方案的日薪X (单位:元)的数学期望及方差; (Ⅱ)如果你要应聘该公司的销售员,结合(Ⅰ)中的数据,根据统计学的思想,分析选择哪种薪资方案比较合适,并说明你的理由.19.如图,在多面体ABCDFE 中,////AB CD EF ,四边形ABCD 和四边形ABEF 是两个全等的等腰梯形.(1)求证:四边形CDFE 为矩形;(2)若平面ABEF ⊥平面ABCD ,2AB =,6CD =,AD =ADF 与平面BCE 所成二面角的余弦值.20.已知两定点1,03A ⎛⎫- ⎪⎝⎭,1,03B ⎛⎫ ⎪⎝⎭,点M 是平面内的动点,且||||4AB AM BA BM +++=u u u r u u u u r u u u r u u u u r,记M 的轨迹是C .(1)求曲线C 的方程;(2)过点(1,0)F 引直线l 交曲线C 于, Q N 两点,点Q 关于x 轴的对称点为R ,证明直线NR 过定点.21.已知函数()()()221ln f x a x ax a R x=---∈. (Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)设函数()()12x e ax ag x f x x--+=+,若2x =是()g x 的唯一极值点,求a .22.在直角坐标系xOy 中,曲线1C的参数方程为x a ty t⎧=+⎪⎨=⎪⎩(t 为参数,0a >),以坐标原点O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线1C 上一点A 的极坐标为π1,3⎛⎫⎪⎝⎭,曲线2C 的极坐标方程为cos ρθ=. (1)求曲线1C 的极坐标方程;(2)设点,M N 在1C 上,点P 在2C 上(异于极点),若,,,O M P N 四点依次在同一条直线l 上,且||,||,||MP OP PN 成等比数列,求l 的极坐标方程. 23. 设函数(),0f x x a a =+>.(Ⅰ)当2a =时,求不等式()2f x x <的解集;(Ⅱ)若函数()()()1g x f x f x =+- 的图象与直线11y =所围成的四边形面积大于20,求a 的取值范围.参考答案1.D 【解析】 【分析】分别解对数不等式和绝对值不等式得集合A,B 进而求并集即可. 【详解】A ={x|lgx >0}={x|x >1},B ={x||x −1|<2}={x|−1<x <3}, 则A ∪B ={x|x >−1}.故应选D. 【点睛】本题主要考查对数不等式和绝对值不等式的求解及集合的并集运算,属于基础题. 2.B 【解析】 【分析】根据复平面内点的坐标表示,结合充分必要条件的性质即可判断. 【详解】复数(1)z a a i =+-,所以在复平面内对应的点坐标为(),1a a -,若(0,2)a ∈,则10a ->,10a -=或10a -<都有可能,因而不一定位于第一象限,所以不是充分条件;若在复平面内复数z 所对应的点位于第一象限,有可得010a a >⎧⎨->⎩,可得01a <<,而()()0,10,2⊆所以是必要条件,综上可知, “(0,2)a ∈”是“在复平面内复数z 所对应的点位于第一象限”的必要不充分条件, 故选:B 【点睛】本题考查了复数的几何意义,充分必要条件的判断,属于基础题. 3.C 【解析】【分析】根据折线图,结合选项即可判断.【详解】由该发烧病人的体温记录折线图,可知对于A,病人在5月13日12时的体温是38℃,故A正确;对于B,从体温上看,这个病人的体温逐渐趋于正常,说明病情在逐渐好转,故B正确;对于C,病人体温在5月13日6时到12时下降最快,故C错误;对于D,病人体温在5月15日18时开始逐渐稳定,故D正确.综上可知,C为错误选项,故选:C.【点睛】本题考查了折线图的特征和简单应用,属于基础题.4.A【解析】【分析】根据抛物线安的方程求出焦点坐标,由抛物线的性质,得到P,Q和M三点共线且点P在中间时距离和最小,由此求出纵坐标,代入抛物线的方程,即可求解.【详解】由题意,抛物线的方程为y2=4x,所以p=2,所以焦点F(1,0),过点M作准线x=−1的垂线,垂足为M,由PF=PM,依题意可知当P,Q和M三点共线且点P在中间时距离和最小,如图所示,,故点P的纵坐标为−1,代入抛物线的方程,求得x=14,−1),故选A.所以点(14【点睛】本题主要考查了抛物线的定义、标准方程,及抛物线的几何性质的应用,其中解答中由抛物线的性质,当P,Q 和M 三点共线且点P 在中间时距离和最小是解答的关键,着重考查了推理与运算能力,属于基础题. 5.A 【解析】 【分析】通过三视图可知,该几何体是由一个18球和一个三棱柱组合而成,分别求出它们的体积相加即可. 【详解】通过三视图可知,该几何体是由一个18球和一个三棱柱组合而成,因此 V =18×43π⋅23+12×2×2×2=43π+4,故本题选A.【点睛】本题考查了通过三视图求几何体的体积问题,关键是识别出几何体的形状. 6.A 【解析】 【分析】由对数运算与换底公式化简,结合对数函数的图像与性质即可比较大小. 【详解】根据对数运算与换底公式,化简可得()2122226631312log log 1log log log a =--===-+,()41444412123131log log 1lo l g l 4g o og b =--===-+, ()515555log 15log 151log log 1o 3l 51g 3c =--===-+ 由于333245log log log >>,所以254log lo 131313g log --<--<--, a b c ∴<<. 故选:A 【点睛】本题考查了对数的运算与换底公式,对数函数图像与性质应用,属于基础题. 7.C 【解析】 【分析】根据Rt ABC ∆中,的边角关系,结合圆的性质,得到四边形ABDO 为菱形,所以12AD AB AO a b =+=+u u u r u u u r u u u r r r .【详解】解:设圆的半径为r ,在Rt ABC ∆中,2ABC π∠=,2AC AB =,所以3BAC π∠=,6ACB π∠=,BAC ∠平分线交ABC ∆的外接圆于点D ,所以6ACB BAD CAD π∠=∠=∠=,则根据圆的性质BD CD AB ==,又因为在Rt ABC ∆中,12AB AC r OD ===, 所以四边形ABDO 为菱形,所以12AD AB AO a b =+=+u u u r u u u r u u u r r r.故选C . 【点睛】本题考查了向量的平行四边形法则,共线向量基本定理,圆的性质等知识,考查分析解决问题的能力和计算能力.属于中档题.8.C 【解析】令圆的半径为1,则()22'41S P S ππππ--===-,故选C 。
数学_2014年福建省某校高考数学热身试卷(理科)(含答案)

2014年福建省某校高考数学热身试卷(理科)一、选择题(本题10小题,每小题5分,共50分.每小题只有一个选项符合题意,请将正确答案填入答题卷中.)1. 若复数z 满足zi =4−5i (其中i 为虚数单位),则复数z 为( ) A 5−4i B −5+4i C 5+4i D −5−4i2. 已知集合A ={x|lg(x −2)<1},集合B ={x|12<2x <8},则A ∩B 等于( )A (2, 12)B (2, 3)C (−1, 3)D (−1, 12) 3. 下列说法正确的是( )A 若“p ∧q”为假命题,则p ,q 均为假命题B “x >2”是“x 2−3x +2>0”的必要不充分条件C 命题“∃x ∈R 使得x 2+x +1<0”的否定是:“∀x ∈R 均有x 2+x +1<0” D 在△ABC 中,若A 是最大角,则“sin 2B +sin 2C <sin 2A”是“△ABC 为钝角三角形”的充要条件4. 设a ,b 是两条不同直线,α,β是两个不同平面,下列四个命题中正确的是( ) A 若a ,b 与α所成的角相等,则a // b B 若a // α,b // β,α // β,则a // b C 若a ⊥α,b ⊥β,α⊥β,则a ⊥b D 若a ⊂α,b ⊂β,a // b ,则α // β5. 在二项式(x −1x )n 的展开式中恰好第5项的二项式系数最大,则展开式中含x 2项的系数是( )A −56B −35C 35D 566. 设a >0且a ≠1,命题p :函数f(x)=a x 在R 上是增函数,命题q :函数g(x)=(a −2)x 3在R 上是减函数,则p 是q 的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 7. 已知双曲线my 2−x 2=1(m ∈R)与椭圆y 25+x 2=1有相同的焦点,则该双曲线的渐近线方程为( )A y =±√3xB y =±√33x C y =±13x D y =±3x8. 已知平行四边形ABCD 中,AB =1,AD =2,∠DAB =60∘,则且AC →⋅AB →等于( ) A 1 B √3 C 2 D 2√39. 设函数f(x)={x 2−6x +6,x ≥03x +4,x <0 ,若互不相等的实数x 1,x 2,x 3满足f(x 1)=f(x 2)=f(x 3),则x 1+x 2+x 3的取值范围是( ) A (113,6) B [113,6] C (203,263) D (203,263]10. 设函数y =f(x)的定义域为D ,若对于任意x 1、x 2∈D ,当x 1+x 2=2a 时,恒有f(x 1)+f(x 2)=2b ,则称点(a, b)为函数y =f(x)图象的对称中心.研究函数f(x)=x +sinπx −3的某一个对称中心,并利用对称中心的上述定义,可得到f(12014)+f(22014)+...+f(40262014 )+f(40272014)的值为( ) A 4027 B −4027 C 8054 D −8054二、填空题(本题5小题,每小题4分,共20分.请将正确答案填入答题卷中.) 11. 曲线y =x 2+1与直线x =0,x =1及x 轴所围成的图形的面积是________. 12. 执行如图所示的程序框图,若输入的a =5,则输出的结果是________.13. 已知变量x ,y 满足约束条件{x −y ≤1x +y ≥1y ≤32,若x ,y 取整数,则目标函数z =2x +y 的最大值是________.14. 已知矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,则旋转形成的圆柱的侧面积的最大值为________.15. 对于集合A ,如果定义了一种运算“⊕”,使得集合A 中的元素间满足下列4个条件: (I)∀a ,b ∈A ,都有a ⊕b ∈A ;(II)∃e ∈A ,使得对∀a ∈A ,都有e ⊕a =a ⊕e =a ; (III)∀a ∈A ,∃a′∈A ,使得a ⊕a′=a′⊕a =e ; (IV)∀a ,b ,c ∈A ,都有(a ⊕b)⊕c =a ⊕(b ⊕c), 则称集合A 对于运算“⊕”构成“对称集”. 下面给出三个集合及相应的运算“⊕”:①A ={整数},运算“⊕”为普通加法; ②A ={复数},运算“⊕”为普通减法; ③A ={正实数},运算“⊕”为普通乘法. 其中可以构成“对称集”的有________.(把所有正确的序号都填上)三、解答题(本题6小题,共80分,请将正确答案填入答题卷中.)16. 为减少“舌尖上的浪费”,某学校对在该校食堂用餐的学生能否做到“光盘”,进行随机调查,从中随机抽取男、女生各15名进行了问卷调查,得到了如下列联表:(1)请将上面的列联表补充完整,并据此资料分析:有多大的把握可以认为“在学校食堂用餐的学生能否做到‘光盘’与行吧有关”?(2)若从这15名女学生中随机抽取2人参加某一项活动,记其中做不到“光盘”的人数X ,求X 的分布列和数学期望.K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)17. 已知函数f(x)=√3sin(x −π6)+cos(x −π6).(Ⅰ)当x ∈A 时,函数f(x)取得最大值或最小值,求集合A ;(Ⅱ)将集合A 中x ∈(0, +∞)的所有x 的值,从小到大排成一数列,记为{a n },求数列{a n }的通项公式; (Ⅲ)令b n =π2an ⋅a n+1,求数列{b n }的前n 项和T n .18. 如图,在三棱锥C −OAB 中,CO ⊥平面AOB ,OA =OB =2OC =2,AB =2√2,D 为AB 的中点. (1)求证:AB ⊥平面COD ;(2)若动点E 满足CE // 平面AOB ,问:当AE =BE 时,平面ACE 与平面AOB 所成的锐二面角是否为定值?若是,求出该锐二面角的余弦值;若不是,说明理由.19. 已知点A ,B 是抛物线C:y 2=2px(p >0)上不同的两点,点D 在抛物线C 的准线l 上,且焦点F 到直线x −y +2=0的距离为3√22.(1)求抛物线C 的方程;(2)现给出以下三个论断:①直线AB 过焦点F ;②直线AD 过原点O ;③直线BD 平行x 轴.请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.20. 已知数列{a n }满足a 1=t >1,a n+1=n+1na n .函数f(x)=ln(1+x)+mx 2−x (m ∈[0, 12]).(1)求数列{a n }的通项公式; (2)试讨论函数f(x)的单调性;(3)若m =12,数列{b n }满足b n =f(a n )+a n ,求证:2an+2<an bn<1.选做题(本题设有21、22、23三个选答题,每小题7分,请考生任选2个小题作答,满分7分.如果多做,则按所做的前两题记分.作答时,在答题卡上把所选题号填入括号中.)【选修4-2:矩阵与变换】21. 已知a →=[11]为矩阵A =[1a−14]属于特征值λ的一个特征向量.(1)求实数a ,λ的值; (2)求矩阵A 的逆矩阵.【选修4-4:坐标系与参数方程】22. 在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.点A,B的极坐标分别为(2, π),(2√2, π4),曲线C的参数方程为{x=cosαy=1+sinα(α为参数).(1)求△AOB的面积;(2)求直线AB被曲线C截得的弦长.【选修4-5:不等式选讲】23. 选修4−5:不等式选讲设函数f(x)=|2x−1|−|x+1|.(1)求不等式f(x)≤0的解集D;(2)若存在实数x∈D使√3x+√2−x>a成立,求实数a的取值范围.2014年福建省某校高考数学热身试卷(理科)答案1. D2. B3. D4. C5. A6. D7. A8. C9. A10. D11. 4312. 6213. 514. 162π15. ①③由已知数据得K2=30(12×10−3×5)215×15×17×13≈6.652>6.635,所以,有99%以上的把握认为“在学校食堂用餐的学生能否做到‘光盘’与性别有关”…(2)X的可能取值为0,1,2…P(X=0)=C102C152=37,P(X=1)=C152˙=1021,P(X=2)=C52C152=221…所以X 的分布列为:X 的数学期望为E(X)=0×37+1×1021+2×221=23… 17. (1)f(x)=2[√32sin(x −π6)+12cos(x −π6)]⋯=2sin[(x −π6)+π6]=2sinx ⋯当函数f(x)取得最值时,集合A ={x|x =kπ+π2,k ∈Z}⋯ (2)x ∈(0, +∞)的所有x 的值从小到大依次是π2,3π2,5π2,⋯,(2n−1)π2,⋯.即数列{a n }的通项公式是a n =(2n−1)π2⋯(Ⅲ)由(Ⅱ)得 b n =π2an ⋅a n+1=4(2n−1)(2n+1)=2(12n−1−12n+1)⋯∴ T n =2[(1−13)+(13−15)+⋯+(12n−1−12n+1)⋯=2(1−12n +1)=4n 2n +1⋯(13) 18. 解:(1)在三棱锥C −OAB 中,CO ⊥平面AOB ,∴ CO ⊥AB .…又OA =OB ,D 为AB 的中点, ∴ DO ⊥AB .… ∵ DO ∩CO =O , ∴ AB ⊥平面COD .…(2)∵ OA =OB =2,AB =2√2, ∴ AO ⊥BO .…由CO ⊥平面AOB ,故以点O 为原点,OA 所在的直线为x 轴,OB 所在的直线为y 轴,OC 所在的直线为z 轴建立空间直角坐标系(如图),由已知可得O(0, 0, 0),A(2, 0, 0),B(0, 2, 0),C(0, 0, 1),D(1, 1, 0).… 由CE // 平面AOB ,故设E(x, y, 1).…由AE =BE ,得√(x −2)2+y 2+12=√x 2+(y −2)2+12, 故x =y ,即E(x, y, 1),(x ≠0).…设平面ACE 的法向量为n 1→=(a,b,c),由AC →=(−2,0,1),CE →=(x, y, 0),得{−2a +C =0ax +bx =0,令a =1,得n 1→=(1, −1, 2).…又平面AOB 的法向量为n 2→=(0,0,1),… ∴ cos <n 1→,n 2→>=1×√6=√63. 故平面ACE 与平面AOB 所成的锐二面角为定值,且该锐二面角的余弦值为√63.… 19. 解:(1)因为F(p2,0), 依题意得d =|p2−0+2|√2=3√22,…解得p =2,所以抛物线C 的方程为y 2=4x .…(2)①命题:若直线AB 过焦点F ,且直线AD 过原点O ,则直线BD 平行x 轴.… 设直线AB 的方程为x =ty +1,A(x 1, y 1),B(x 2, y 2),… 由{x =ty +1y 2=4x 得y 2−4ty −4=0,∴ y 1y 2=−4,…直线AD 的方程为y =y1x 1x ,…所以点D 的坐标为(−1,−y1x 1),∴ −y 1x 1=−4y 1y 12=−4y 1=y 2,…∴ 直线DB 平行于x 轴.…②命题:若直线AB 过焦点F ,且直线BD 平行x 轴,则直线AD 过原点O .… 设直线AB 的方程为x =ty +1,A(x 1, y 1),B(x 2, y 2),… 由{x =ty +1y 2=4x 得y 2−4ty −4=0,∴ y 1y 2=−4,…即点B 的坐标为(x 2,−4y 2),…∵ 直线BD 平行x 轴, ∴ 点D 的坐标为(−1,−4y 1),…∴ OA →=(x 1,y 1),OD →=(−1,−4y 1),由于x 1(−4y 1)−y 1(−1)=−y 1+y 1=0,∴ OA → // OD →,即A ,O ,D 三点共线,…∴ 直线AD 过原点O .…③命题:若直线AD 过原点O ,且直线BD 平行x 轴,则直线AB 过焦点F .… 设直线AD 的方程为y =kx(k ≠0),则点D 的坐标为(−1, −k),… ∵ 直线BD 平行x 轴,∴ y B =−k ,∴ x B =k 24,即点B 的坐标为(k 24,−k),… 由{y =kxy 2=4x得k 2x 2=4x , ∴ x A =4k 2,y A =4k ,即点A 的坐标为(4k 2,4k ),… ∴ FA →=(4k 2−1,4k ),FB →=(k 24−1,−k), 由于(4k 2−1)(−k)−4k⋅(k 24−1)=−4k+k −k +4k=0,∴ FA → // FB →,即A ,F ,B 三点共线,… ∴ 直线AB 过焦点F .… 20. 解:(1)∵ a n+1=n+1n a n ,∴ 当n ≥2时,a na n−1=nn−1,∴ a 2a 1⋅a3a 2…a nan−1=21⋅32…nn−1,即an a 1=n ,∴ a n =nt ,对n =1也成立,∴ 数列{a n }的通项公式为a n =nt .… (2)∵ f(x)=ln(1+x)+mx 2−x , ∴ f′(x)=11+x+2mx −1=2mx 2+2mx−x1+x=x(2mx+2m−1)1+x(x >−1),… 当m =0时,f′(x)=−x 1+x ,当−1<x <0时,f′(x)=−x 1+x>0;当x >0时,f′(x)=−x1+x <0,∴ 函数f(x)的单调增区间是(−1, 0),减区间是(0, +∞);… 当0<m ≤12时,令f′(x)=0,解得x 1=0,x 2=−2m−12m=−1+12m.当0<m <12时,x 2>0,当−<x <0时,f′(x)>0;当0<x <−1+12m 时,f′(x)<0; x >−1+12m 时,f′(x)>0,∴ 函数f(x)的单调增区间是(−1, 0)和(−1+12m , +∞),减区间是(0, −1+12m );… 当m =12时,x 1=x 2=−2m−12m=0,f′(x)=−x1+x ≥0,∴ 函数f(x)的单调增区间是(1, +∞),无减区间.…综上所述,当m =0时,∴ 函数f(x)的单调增区间是(−1, 0),减区间是(0, +∞); 当0<m <12时,函数f(x)的单调增区间是(−1, 0)和(−1+12m , +∞),减区间是(0, −1+12m);当m =12时,函数f(x)的单调增区间是(1, +∞),无减区间.(3)当m =12时,f(x)=ln(1+x)+12x 2−x ,∵ b n =f(a n )+a n ,∴ b n =ln(1+a n )+12a n 2.由a n =nt 得(t >1),b n >0.…要证a n b n<1,即证a n <b n ,即证ln(1+a n )+12a n 2−a n >0.由(2)得f(x)=ln(1+x)+12x 2−x 在(0, +∞)上单调递增, ∴ f(x)=ln(1+x)+12x 2−x >f(0)=0,∴ f(a n )=ln(1+a n )+12a n 2−a n >0,即a nb n<1成立.…要证2a n +2<a nb n,由a n +2>0,即证a n 2+2a n >2b n ,即证a n 2+2a n >2ln(1+a n )+a n 2,即证a n >ln(1+a n ).设g(x)=x −ln(1+x)(x >0),g′(x)=1−11+x =x1+x >0, ∴ g(x)在(0, +∞)上单调递增,g(x)>g(0)=0, 从而a n >ln(1+a n ),即2a n+2<an b n成立. 综上,2a n +2<a nb n<1.…21. 解:(1)由[1a −14][11]=λ[11]得:{1+a =λ−1+4=λ,∴ a =2,λ=3; … (2)由(1) 知A =[12−14],∴ |A|=6, ∴ A −1=[23−131616]…22. 解:(1)△AOB 的面积为 S △AOB =12|OA|⋅|OB|⋅sin∠AOB=12×2×2√2×sin135∘ =2; (2)∵ 点A ,B 的极坐标分别为(2, π),(2√2, π4),在直角坐标系中A(−2, 0),B(2, 2), ∴ 直线AB 的方程为x −2y +2=0;∵ 曲线C 的参数方程{x =cosαy =1+sinα(α为参数)化为普通方程是x 2+(y −1)2=1,∴ 曲线是圆心为P(0, 1),半径R为1的圆;∵ 直线AB过圆心P(0, 1),∴ 直线AB被曲线C截得的弦长为2R=2.23. 解:(1)当x≤−1时,由f(x)=−x+2≤0,得x≥2,所以x∈⌀;当−1<x≤12时,由f(x)=−3x≤0得x≥0,所以0≤x≤12;当x>12时,由f(x)=x−2≤0得x≤2,所以12<x≤2.…综上得:不等式f(x)≤0的解集D={x|0≤x≤2}.…(2)√3x+√2−x=√3√x+√2−x,…由柯西不等式得(√3√x+√2−x)2≤(3+1)(x+(2−x))=8,∴ √3x+√2−x≤2√2,…当且仅当x=32时取“=”,∴ a的取值范围是(−∞,2√2).…。
2014年高考真题精校精析纯word可编辑·2014高考真题解析2014·福建卷(理科数学)

2014·福建卷(理科数学)1.[2014·福建卷] 复数z =(3-2i)i 的共轭复数z 等于( )A .-2-3iB .-2+3iC .2-3iD .2+3i1.C [解析]由复数z =(3-2i)i =2+3i ,得复数z 的共轭复数z =2-3i. 2.[2014·福建卷] 某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱B .圆锥C .四面体D .三棱柱2.A [解析]由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形.3.[2014·福建卷] 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8B .10C .12D .143.C [解析]设等差数列{a n }的公差为d ,由等差数列的前n 项和公式,得S 3=3×2+3×22d =12,解得d =2,则a 6=a 1+(6-1)d =2+5×2=12. 4.、、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D 图1-24.B [解析]由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.5.[2014·福建卷] 阅读如图1-3所示的程序框图,运行相应的程序,输出的S 的值等于( )A .18B .20C .21D .405.B [解析]输入S =0,n =1,第一次循环,S =0+2+1=3,n =2; 第二次循环,S =3+22+2=9,n =3;第三次循环,S =9+23+3=20,n =4,满足S ≥15,结束循环,输出S =20. 6.、[2014·福建卷] 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件6.A [解析]由直线l 与圆O 相交,得圆心O 到直线l 的距离d =1k 2+1<1,解得k ≠0. 当k =1时,d =12,|AB |=2r 2-d 2=2,则△OAB 的面积为12×2×12=12;当k =-1时,同理可得△OAB 的面积为12,则“k =1”是“△OAB 的面积为12”的充分不必要条件.7.、、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.D [解析]由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞). 8.[2014·福建卷] 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)8.B [解析]由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B.9.、[2014·福建卷] 设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .52B.46+ 2 C .7+2D .6 29.D [解析]设圆心为点C ,则圆x 2+(y -6)2=2的圆心为C (0,6),半径r = 2.设点Q (x 0,y 0)是椭圆上任意一点,则x 2010+y 20=1,即x 20=10-10y 20, ∴|CQ |=10-10y 20+(y 0-6)2=-9y 20-12y 0+46=-9⎝⎛⎭⎫y 0+232+50, 当y 0=-23时,|CQ |有最大值52,则P ,Q 两点间的最大距离为5 2+r =6 2. 10.、[2014·福建卷] 用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)10.A [解析]从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a +a 2+a 3+a 4+a 5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b 5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+C 15c +C 25c 2+C 35c 3+C 45c 4+C 55c 5=(1+c )5,根据分步乘法计数原理得,适合要求的所有取法是(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5.11.[2014·福建卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.11.1 [解析]作出不等式组表示的平面区域(如图所示),把z =3x +y 变形为y =-3x +z ,则当直线y =3x +z 经过点(0,1)时,z 最小,将点(0,1)代入z =3x +y ,得z min =1,即z =3x +y 的最小值为1. 12.[2014·福建卷] 在△ABC 中,A =60°,AC =4,BC =2 3,则△ABC 的面积等于________.12.2 3 [解析]由BC sin A =ACsin B ,得sin B =4sin60°23=1,∴B =90°,C =180°-(A +B )=30°,则S △ABC =12·AC ·BC sin C =12×4×23sin30°=23,即△ABC 的面积等于2 3.13.[2014·福建卷] 要制作一个容积为4m 3,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).13.160 [解析]设底面矩形的一边长为x ,由容器的容积为4m 3,高为1m 得,另一边长为4xm.记容器的总造价为y 元,则 y =4×20+2⎝⎛⎭⎫x +4x ×1×10 =80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160(元),当且仅当x =4x ,即x =2时,等号成立.因此,当x =2时,y 取得最小值160元, 即容器的最低总造价为160元.图1-414.、[2014·福建卷] 如图1-4,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.14.2e 2 [解析]因为函数y =ln x 的图像与函数y =e x 的图像关于正方形的对角线所在直线y =x 对称,则图中的两块阴影部分的面积为S =2⎠⎛1eln x d x =2(x ln x -x)|e1=2[(elne -e )-(ln 1-1)]=2,故根据几何概型的概率公式得,该粒黄豆落到阴影部分的概率P =2e2.15.、[2014·福建卷] 若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.15.6 [解析]若①正确,则②③④不正确,可得b ≠1不正确,即b =1,与a =1矛盾,故①不正确;若②正确,则①③④不正确,由④不正确,得d =4;由a ≠1,b ≠1,c ≠2,得满足条件的有序数组为a =3,b =2,c =1,d =4或a =2,b =3,c =1,d =4.若③正确,则①②④不正确,由④不正确,得d =4;由②不正确,得b =1,则满足条件的有序数组为a =3,b =1,c =2,d =4;若④正确,则①②③不正确,由②不正确,得b =1,由a ≠1,c ≠2,d ≠4,得满足条件的有序数组为a =2,b =1,c =4,d =3或a =3,b =1,c =4,d =2或a =4,b =1,c =3,d =2;综上所述,满足条件的有序数组的个数为6.16.、、[2014·福建卷] 已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.16.解:方法一:(1)因为0<α<π2,sin α=22,所以cos α=22.所以f (α)=22×⎝⎛⎭⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 =12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4, 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 =12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4. (1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .17.、、[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-517.解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD . 以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝⎛⎭⎫0,12,12. 则BC →=(1,1,0),BM →=⎝⎛⎭⎫0,12,12,AD →=(0,1,-1). 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ, 则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63.即直线AD 与平面MBC 所成角的正弦值为63. 18.、、[2014·福建卷] 为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: (i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望. (2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.18.解:(1)设顾客所获的奖励额为X .(i)依题意,得P (X =60)=C 11C 13C 24=12.即顾客所获的奖励额为60元的概率为12,(ii)依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=16003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.19.、[2014·福建卷] 已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率. (2)如图1-6,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.图1-619.解:方法一:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x , 所以ba =2,所以c 2-a 2a =2,故c =5a ,从而双曲线E 的离心率 e =ca= 5. (2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB 的面积为8,所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝⎛⎭⎫-mk ,0.记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x得y 1=2m 2-k ,同理得y 2=2m2+k .由S △OAB =12|OC |·|y 1-y 2|,得12⎪⎪⎪⎪-m k ·⎪⎪⎪⎪2m 2-k -2m 2+k =8,即m 2=4||4-k 2=4(k 2-4).由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 216=1得(4-k 2)x 2-2kmx -m 2-16=0. 因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16). 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法二:(1)同方法一.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2). 依题意得-12<m <12.由⎩⎪⎨⎪⎧x =my +t ,y =2x 得y 1=2t1-2m ,同理得y 2=-2t 1+2m .设直线l 与x 轴相交于点C ,则C (t ,0).由S △OAB =12|OC |·|y 1-y 2|=8,得12|t |·⎪⎪⎪⎪2t 1-2m +2t 1+2m =8.所以t 2=4|1-4m 2|=4(1-4m 2).由⎩⎪⎨⎪⎧x =my +t ,x 2a 2-y 24a 2=1得(4m 2-1)y 2+8mty +4(t 2-a 2)=0. 因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0,即4m 2a 2+t 2-a 2=0, 即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0,所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法三:(1)同方法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).依题意得k >2或k <-2.由⎩⎪⎨⎪⎧y =kx +m ,4x 2-y 2=0得(4-k 2)x 2-2kmx -m 2=0, 因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k 2, 又因为△OAB 的面积为8,所以12|OA |·|OB |·sin ∠AOB =8,又易知sin ∠AOB =45, 所以25x 21+y 21·x 22+y 22=8,化简得x 1x 2=4. 所以-m 24-k2=4,即m 2=4(k 2-4). 由(1)得双曲线E 的方程为x 2a 2-y 24a2=1, 由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2-y 24a 2=1得(4-k 2)x 2-2kmx -m 2-4a 2=0. 因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0,即(k 2-4)(a 2-4)=0,所以a 2=4,所以双曲线E 的方程为x 24-y 216=1. 当l ⊥x 轴时,由△OAB 的面积等于8可得l :x =2,又易知l :x =2与双曲线E :x 24-y 216=1有且只有一个公共点.综上所述,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1. 20.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln2.当x <ln2时,f ′(x )<0,f (x )单调递减;当x >ln2时,f ′(x )>0,f (x )单调递增.所以当x =ln2时,f (x )取得极小值,且极小值为f (ln2)=e ln2-2ln2=2-ln4,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln2)=2-ln4>0,故g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x .故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c>1,要使不等式x 2<c e x 成立,只要e x >kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立.令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x. 所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln2)+3(k -ln k )+5k ,易知k >ln k ,k >ln2,5k >0,所以h (x 0)>0.即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x . 综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法二:(1)同方法一.(2)同方法一.(3)对任意给定的正数c ,取x 0=4c, 由(2)知,当x >0时,e x >x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22, 当x >x 0时,e x >⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2, 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法三:(1)同方法一.(2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x . 证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=-1<0,即13x 3<e x . 取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x . 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .21.、、[2014·福建卷] (Ⅰ)选修4-2:矩阵与变换已知矩阵A 的逆矩阵A -1=错误!).(1)求矩阵A ;(2)求矩阵A -1的特征值以及属于每个特征值的一个特征向量.(Ⅰ)解:(1)因为矩阵A 是矩阵A -1的逆矩阵,且||A -1=2×2-1×1=3≠0,所以A =13⎝ ⎛⎭⎪⎫ 2 -1-1 2=错误!)). (2)矩阵A -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2-1-1λ-2=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A -1的特征值为λ1=1或λ2=3,所以ξ1=⎝ ⎛⎭⎪⎫1-1)是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=⎝ ⎛⎭⎪⎫11)是矩阵A -1的属于特征值λ2=3的一个特征向量. (Ⅱ)选修4-4:坐标系与参数方程已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.(Ⅱ)解:(1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16.(2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =错误!≤4,解得-25≤a ≤2 5.(Ⅲ)选修4-5:不等式选讲已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.(Ⅲ)解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)由(1)知p +q +r =3,又p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.。
2014福建省厦门市高三毕业班适应性考试理科数学试卷和答案

2014年高中毕业班适应性考试数学(理科)试题注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷内填写学校、班级、学号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题所给的四个答案中有且只有一个答案是正确的.请将答案填涂在答题卡的相应位置. 1.已知集合{}i A ,1-=,i 为虚数单位,则下列选项正确的是 A .A i ∈1 B .A ii∈+-11 C .A i ∈5 D .A i ∈- 2. “d c b a >>,”是“a c b d +>+”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3.已知{2,3}a ∈,{1,2,3}b ∈,执行右边程序框图,则输出的结果共有A .3种B .4种C .5种D .6种4.已知服从正态分布2(,)N μσ的随机变量在区间(,)μσμσ-+,(2,2)μσμσ-+和(3,3)μσμσ-+ 内取值的概率分别为68.3%,95.4%和99.7%.某校高一年级1000名学生的某次考试成绩服从正态分布2(90,15)N ,则此次成绩在(60,120)范围内的学生大约有 A .997人B .972人C .954人D .683人5.设()f x 是周期为4的奇函数,当02x ≤≤时,()(2)f x x x =-,则(5)f -等于 A. 1 B.1- C.3 D.3-6.甲、乙、丙、丁四个人排成一行,则乙、丙位于甲的同侧的排法种数是A .16B .12C .8D .6 7.数列{}n a 的前n 项和为n S ,前n 项积为n ∏,且(1)n n n +∏=,则5S 等于 A .31 B .62 C .124 D .126 8.在ABC ∆中, AD 是BC 边上的高,给出下列结论:否是(第3题图)①0)(=-⋅;≥+;③B =;其中结论正确的个数是A .0B .1C .2D .39.如图,棱长为1的正方体1111D C B A ABCD -中,P 为线段B A 1上的动点,则下列结论错误..的是 A .P D DC 11⊥ B .平面⊥P A D 11平面AP A 1C .1APD ∠的最大值为090 D .1PD AP +的最小值为22+10.已知圆221:(2)16O x y -+=和圆2222:(02)O x y r r +=<<,动圆M 与圆1O ,圆2O 都相切,动圆的圆心M 的轨迹为两个椭圆,这两个椭圆的离心率分别为1e ,2e (12e e >),则122e e +的最小值是B.32D.38 第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.请将答案填写在答题卡的相应位置. 11.把函数sin 2y x =的图象向右平移3个单位后,得到函数()f x 的图象,则函数()f x 的解析式为 .12.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是 .13.已知函数2 21,0,(),0.x x x x f x e x ⎧-++>=⎨≤⎩则满足()1f x ≤的实数x 的取值范围是 .14.设不等式组⎪⎩⎪⎨⎧≤+-≤≥02,2,0y ax y x 表示区域为D ,且圆422=+y x 在D 内的弧长为2π,则实数a 的值等于 .PD 1C 1B 1A 1DCBA(第9题图)(第12题图)15.A 、B 两地相距1千米,B 、C 两地相距3千米,甲从A 地出发,经过B 前往C 地,乙同时从B 地出发,前往C 地.甲、乙的速度关于时间的关系式分别为14()1v t t =+和2()v t t =(单位:千米/小时).甲、乙从起点到终点的过程中,给出下列描述:①出发后1小时,甲还没追上乙 ② 出发后1小时,甲乙相距最远 ③甲追上乙后,又被乙追上,乙先到达C 地 ④甲追上乙后,先到达C 地 其中正确的是 .(请填上所有描述正确的序号) 三、解答题:本大题共6小题,共80分.解答应写出必要文字说明、证明过程或演算步骤.请在答题卡的相应位置作答. 16.(本小题满分13分) 已知函数()4sin()cos 16f x x x π=-+.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)若,,A B C 是ABC ∆的三个内角,且()1f A =,4B π=,又2AC =,求BC 边的长.17. (本小题满分13分)如图1,直角梯形ABCD 中,090,//=∠BAD CD AB ,2==AD AB ,4=CD ,点E 为线段AB 上异于B A ,的点,且AD EF //,沿EF 将面EBCF 折起,使平面⊥EBCF 平面AEFD ,如图2.(Ⅰ)求证://AB 平面DFC ;(Ⅱ)当三棱锥ABE F -体积最大时,求平面ABC 与平面AEFD 所成的锐二面角的余弦值.18. (本小题满分13分)已知圆22:(1)(1)2C x y -+-=经过椭圆2222:1(0)x y a b a bΓ+=>>的右焦点F 和上顶点B .(Ⅰ)求椭圆Γ的方程;(第17题图)(Ⅱ)过原点O 的射线l 与椭圆Γ在第一象限的交点为Q ,与圆C 的交点为P ,M 为OP 的中点,求OM OQ ⋅的最大值.19.(本小题满分13分)自驾游从A 地到B 地有甲乙两条线路,甲线路是A-C-D-B ,乙线路是A-E-F-G-H-B ,其中CD 段,EF 段,GH 段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表1所示.费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD 段平均堵车时间,调查了100名走甲线路的司机,得到表2数据. (Ⅰ)求CD 段平均堵车时间a 的值;(Ⅱ)若只考虑所花汽油费的期望值大小,为了节约,求选择走甲线路的概率.(第18题图) (表1)20.(本小题满分14分)已知函数cos ()(0)xf x x x =>,()sin (0)g x x ax x =->. (Ⅰ)函数cos ()(0)xf x x x=>的零点从小到大排列,记为数列{}n x ,求{}n x 的前n 项和n S ;(Ⅱ)若()()f x g x ≥在(0,)x ∈+∞上恒成立,求实数a 的取值范围;(Ⅲ)设点P 是函数()x ϕ与()x ω图象的交点,若直线l 同时与函数()x ϕ,()x ω的图象相切于P 点,且函数()x ϕ,()x ω的图象位于直线l 的两侧,则称直线l 为函数()x ϕ,()x ω的分切线.探究:是否存在实数a ,使得函数()f x 与()g x 存在分切线?若存在,求出实数a 的值,并写出分切线方程;若不存在,请说明理由.21.本题设有(1)(2)(3)三个选考题,每题7分,请考生任选两题作答,共14分.如果多做,则按所做的前两题计分. (1)(本小题满分7分)选修4-2:矩阵与变换 已知在矩阵M 对应的变换作用下,点A (1,0)变为A ′(1,0),点B (1,1)变为B ′(2,1). (Ⅰ)求矩阵M ;(Ⅱ)求2M ,3M ,并猜测nM (只写结果,不必证明).(2)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 3πρθ⎛⎫-=⎪⎝⎭,曲线C 的参数方程为1cos ,sin x αy α=+⎧⎨=⎩(α为参数,0απ≤≤).(Ⅰ)写出直线l 的直角坐标方程;(Ⅱ)求直线l 与曲线C 的交点的直角坐标. (3)(本小题满分7分)选修4-5:不等式选讲已知,,a b c R +∈,且3a b c ++=,222a b c ++的最小值为M . (Ⅰ)求M 的值;(Ⅱ)解关于x 的不等式|4||1|x x M +--≥.2014年高中毕业班适应性考试数学(理科)试题参考答案一、选择题:本大题共10小题,每小题5分,共50分. 在每小题所给的四个答案中有且只有一个答案是正确的.请将答案填涂在答题卡的相应位置. 1~10:CABCB ABDCA9.提示:⊥1DC 面11BCD A ,∴A 正确;⊥11A D 面11A ABB ,∴B 正确;当2201<<P A 时,1APD ∠为钝角,∴C 错;将面B AA 1与面11A ABB 沿B A 1展成平面图形,线段D A 1即为1PD AP +的最小值,解三角形易得D A 1=22+, ∴D 正确.故选C.10.提示:①动圆与两定圆都内切时:1122||4||||4||MO R MO MO r MO R r =-⎧⇒+=-⎨=-⎩,所以24e r =-②动圆与两定圆分别内切,外切时:1122||4||||4||MO R MO MO r MO R r =-⎧⇒+=+⎨=+⎩,所以24e r =+ 122202,44r e e r r<<∴=>=-+ 处理1:12114e e +=,再用均值求122e e +的最小值;处理2:1224244e e r r+=+=-+ 二、填空题:本大题共5小题,每小题4分,共20分.请将答案填写在答题卡的相应位置. 11.()sin(26)f x x =- 12.5913.(,0][2,)-∞+∞ 14.1 15.④15.提示:经过x 小时,甲乙走过的路程分别为104()4ln(1)1xS dt x t ==++⎰, 220 2xx S t d t ==⎰,令4ln(1)41x x e +=⇒=-,232x x =⇒=令24ln(1)12x x +=+,设2()4ln(1)12x F x x =+--…三、解答题:本大题共6小题,共80分.解答应写出必要文字说明、证明过程或演算步骤.请在答题卡的相应位置作答.16.本题考查三角恒等变换、三角函数图象及其性质、解三角形等基础知识;考查学生运算求解能力;考查数形结合思想和分类整合思想.满分13分.解:(Ⅰ)()4sin()cos 16f x x x p =-+1cos )cos 12x x x =-+ -----------1分2cos 21x x cos x =-+2cos2x x =- -------------------3分2sin(2)6x p=---------------------4分 令 222()262k x k k Z p p p p p -?? -----------------------5分 解得 (Z)63k x k k p p p p -#+ ∴函数()f x 的递增区间是[,](Z)63k k k p pp p -+ . --------------------------6分 (Ⅱ)由()1f A =得, 1sin(2)62A p -=,∵0A p << , ∴6A p = 或2A p= . -------8分(1)当6A p=时,由正弦定理得,2sinsin 6sin sin sinB sin 4BC ACAC A BC A Bpp ×=?== ---------------------------------10分(2) 当2A p=时,由正弦定理得, 2sinsin 2sin sin sinB sin 4BC ACAC A BC A Bpp ×=?== ----------------------------------12分综上,BC =或BC = ------------------------------------------------------13分17.本题考查立体几何中的线面、面面关系,空间角,空间向量在立体几何中的应用等基础知识;考查运算求解能力、空间想象能力;考查数形结合思想、化归与转化等数学思想.满分13分.(Ⅰ)证明:∵CF BE //,⊄BE 面DFC ,⊂CF 面DFC ,∴//BE 面DFC , --------------------2分 同理//AE 面DFC , --------------------3分 又E AE BE = ,∴面//ABE 面DFC , --------------------4分 又⊂AB 面ABE ,∴//AB 面DFC . --------------------5分 (Ⅱ)法一:∵面⊥EBCF 面AEFD ,又EF CF ⊥,面 EBCF 面EF AEFD =,∴⊥CF 面AEFD .以FE 所在直线为x 轴,FD 所在直线为y 轴,FC 所在直线为z 轴,建立空间直角坐标系xyz F -, -----------------------7分 设)20(<<=x x AE ,则x EB -=2,2)2(213131⨯-⨯=⨯=∆-x x EF S V ABE ABE F 31)1(312+--=x , ∴当1=x 时,三棱锥ABE F -体积最大. -----------------------9分 ∵)3,0,0(),1,0,2(),0,1,2(C B A , ∴)3,1,2(),2,0,2(-=-=CA CB , ---------10分设平面CBA 的法向量),,(000z y x m =,⎪⎩⎪⎨⎧=⋅=⋅0m m CB , ∴⎩⎨⎧=-+=-032000000z y x z x , 令10=x ,得平面CBA 的一个法向量)1,1,1(=m, -------------------------11分 又面AEFD 的一个法向量为)2,0,0(=,∴33232,cos =⨯=>=<m, --------------------------12分∴平面ABC 与平面AEFD 所成锐二面角的余弦是33. --------------------13分 法二:∵面⊥EBCF 面AEFD ,又EF CF ⊥,面 EBCF 面EF AEFD =,∴⊥CF 面AEFD以FE 所在直线为x 轴,FD 所在直线为y 轴,FC 所在直线为z 轴,建立空间直角坐标系xyz F -. -------------------------2分 设)20(<<=x x AE ,则x EB -=2.(Ⅰ))2,,0(),2,,0,2(),0,,2(x x x B x A --=-, -------------------------3分面DCF 的一个法向量为)0,0,2(=, ---------------------------4分00)2(0)(02=⨯-+⨯-+⨯=⋅x x ,∴FE AB ⊥,又⊄AB 面DFC ,∴//AB 面DFC . --------------------------7分 (Ⅱ)同法一.18.本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.满分13分. 解:(Ⅰ)在22:(1)(1)2C x y -+-=中,令0y =得(2,0)F ,即2c =,令0x =,得(0,2)B ,即2b =, -------------------2分由2228a b c =+=,∴椭圆Γ:22184x y +=. ------------------4分(Ⅱ)法一:依题意射线l 的斜率存在,设:(0,0)l y kx x k =>>,设1122(,),(,)P x kx Q x kx -5分22184y kxx y =⎧⎪⎨+=⎪⎩得:22(12)8k x +=,∴2x = ---------------6分 22(1)(1)2y kx x y =⎧⎨-+-=⎩得:22(1)(22)0k x k x +-+=,∴1x =, ---------7分 ∴11(,)22x kx OM OQ ⋅=⋅22212121(,)()0)2x kx x x k x x k =+=>. -------9分=设2221()12k k k k ϕ++=+,2/22422()(12)k k k k ϕ--+=+,令2/22422()0(12)k k k k ϕ--+=>+,得112k -<<.又0k >,∴()k ϕ在1(0,)2单调递增,在1(,)2+∞单调递减. -----------11分∴当12k =时,max 13()()22k ϕϕ==,即OM OQ ⋅的最大值为. -------13分法二:依题意射线l 的斜率存在,设:(0,0)l y kx x k =>>,设1122(,),(,)P x kx Q x kx ---5分22184y kxx y =⎧⎪⎨+=⎪⎩得:22(12)8k x +=,∴2x =分 ()OM OQ OC CM OQ OC OQ ⋅=+⋅=⋅ =222(1,1)(,)(1)x kx k x ⋅=+=0)k > ---------------9分=设1(1)t k t =+>,则222222(1)1131112212243224()3()3[()]33k t k t t t t t +===≤+-+-+-+.当且仅当12,3t =即max []OM OQ ⋅=.法三:设点00(,)Q x y ,000,0x y >>,()OM OQ OC CM OQ OC OQ ⋅=+⋅=⋅ --------------------6分 =0000(1,1)(,)x y x y ⋅=+ . -----------------7分 又2200184x y +=, 设00b x y =+与2200184x y +=联立得:220034280x bx b -+-= . --------------9分令2201612(28)0b b b ∆=⇔--=⇒=±分 又点00(,)Q x y 在第一象限,∴当0x =时,OM OQ ⋅取最大值. -----13分 19.本题考查利用频率分布表求平均数,相互独立事件同时发生的概率,离散型随机变量分布列,数学期望,几何概型等基础知识;考查运用统计、概率、数学期望等数学知识解决实际问题的能力,以及运算求解能力;考查数形结合数学思想方法. 满分13分.解:(Ⅰ)a =863824240.5 1.5 2.5 3.5 4.5100100100100100⨯+⨯+⨯+⨯+⨯ ------------2分 499584108100100100100100=++++=3. ----------------4分(Ⅱ)设走甲线路所花汽油费为ξ元,则500(1)(50060)50060E x x x ξ=-++=+. ----------------5分 法一:设走乙线路多花的汽油费为η元,∵EF 段与GH 段堵车与否相互独立, ∴11(0)(1)(1) , (20)(1)44P y P y ηη==--==-⋅, 11(40)(1) , (60)44P y P y ηη==-==, ----------------7分11110(1)(1)20(1)40(1)604444E y y y y η∴=⋅--+⋅-+⋅-+⋅405y =+. ----8分∴走乙线路所花的汽油费的数学期望为(545)54555040E E y ηη+=+=+.--9分 依题意,选择走甲线路应满足 (55040)(50060)0y x +-+≥, ------------10分即6450x y --≤,又211 , 032x y <<<<, P ∴(选择走甲线路)21151(1)(1)732264218(1)32-⋅-⋅-⋅==-⋅. ----------------13分法二:在EF 路段多花汽油费的数学期望是20240y y ⨯=元, ---------------6分在GH 路段多花汽油费的数学期望是120154⨯⨯=元, ----------------7分 因为EF 、GH 路段堵车与否相互独立,所以走乙路线多花汽油费的数学期望是405y +元. ----------------8分 以下解法同法一.20.本题考查三角函数、导数及其应用、等差数列等基础知识;考查运算求解能力、等价转化能力;考查化归与转化、函数与方程、有限与无限等数学思想方法.满分14分. 解:(Ⅰ)∵cos 0x x =,0x > ∴cos 0x = ∴2x k ππ=+,k Z Î. -------------1分 ∴(1)2n x n ππ=+-, ----------------2分∴2(1)222n n n n n S πππ-=+=. ----------------4分 (Ⅱ)∵()()f x g x ≥在(0,)x ∈+∞上恒成立,∴2sin cos x x xa x -≥在(0,)x ∈+∞上恒成立. ----------------5分设2sin cos ()x x x x x ϕ-=, ∴23cos (2)()x x x x ϕ+'=, ---------------6分 ∴()x ϕ在(0,)2π单调递增,3(,)22ππ单调递减,3(,)()22k k k Z ππππ+++∈单调递增,35(,)()22k k k Z ππππ+++∈单调递增, ∴()x ϕ的极大值为1(2)()222k k N k πϕπππ+=∈+,∴()x ϕ的最大值为2()2πϕπ=, ∴2a π≥ . ----------------8分(Ⅲ)若函数()f x 与()g x 存在分切线,则有“()()f x g x ≥”或“()()f x g x ≤”在(0,)+∞ 上恒成立,∵当0x →时,cos ()xf x x=→+∞,()sin 0g x x ax =-→. ∴0(0,)x ε∃∈,使得()()f x g x >, ∴()()f x g x ≤在(0,)+∞不恒成立. ∴只能是()()f x g x ≥在(0,)+∞上恒成立. ------------9分 ∴由(Ⅱ)可知2a π≥, ∵函数()f x 与()g x 必须存在交点, ∴2a π=.----10分当2a π=时,函数()f x 与()g x 的交点为(,0)2π,∵2()()22f g πππ''=-=, ∴存在直线21y x π=-+在点(,0)2π处同时与()f x 、()g x 相切, ∴猜测函数()f x 与()g x 的分切线为直线21y x π=-+. ----------11分证明如下: ①∵22cos 2()(1)x x xf x x xππ+---+=,设22()cos h x x x x π=+-,则4()sin 1h x x x π'=-+-. 令4()sin 1t x x x π=-+-,则有4()cos 0t x x π'=-+>.∴()h x '在(0,)+∞上单调递增,∴()h x '在(0,)+∞上有且只有一个零点. 又∵()02h π'=,∴()h x 在(0,)2π单调递减,在(,)2π+∞单调递增,∴()()02h x h π≥=,∴2()(1)0f x x π--+≥,即2()1f x x π≥-+在(0,)+∞上恒成立.∴函数()f x 的图象恒在直线21y x π=-+的上方. ---------------13分②∵2()(1)sin 10g x x x π--+=-≤在(0,)+∞上恒成立,∴函数()g x 的图象恒在直线21y x π=-+的下方.∴由此可知,函数()f x 与()g x 的分切线为直线21y x π=-+,∴当2a π=时,函数()f x 与()g x 存在分切线,为直线21y x π=-+. ---------14分21. (1)选修4-2:矩阵与变换本小题主要考查矩阵与变换、矩阵的乘法等基础知识;考查运算求解能力;函数与方程、特殊与一般的数学思想.满分7分解:(Ⅰ)设a b M c d ⎛⎫=⎪⎝⎭,则1100a b c d ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,1211a b c d ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, -------------1分∴1021a c a b c d =⎧⎪=⎪⎨+=⎪⎪+=⎩, 解得1101a b c d =⎧⎪=⎪⎨=⎪⎪=⎩ . -------------2分∴1101M ⎛⎫= ⎪⎝⎭. ------------------3分(Ⅱ)2111112010101M ⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, -------------------4分32111213010101M M M ⎛⎫⎛⎫⎛⎫=⋅== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, -----------------6分猜测101n n M ⎛⎫= ⎪⎝⎭. ----------------7分(2)选修4-4:坐标系与参数方程本小题主要考查直线的极坐标方程、圆的参数方程及其几何意义、直线与圆的位置关系、极直互化等基础知识;考查运算求解能力;数形结合思想.满分7分.解:(Ⅰ)∵sin 32πρθ⎛⎫-= ⎪⎝⎭,∴1sin 2ρθθ⎫-=⎪⎪⎝⎭----------------1分12x y -=即所求直线l0y -=. ----------3分(Ⅱ)曲线C 的直角坐标方程为:()()221101x y y -+=≤≤ , ---------------4分∴()22011y x y -=-+=⎪⎩,解得322x y ⎧=⎪⎪⎨⎪=⎪⎩或122x y ⎧=⎪⎪⎨⎪=-⎪⎩. -------------------6分 所以,直线l 与曲线C的交点的直角坐标为32⎛ ⎝⎭. -----------------7分(3)选修4-5:不等式选讲本小题主要考查利用柯西不等式求最值、绝对值不等式的解法等基础知识;考查运算求解能力;化归与转化、分类与整合的思想.满分7分. 解:(Ⅰ)根据柯西不等式,有:()()()22222221119a b ca b c ++++≥++=,------1分∴2223a b c ++≥,当且仅当1a b c ===时等号成立. ----------------2分 即3M =. -----------------3分 (Ⅱ)|4||1|3x x +--≥可化为()()4413x x x ≤-⎧⎨-+--≥⎩或()41413x x x -<<⎧⎨+--≥⎩或()1413x x x ≥⎧⎨+--≥⎩, -----------5分 解得,x ∈∅或01x ≤<或1x ≥, ----------------------6分 所以,综上所述,原不等式的解集为[)0,+∞. -----------------------7分。
福建省厦门双十中学2024届高三下学期高考热身考试数学试题(解析版)
厦门双十中学2024届高三热身考试数学试题考试时间120分钟,祝考试顺利!一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D. 【答案】A 【解析】【分析】先化简集合B ,再根据集合间关系判断.【详解】由,得,则,所以.故选:A.2. 若方程表示焦点在轴上的椭圆,则( )A. B. C. D. 或【答案】C【解析】【分析】利用已知条件,分析椭圆的标准方程,列出不等式,求解即可.【详解】方程可化为:,因为方程表示焦点在轴上的椭圆,所以,解得.故选:C3. 设l ,m ,n 是不同的直线,m ,n 在平面内,则“且”是“”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】1{03},lg 2A x x B x x ⎧⎫=<<=<⎨⎬⎩⎭∣A B ⊆B A⊆A B ⋂=∅A B = R1lg 2x <0x <<{0B x x =<<∣A B ⊆()()222111m x m y m ++-=-x 11m -<<01m <<10m -<<10m -<<01m <<()()222111m x m y m ++-=-22111x y m m +=-+22111x y m m +=-+x 1110m m m ->+⎧⎨+>⎩10m -<<αl m ⊥l n ⊥l α⊥【分析】利用线面垂直的判定、性质,结合充分条件、必要条件的意义判断作答.【详解】若且,当时,直线可以与平面平行,此时,不能推出,若,m ,n 是平面内两条不同的直线,则,,所以“且”是“”的必要不充分的条件.故选:B4. 在菱形中,,点分别为和的中点,且,则( )A. 1 B.C. 2D.【答案】B 【解析】【分析】根据向量的线性运算以及数量积的运算律结合,求出,继而根据向量的线性运算以及数量积的运算律即可求得答案.【详解】因为点分别为和的中点,,所以,又,故选:B.5. 已知等差数列的前项和为,若,,则( )A. 52 B. 54C. 56D. 58【答案】C 【解析】【分析】由已知可得也是等差数列,可求得,进而可得.l m ⊥l n ⊥//m n l α//l αl α⊥l α⊥αl m ⊥l n ⊥l m ⊥l n ⊥l α⊥ABCD 2AB =,E F BC CD 4AB AF ⋅= AE BF ⋅=32524AB AF ⋅= 2AB AD ⋅=E F 、BC CD 211422AB AF AB AD AB AB AD AB ⎛⎫⋅=⋅+=⋅+= ⎪⎝⎭ 2AB AD ⋅=11112222A B BC BC C E BF A AB AD AD A D B ⎛⎫⎛⎫⎛⎫⎛⎫⋅+⋅=+⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+⎝⎭ 2213313222424AB AD AD AB =⨯=⋅+-= {}n a n n S 26S =420S =7S =n S n ⎧⎫⎨⎬⎩⎭787S =756S =【详解】由等差数列的前项和为,可得也是等差数列,又,,所以的公差为1,所以,所以,所以.故选:C.6 已知,则( )A. 4 B. 2C. D. 【答案】D 【解析】【分析】由已知可得,利用,可求值.【详解】因为,所以,所以.故选:D.7. 已知为奇函数,则( )A. B. C. D. 【答案】D 【解析】【分析】由函数图象平移的规则,且为奇函数,得出函数图象的对称性,进而得出的值.【详解】由函数图象平移的规则可知:函数的图象可由函数的图象向右平移个单位、向下平移个单位得到的,因为函数为奇函数,所以函数的图象关于原点对称,.{}n a n n S n S n ⎧⎫⎨⎬⎩⎭232S =454S =n S n ⎧⎫⎨⎬⎩⎭74374S S -=75387S=+=756S =4sin25α=-tan2πtan 4αα=⎛⎫+ ⎪⎝⎭2-4-251tan tan 2αα+=-tan2tan 4απα⎛⎫+ ⎪⎝⎭22tan 1tan 2tan ααα=++2222sin cos 2tan 4sin2sin cos tan 15ααααααα===-++251tan tan 2αα+=-2tan22tan 1tan tan 4ααπαα=⨯-⎛⎫+ ⎪⎝⎭221tan 2tan 2tan 41tan (1tan )1tan 2tan ααααααα-===-++++(1)1y f x =++(1)(0)(1)(2)(3)f f f f f -++++=12-10-6-5-(1)1y f x =++()y f x =(1)(0)(1)(2)(3)f f f f f -++++()y f x =(1)1y f x =++11(1)1y f x =++(1)1y f x =++所以函数的图象关于点对称,得:,即,故选:D.8. 在圆台中,圆的半径是圆半径的2倍,且恰为该圆台外接球的球心,则圆台的侧面积与球的表面积之比为( )A. B. C. D. 【答案】C 【解析】【分析】令外接球的半径为,作出图象,求出圆台的母线,即可求出圆台的侧面积,再求出球的表面积,即可得解.【详解】令外接球的半径为,依题意,,,过点作,则,所以,又,所以,所以圆台的侧面积,球的表面积,所以圆台的侧面积与球的表面积之比为.故选:C二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 袋子中有6个相同的球,分别标有数字1,2,3,4,5,6,从中随机取出两个球,设事件“取出的球的数字之积为奇数”,事件“取出的球的数字之积为偶数”,事件“取出的球的数字之和为偶数”,则()()y f x =(1,1)-(1)(0)(1)(2)(3)[(1)(3)][(0)(2)](1)f f f f f f f f f f -++++=-++++(1)(0)(1)(2)(3)f f f f f -++++2(1)2(1)(1)5=⨯-+⨯-+-=-12O O 2O 1O 2O 3:41:23:83:102R 2R 22O A R =22O B R =1O B R =B 2BC O A ⊥21O C O B R ==2AC O C R ==12BC O O ===2AB R ==()2112π2π226π2S R R R R =+⨯⨯=()2224π216πS R R =⨯=()()2212:6π:16π3:8S S R R ==A =B =C =A. B. C. 事件与是互斥事件 D. 事件与相互独立【答案】AC 【解析】【分析】分别求出事件的概率,再根据互斥事件和相互独立事件的概率进行判断.【详解】因为“取出的求的数字之积为奇数”,就是“取出的两个数都是奇数”,所以;故A 正确;“取出的球的数字之积为偶数”就是“取出的两个数不能都是奇数”,所以;“取出的两个数之和为偶数”就是“取出的两个数都是奇数或都是偶数”,所以;表示“取出的两个数的积可以是奇数,也可以是偶数”,所以;表示“取出的两个数的积与和都是偶数”,就是“取出的两个数都是偶数”,所以.因为,故B 错误;因为,所以互斥,故C 正确;因为,所以不独立,故D 错误.故选:AC10. 函数的部分图象如图所示,则下列说法中正确的是( )()15P A =()1|3P B C =A B B C ,,A B C ()2326C 31C 155P A ===()2326C 3411C 155P B =-=-=()2326C 22C 5P C =⨯=A B +()1P A B +=BC ()2326C 1C 5P BC ==()()()|P BC P B C P C =12=()()()P A B P A P B +=+,A B ()()()P BC P B P C ≠⋅,B C ()()ππ4sin 02,22f x x ωϕωϕ⎛⎫=+<≤-<< ⎪⎝⎭A.B. 的图象关于直线对称C.D. 若方程在上有且只有5个根,则【答案】ACD 【解析】【分析】根据图象可求得函数的解析式,再根据三角函数的性质依次判断各选项.【详解】对于A ,由,得,即,又,,故A 正确;对于C ,又的图象过点,则,即,,即得,,又,,所以,故C 正确;对于B ,因为,而故直线不是函数的对称轴,故B 错误;对于D ,由,得,解得或,,方程在上有5个根,从小到大依次为:,π6ϕ=-()f x πx =()12π4cos 23f x x ⎛⎫=-⎪⎝⎭()2f x =()0,m 26π,10π3m ⎛⎤∈ ⎥⎝⎦()f x ()02f =-4sin 2ϕ=-1sin 2ϕ=-ππ22ϕ-<<π6ϕ∴=-()f x π,03⎛⎫⎪⎝⎭π03f ⎛⎫= ⎪⎝⎭ππsin 036ω⎛⎫-= ⎪⎝⎭πππ36k ω∴-=132k ω=+k ∈Z 02ω<≤12ω∴=()1ππ12π12π4sin 4sin 4cos 2622323f x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-=+-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()1π4sin 26f x x ⎛⎫=-⎪⎝⎭()ππππ4sin 4sin 263f ⎛⎫=-== ⎪⎝⎭πx =()f x ()2f x =12π1cos 232x ⎛⎫-= ⎪⎝⎭2π4πx k =+2π4π3k +Z k ∈()2f x =()0,m 2π14π26π,2π,,6π,333而第7个根为,所以,故D 正确.故选:ACD.11. 已知双曲线C :的左、右焦点分别为,,直线:与C 的左、右两支分别交于M ,N 两点(点N 在第一象限),点在直线上,点Q 在直线上,且,则()A. C 的离心率为3B. 当时,C.D. 为定值【答案】BCD 【解析】【分析】根据离心率的公式即可求解A ,联立直线与抛物线方程, 根据弦长公式即可求解B ,根据二倍角公式以及斜率关系即可求解C ,根据角的关系即可求解线段长度相等,判断D.【详解】由题意得,,故A错误;联立,得,解得或,则,故B 正确;由直线:可知,又,,故在线段的中垂线上,设,的斜率分别为,,,故直线的方程为,联立,得,设,则,,故.10π26π10π3m <≤2213y x -=1F 2F l ()1x my m =-∈R 01,2P y ⎛⎫⎪⎝⎭l 2NF 12QF PF ∥m =MN =22PF M NF P ∠=∠2QF 1,a b ==2c e a ===22113x y x ⎧=-⎪⎨-=⎪⎩2803y -=0y =y =0MN =-=l ()1x my m =-∈R ()1,0M -1,2a b c ===01,2P y ⎛⎫⎪⎝⎭P 2MF PM 2PF k k -()1,0M -MP ()1y k x =+()22113y k x y x ⎧=+⎪⎨-=⎪⎩()22223230k x k x k ----=()11,N x y 212213k x k -+=-21233k x k +=-22236,33k k N k k ⎛⎫+ ⎪--⎝⎭当轴时,,是等腰直角三角形,且易知;当不垂直于x 轴时,直线的斜率为,故,因为,所以,所以,,故C 正确;因为,故,故,故D 正确.故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12. 若复数在复平面内对应的点位于第三象限,则实数的取值范围是__________.【答案】【解析】【分析】由实部和虚部都小于零解不等式组求出即可.【详解】由题意得,,解得,∴实数的取值范围是.故答案为:.13. 已知的展开式中所有项的系数之和为32,则展开式中的常数项为______.【答案】270【解析】2NF x ⊥2223b MF a c NF a=+===2MF N 2245PF M NF P ∠=∠=︒2NF 2NF 22226233123k k k k k k -=+---222tan 1k NF M k ∠=--2tan PF M k ∠=2222tan 2tan 1kPF M NF M k∠==∠-222PF M NF M ∠=∠22PF M NF P ∠=∠12QF PF ∥212221F FQ PF M NF P F QF ∠=∠=∠=∠2124QF F F ==()()45i z a a =+-+a ()5,4--()4050a a +<⎧⎨-+<⎩54a -<<-a ()5,4--()5,4--5233a x x ⎛⎫+ ⎪⎝⎭【分析】首先利用赋值法求出所有项的系数和,建立方程求出参数,然后利用二项展开式的通项求常数项即可.【详解】令,展开式中所有项的系数之和为,所以,解得,所以展开式的通项,令,得,所以常数项为.故答案为:270.【点睛】对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式中各项系数之和,只需令即可.14. 在中,角,,的对边分别为,,,,的平分线交于点,且,则的最小值为______.【答案】##【解析】【分析】借助等面积法及基本不等式计算即可得.【详解】如图所示,由题意知,因为是的平分线且,,可得,即,即,且,,则,当且仅当,即也即时,等号成立,则的最小值为.故答案为:.的a1x =5233a x x⎛⎫+ ⎪⎝⎭()5332a +=32a +=1a =-()()52510515531331rrr rr rr r T C xC x x ---+⎛⎫=-=- ⎪⎝⎭1050r -=2r =()2233531270T C =⨯⨯-=()(),nax b a b R +∈1x =()(),nax by a b R +∈1x y ==ABC A B C a b c 120ABC ∠=︒ABC ∠AC D 1BD =2a c +3+3+ABC ABD BCD S S S =+△△△BD ABC ∠120ABC ∠=︒1BD =111sin1201sin 601sin 60222ac c a ︒=⨯⨯︒+⨯⨯︒ac a c =+111a c+=0a >0c >()11222333a c a c a c a c c a ⎛⎫+=++=++≥+=+⎪⎝⎭2c a a c =c =11a c =+=+2a c +3+3+四、解答题:本题共5 小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 正方体的棱长为2,分别是的中点.(1)求证:面;(2)求点到平面的距离.【答案】(1)证明见解析 (2)【解析】【分析】(1)利用中位线定理构建线线平行,再利用线面平行判定定理证明线面平行即可.(2)利用线面平行合理转化点面距离,再利用等体积法处理即可.【小问1详解】连接,因为分别是的中点,由中位线定理得,又,所以,所以四点共面,由于是AD 的中点,则且那么四边形为平行四边形,从而,又面面故面,【小问2详解】的1111ABCD A B C D -,,E F G 1,CC BC AD ,CG //1D EF G 1D EF 2311,,D A FA BC ,E F 1,CC BC EF //1BC 1BC //1D A EF //1D A 1,,,A F E D G AG //FC ,AG FC =AGCF CG //AF CG ⊄1,D EF AF ⊂1,D EF CG //1D EF由上问结论知点到平面的距离等于点到平面的距离.易得,利用余弦定理得则设点到平面的距离,利用等体积法,可得,即点到平面距离为.16. 已知函数.(1)当时,求函数的单调区间;(2)若不等式对任意的恒成立,求实数m 的取值范围.【答案】(1)递增区间为,递减区间为(2)【解析】【分析】(1)求出导函数后借助导函数的正负即可得原函数的单调性;(2)可借助,得到,在的情况下,借助,从而构造函数,结合该函数的单调性及最值即可得解;亦可通过参变分离,得到对任意的恒成立,通过研究得解.【小问1详解】当时,,其定义域为,,的G 1D EF C 1D EF 113D E EF D F ===1cos D EF ∠==1111113sin sin .222D EF D EF S DE EF D EF ∠==⋅⋅∠== C 1D EF d 11111133C D EF CEF D EF V S D C S d -∆=⋅=⋅ 111111222332CEF D EF S D C d S ⨯⨯⨯⋅=== G 1D EF 23()2ln ()m f x x x m x=-+∈R 3m =-()f x ()0f x ≤[1,)x ∈+∞(0,3)(3,)+∞(,1]-∞(1)0f ≤1m £1m £1()2ln 2ln m f x x x x x x x =-+≤-+1()2ln g x x x x=-+22ln m x x x ≤-[1,)x ∈+∞2()2ln h x x x x =-3m =-3()2ln f x x x x=--(0,)+∞()()2222312323()1x x x x f x x x x x--+-++='=-+=令,得(舍去),当时,,函数单调递增;当时,,函数单调递减.所以函数的单调递增区间为,单调递减区间为;【小问2详解】方法1:由条件可知,于是,解得.当时,,构造函数,,,所以函数在上单调递减,于是,因此实数m 的取值范围是.方法2:由条件可知对任意的恒成立,令,,只需即可.,令,则,所以函数在上单调递增,于是,所以函数在上单调递增,所以,于是,因此实数m 的取值范围是.17. 某地推动乡村振兴发展,推广柑橘种植,经品种改良,农民经济收入显著提高.为了解改良效果,合作社工作人员在该农村地区2000棵果树抽取20棵测量果实平均直径(单位:cm ).得到数据如下:7.11 7.35 6.93 7.11 7.06 7.23 7.16 7.05 7.12 7.096.877.19 7.12 7.08 7.12 7.11 7.25 6.99 7.12 7.14根据经验,果实平均直径服从正态分布,以样本平均数作为的估计值,样本标准差作为的估计值.为提高果实品质,需要将直径小于的果实提前去除,果实直径大于7.2cm 的即为()0f x '=3x ==1x -03x <<()0f x '>()f x 3x >()0f x '<()f x ()f x (0,3)(3,)+∞(1)0f ≤10m -≤1m £1m £1()2ln 2ln m f x x x x x x x =-+≤-+1()2ln g x x x x=-+1x ≥()222121()10x g x x x x -=---'=≤()g x [1,)+∞()(1)0g x g ≤=(,1]-∞22ln m x x x ≤-[1,)x ∈+∞2()2ln h x x x x =-1x ≥min [()]m h x ≤()()()22ln 12ln 1h x x x x x =-+=--'()ln 1x x x μ=--()10x x xμ-'=≥()h x '[1,)+∞()()10h x h ''≥=()h x [1,)+∞()()min 11h x h ⎡⎤==⎣⎦1m £(,1]-∞()2,N μσx μ μs σ σ3μσ-优果,在该种培育方法下,平均每棵果树结果50个.经计算得,.(1)估计优果的个数;(2)为进一步提升柑橘质量,需要清除果实较小的果树,专家建议在每棵果树中抽取个测量果实直径,如果出现果实小于的果实,则认为该果树为果实较小.(ⅰ)试说明此种方案犯错误的概率会随着摘取果实数的增加而增加;(ⅱ)根据小概率值及(ⅰ)中结论确定的值,估计该地所有果树中需要检验的果实的总个数.附:若,则;,.【答案】(1)(2)说明见解析;3, 【解析】【分析】(1)根据样本估计总体的思想求解即可;(2)根据正态分布和独立重复试验的二项分布规律即可求解.【小问1详解】根据题意,20棵样本果树中果实平均直径大于7.2cm 的有3棵,所以该农村地区2000棵果树中果实平均直径大于7.2cm 的有棵,平均每棵果树结果50个,所以估计优果的个数为(个);【小问2详解】(ⅰ)因为,所以,所以,个测量果实直径,出现果实小于的果实的概率为:,当越来越大时,越来越小,越来越大,所以试说明此种方案犯错误的概率会随着摘取果实数的增加而增加;7.11x =0.11s ≈n 3μσ-0.005α=n ()2,X N μσ ()30.9973P X μσ-<=ln 0.9950.005≈-ln 0.998650.0014≈-1500060003200030020⨯=3005015000⨯=()30.9973P X μσ-<=()330.9973P X σμσ-<-<=()10.997330.001352P X u σ-<-==n 3μσ-()()()001C 10.001350.0013510.99865n nn p =-⨯-⨯=-n ()0.99865n ()10.99865n -(ⅰⅰ)得,,因为为整数,所以,估计该地所有果树中需要检验的果实的总个数为个.18. 设抛物线的焦点为,已知点到圆上一点的距离的最大值为6.(1)求抛物线的方程.(2)设是坐标原点,点是抛物线上异于点的两点,直线与轴分别相交于两点(异于点),且是线段的中点,试判断直线是否经过定点.若是,求出该定点坐标;若不是,说明理由.【答案】(1)(2)过定点,定点坐标为【解析】【分析】(1)点到圆上点的最大距离为,即,计算即可;(2)由已知设,求得则,方程,联立与抛物线的方程求得点坐标,同理可得点坐标,进而求得直线的方程得出结果.【小问1详解】点到圆上点的最大距离为,即,得,故抛物线的方程为.【小问2详解】设,则方程,方程为,联立与抛物线的方程可得,即,为()10.998650.005n-<ln 0.9950.005 3.57ln 0.998650.0014n -<≈≈-n 3n =320006000⨯=2:2(0)C y px p =>F F 22:(3)1E x y ++=C O ()2,4,,P A B C P ,PA PB y ,M N O O MN AB 28y x =(0,2)-F E 1EF +3162p ⎛⎫++= ⎪⎝⎭(0,),(0,)M m N m -PA PB PA C A B AB F E 1EF +3162p ⎛⎫++=⎪⎝⎭4p =C 28y x =(0,),(0,)M m N m -PA 42m y x m -=+PB 42m y x m +=-PA C 21616044m y y m m -+=--()4404m y y m ⎛⎫--= ⎪-⎝⎭因此点纵坐标为,代入抛物线方程可得点横坐标为,则点坐标为,同理可得点坐标为,因此直线的斜率为,代入点坐标可以得到方程为,整理可以得到,因此经过定点.19. 对于,,不是10的整数倍,且,则称为级十全十美数.已知数列满足:,,.(1)若为等比数列,求;(2)求在,,,…,中,3级十全十美数的个数.【答案】(1)或(2).【解析】【分析】(1)设的公比为,根据题意,列出方程组,即可求得的值;(2)由(1)知,得到,和,两式相减得,分为奇数和为偶数,两种情况讨论,结合二项展开式的性质,即可求解.【小问1详解】解:设的公比为,A 44A m y m =-A ()222284A A y m x m ==-A ()2224,44m m m m ⎛⎫ ⎪ ⎪--⎝⎭B ()2224,44m m m m ⎛⎫ ⎪- ⎪++⎝⎭AB 2216A B A B y y m k x x m --==-B AB ()2222416244m m m y x m m m ⎛⎫- ⎪+=- ⎪++⎝⎭22162m y x m-=-AB (0,2)-*,m t ∈N s ∈N t 10s m t =⋅m s {}n a 18a =240a =2156n n n a a a ++=-{}1n n a ka +-k 1a 2a 3a 2024a 2340{}1n n a ka +-q k ()112122383n n n n a a a a -+-=-=⋅()112133282n n n n a a a a -+-=-=⋅()832n n n a =-n n {}1n n a ka +-q则,即,由,可得,解得或,所以或.【小问2详解】解:由(1)知,当时,,当时,,两式相减得.当为奇数时,的个位数为1或9,的个位数不可能为0;当为偶数时,设,则,要想末尾3个数字为0,需满足被整除,当时,均不符合题意;当时,,自,以后各项均可被125整除,故只需考虑能否被125整除,其中不是5的倍数,故若原式能被整除,需为偶数且能被整除,即需是50的倍数,在1,2,3,...,2024中,50的倍数有40个:50,100,150, (2000)故在,,…,中,3级十全十美数的个数为40.()211n n n n a ka q a ka +++-=-()21n n n a q k a qka ++=+-2156n n n a a a ++=-56q k qk +=⎧⎨-=-⎩23k q =⎧⎨=⎩32k q =⎧⎨=⎩2k =3k =23k q =⎧⎨=⎩()112122383n n n n a a a a -+-=-=⋅32k q =⎧⎨=⎩()112133282n n n n a a a a -+-=-=⋅()832n n n a =-n 32n n -()832n n n a =-n ()*2n k k =∈N ()()22832894k k k k n a =-=-n a 94k k -3100051258==1,2,3k =94k k -3k >()()()()2011229411015C 1C (1)10C 110C 10k k k k k k k k k k k k k --⎡⎤-=-+--+=-+-⋅+-⋅++⋅⎣⎦ ()()()120122C 1C 15C 15C 5k k k k k k k k k --⎡⎤--+-⋅+-⋅++⋅⎣⎦31035()()()()()()()1212221(1)11101101151522k k k k k k k k k k k k ----⎡⎤--⎡⎤-+-⋅⋅+-⋅⋅--+-⋅⋅+-⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦()()()()()122111517515215122k k k k k k k k ----⎡⎤=-⋅+-⋅⋅=⋅-⋅⋅-+-⎣⎦()2151k -+-125k 25k 1a 2a 2024a【点睛】方法点睛:与数列有关的问题的求解策略:1、通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.3、若数列中涉及到三角函数有关问题时,常利用三角函数的周期性等特征,寻找计算规律求解;4、若数列与向量有关问题时,应根据条件将向量式转化为与数列有关的代数式进行求解;5、若数列与不等式有关问题时,一把采用放缩法进行判定证明,有时也可通过构造函数进行证明;6、若数列与二项式有关的问题时,可结合二项展开式的性质,进行变换求解.。
2014年福建省高考数学试卷(理科)答案与解析
2014年福建省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.4.(5分)(2014•福建)若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是().B...=5.(5分)(2014•福建)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()6.(5分)(2014•福建)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB 的面积为”的(),d=的面积为×=的面积为,则S=××==的面积为7.(5分)(2014•福建)已知函数f(x)=,则下列结论正确的是()8.(5分)(2014•福建)在下列向量组中,可以把向量=(3,2)表示出来的是().=(0,0),=(1,2)=(﹣1,2),=(5,﹣2)=(3,5),=(6,10)=(2,﹣3),=(﹣2,3),计算判别即可.解:根据列出方程解方程是关键,9.(5分)(2014•福建)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,5+,半径为=≤,5=610.(5分)(2014•福建)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的1+c c+二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)(2014•福建)若变量x,y满足约束条件,则z=3x+y的最小值为1.12.(4分)(2014•福建)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于2.BC=2,=故答案为:13.(4分)(2014•福建)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元)214.(4分)(2014•福建)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.().故答案为:15.(4分)(2014•福建)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是6.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)(2014•福建)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.<=,,()﹣.)﹣sin2x+2x+T=﹣2x+≤+≤,﹣]17.(13分)(2014•福建)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.即可得出.M.=,,.的法向量,则=|==.|=18.(13分)(2014•福建)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.,元的概率为=P×+60×=40,=19.(13分)(2014•福建)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.)依题意,可知c=的方程为=1的方程为﹣=1|OC|的方程为﹣=1=2ae==的方程为﹣|OC|a的方程为﹣=1的方程为﹣(﹣,,同理得,|OC||﹣|=8的方程为﹣=1在21-23题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修4-2:矩阵与变换20.(14分)(2014•福建)已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<ce x.x)时,恒有xx,当时,有21.(7分)(2014•福建)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.A==,﹣,,所以=对应的一个特征向量为.五、选修4-4:极坐标与参数方程22.(7分)(2014•福建)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.的参数方程为.,即22六、选修4-5:不等式选讲23.(2014•福建)已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.。
福建省厦门双十中学高三数学前最后一卷 理 新人教A版
2013厦门双十中学高三数学(理)热身试卷一、选择题:本大题共10小题,每小题5分,满分50分. 1.已知集合{|12},{|0},A x x B x x =-≤-<=-≥则A B I 等于 A .}01|{≤≤-x x B.{|21}x x -<≤-C .{|02}x x ≤<D . {|20}x x -<≤2.等比数列{}n a 中,10a >,则“13a a <”是“34a a <”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.已知两不共线向量(cos ,sin ),(cos ,sin )a b ααββ==r r,则下列说法错误..的是 A.||||1a b ==r rB. 0)()(=-⋅+C. a r 与b r 的夹角等于αβ-D.a r 与b r 在a b+r r 方向上的投影相等4.已知实数4,,9m 构成一个等比数列,则圆锥曲线221y x m+=的离心率为 A .306 B .7 C .306或7 D. 56或75.若右边的程序框图输出的S 是126,则条件①可为( ) A .5n ≤ B .6n ≤ C .7n ≤ D .8n ≤6.学校组织高一年级4个班外出春游,每个班从指定的甲、乙、丙、丁四个景区中任选一个游览,则恰有两个班选择了甲景区的选法共有A. 36种 B . 54 种 C. 72种 D. 108 种 7.下列关于函数22cos2()cos xf x x-=的描述正确的是A .在π(,0]2-上递增 B .在3(,)22ππ上最小值为0 C. 周期为π D. 在π(,0]2-上递减 8.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为2的 等腰直角三角形,则该几何体的体积是 A .B.C. D. 9. 定义在 R 上的函数()y f x =是减函数,且函数(2)y f x =+的图象关于点(2,0)-成中4238382343心对称,若,s t 满足不等式组()(2)0()0f t f s f t s +-≤⎧⎨-≥⎩,则当23s ≤≤时,2s t +的取值范围是A .[3,4] (B) [3,9] (C) [4,6] D .[4,9]10.如图,半径为2的⊙O 与直线MN 相切于点P ,射线PK 从PN 出发绕点P 逆时针方向旋转到PM ,旋转过程中,PK 交⊙O 于点Q ,设POQ ∠为x ,弓 形 PmQ 的面积为()S f x =,那么()f x 的图象大致是二、填空题:本大题共5小题,每小题4分,满分20分. 11.复数2i1ia +-在复平面内所对应的点在虚轴上,那么实数a = . 12. 某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表。
厦门双十中学2014届高三热身
2015届高三年文科综合能力训练(19)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷为必考题,第Ⅱ卷包括必考题和选考题两部分。
第Ⅰ卷(共144分)本卷共36小题,每小题4分,共144分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
2014年3月24日当地时间22时马来西亚总理纳吉布·拉扎克宣布,根据最新收到的卫星分析数据,可以判定马来西亚航空公司MH370航班在印度洋南部海域(42°S, 92°E) “终结”。
此时该海域风大浪高,多恶劣天气,给海上搜救带来极大困难。
据此完成1~3题。
1. 获取卫星分析数据运用的地理信息技术是A .RSB .RS 和GPSC .GPS 和GISD .RS 和GIS 2. 该海域此时风大浪高的主要原因是A .地处热带,海水温度高B .温带海域,西风强盛C .副高控制,上升气流强D .大洋中部,洋流强大 3. 该海域此时多恶劣天气的主要原因是A .盛行西南风B .暖湿气团影响强烈C .盛行东北风D .温带气旋活动频繁 图1示意南半球某区域农事安排。
该区域农场内一般划分为若干个区域,分别为小麦地、放牧地、休耕地等,在土地上交替种植小麦、牧草或休耕。
读图完成4~5题。
4. 该区域的农业地域类型最有可能是 A .种植园农业 B .商品谷物农业 C .混合农业D .大牧场放牧业5. 在土地上交替种植小麦、牧草或休耕的最主要目的是A .合理有效安排农事活动B .更好地适应市场需求C .便于农民开拓销售渠道D .充分保持麦田的肥力表1示意中纬地区某流域气候资料(流域内气候差异较小)。
读表完成6~7题。
表16. 有关该流域气候特征描述正确的是A. 终年暖湿B. 气温年较差大C. 海洋性强D. 降水年变化小 7. 该河最大流量出现在A. 春季B. 夏季C. 秋季D. 冬季最大可能蒸发量是指地表在水分充足的条件下产生的最大蒸发量。
图2示意某地1961-1990年间相关统计资料,读图完成8~9题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014双十中学热身卷理科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的]1.设全集R U =,集合{11}M x x x =><-或,{}|02N x x =<<,则()U NM =ð ( )A .{}|21x x -≤<B .{}|01x x <≤C .{}|11x x -≤≤D .{}|1x x <2. 已知圆22:1O x y +=及以下3个函数:①3()f x x =;②()t a n f x x =;③()s i n .f x x x =其中图像能等分圆C面积的函数有( )A .3个 B. 2个 C. 1 个 D. 0个 3.下列结论错误..的是( ) A.命题“若2340x x --=,则4x =”的逆否命题为“若24,340x x x ≠--≠则”B.“4x =”是“2340x x --=”的充分不必要条件C.已知命题p “若0m >,则方程20x x m +-=有实根”,则命题p 的否定p ⌝为真命题D.命题“若220m n +=,则00m n ==且”的否命题是“若220.00m n m n +≠≠≠则或”4.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是( )A .(,1]-∞-B .(,1)(1,)-∞-+∞ C .[3,)+∞ D .(,1][3,)-∞-+∞5. 执行如图所示的程序框图,若输出结果为3,则可输入的实数x 值的个数为( )A.1B.2C.3D.46.父亲身高x (cm) 174 176 176 176 178儿子身高y (cm)175 175 176 177 177则y 对x A .y =x -1B .y =x +1C .y =88+12x D .y =1767.把函数22cos y x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是( )8. 已知方程|x –x (*n N ∈)在区间[2n –1,2n+1]上有两个不相等的实数根,则k 的取值范围是( ) A .1021k n <≤+ B .0<k 21n +.121n +≤k 21n +.021k n <<+9. 如图,在长方体ABCD-A 1B 1C 1D 1中,AB=AD=2AA 1=4,点O 是底面ABCD 的中心,点E 是A 1D 1的中点,点P 是底面ABCD 上的动点,且到直线OE 的距离等于1, 对于点P 的轨迹,下列说法正确的是( ) A.离心率为2的椭圆 B.离心率为1的椭圆 C.一段抛物线 D.半径等于1的圆10.已知集合M=N={0,1,2,3},定义函数f :M→N,且点A (0,f (0)),B (i ,f (i )),C (i+1,f (i+1)),(其中i=1,2).若△ABC 的内切圆圆心为P ,且满足()PA PC PB R λλ+=∈,则满足条件的ABC ∆有( ) A . 10个B . 12个C . 18个D . 24个二、填空题:本大题共5小题,每小题4分,共20分。
11. 已知复数z 的实部为1,且2z =,则复数z 的虚部是 . 12. 如图是某几何体的三视图,则该几何体的体积为 .13. 某初中校共有学生1200名,各年级男、女生人数如右表,已知在全校学生中随机抽取l 名,抽到八年级女生的概率是0.18,现用分层抽样 的方法在全校抽取200名学生,则在九年级应抽取 名学生.14. 已知,x y 满足约束条件220200x y x y y ⎧-≤⎪-+≥⎨⎪≥⎩,则目标函数2z x y =+的取值范围15. 已知2012(21)...n n n x a a x a x a x +=++++中令0,x =就可以求出常数,即01a =. 请你研究其中蕴含的解题方法研究下列问题 若0xi i i e a x +∞==∑,即23401234x n n e a a x a x a x a x a x =++++++,则123123nna a a a ++= 16.(本题满分13分)如图,已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC =AD =CD =DE =2,AB =1,F 为CD 的中点. (Ⅰ)求证:AF ⊥平面CDE ; (Ⅱ)求面ACD 和面BCE 所成锐二面角的大小.17.(本题满分13分)如图,某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C 处进行该仪器的垂直弹射,地面观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217秒.A 地测得该仪器在C 处时的俯角为15°,A 地测得最高点H 的仰角为30°.(声音的传播速度为340米/秒) (Ⅰ)设AC 两地的距离为x 千米,求x ; (Ⅱ)求该仪器的垂直弹射高度CH.18.(本题满分13分)某电视台举办猜歌曲的娱乐节目:随机播放歌曲片段,选手猜出歌曲名称可以赢取奖金. 曲库中歌曲足够多,不重复抽取. 比赛共分7关:前4关播放常见歌曲;第5,6关播放常见或罕见歌曲,曲库中常见歌曲与罕见歌曲数量比为1:4;第7关播放罕见歌曲.通过关卡与对应的奖金如右表所示.选手在通过每一关(最后一关除外)之后可以自主决定退出比赛或继续闯关;若退出比赛,则可获得已经通过关卡对应奖金之和;若继续闯关但闯关失败,则不获得任何奖金.(Ⅰ)选手甲准备参赛,在家进行自我测试:50首常见歌曲,甲能猜对40首;40首罕见歌曲,甲只能猜对2首,以他猜对常见歌曲与罕见歌曲的频率最为概率.①若比赛中,甲已顺利通过前5关,求他闯过第6关的概率是多少?②在比赛前,甲计划若能通过第1,2,3关的任意一关,则继续;若能通过第4关,则退出,求这种情况下甲获得奖金的数学期望;(Ⅱ)设选手乙猜对罕见歌曲的概率为p ,且他已经顺利通过前6关, 当p 满足什么条件时,他选择继续闯第7关更有利?.19.(本小题满分13分)已知点F 是抛物线Γ: 22(0)x py p =>的焦点,点0(,1)M x 到F 的距离为2.(Ⅰ)求抛物线方程;(Ⅱ)设直线AB :y x b =+与曲线Γ相交于A,B 两点,若AB 的中垂线与y 轴的交点为(0,4),求b 的值. (Ⅲ)抛物线Γ上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的 切线.若存在,求出点C 的坐标;若不存在,请说明理由.20.(本小题满分14分)已知()x af x x e =-存在单调递减区间. (Ⅰ)求实数a 的取值范围;(Ⅱ)判断曲线y=f (x )在x=0的切线能否与曲线x y e =相切?若存在,求出a ,若不存在,说明理由; (Ⅲ)若f (x 1)=f (x 2)=0(x 1<x 2),求证:12x e x a<.21.(1)已知矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵1011B ⎛⎫= ⎪⎝⎭. (Ⅰ)求矩阵A 的逆矩阵;(Ⅱ)若矩阵X 满足AX B =,求矩阵X.(2)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程为ρ=4cos θ,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l的参数方程为512x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求曲线C 的直角坐标方程与直线l 的普通方程;(2)设曲线C 与直线l 相交于P 、Q 两点,以PQ 为一条边作曲线C 的内接矩形,求该矩形的面积.(3)选修4-5:不等式选讲已知函数f(x) = |x + a| + |x -2|.(Ⅰ)当a =-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x -4|的解集包含[1,2],求a 的取值范围.2014双十中学热身卷理科数学1.【解析】{11}M x x x =><-或,所以{11}U M x x =-≤≤ð,所以()U N M =ð{}|01x x <≤,选B. 2.解:①与②都是奇函数,满足题意,③是偶函数,且f(0)=0,所以不符合题意.3.【解析】虽然对“若…则…”结构命题的“否定”我们现在写不出,但并不妨碍我们对其否定进行判断. 命题p “若0m >,则方程20x x m +-=有实根”,140m ∆=+>,所以p 为真,则p ⌝一定是 . 4.∵等比数列{a n }中,a 2=1,∴S 3=a 1+a 2+a 3=a 2⎝ ⎛⎭⎪⎫1q +1+q =1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3, 当公比q <0时,S 3=1-⎝ ⎛⎭⎪⎫-q -1q ≤1- 2-q⎝ ⎛⎭⎪⎫-1q =-1,∴S 3∈(-∞,-1]∪[3,+∞).答案 D5.由题意知221,2log ,2x x y x x ⎧-≤=⎨>⎩。
当2x ≤时,由213x -=,得24x =,解得2x =±。
当2x >时,由2log 3x =,得8x =,所以输入的实数x 值的个数为3个,选C.6.解析 因为x -=174+176+176+176+1785=176,y -=175+175+176+177+1775=176,又y 对x 的线性回归方程表示的直线恒过点(x -,y -),所以将(176,176)代入A 、B 、C 、D 中检验知选C. 7. 2222(1)(1)2cos 2cos2cos 2cos 1cos(1)222x x x y x y y y x ++=→=→=→=-=+,再用五点作图.A 8.解观察发现令n=1进行检验,转化为12|2|y x y =-=与在[1,3]上有两交点的条件.只需满足B在A 下方(包括重合),1k ⇒≤,且k>0,只有B 满足 9.解1:先不考虑点P 在平面上,由点P 到OE 的距离为1,则P 的轨迹是空间中以OE 为旋转轴,半径为1的圆柱,又被底面所截,所以点P 的轨迹为椭圆,作EF ⊥AD 于点F ,则EF=OF=2,△OEF 为等腰直角三角形,得轴OE 与平面ABCD 所成的角为45°,知点P的轨迹是椭圆,而半长轴长a =2,b=1,则c=1,所以e =. 解2:利用向量“投影” 研究点到线距离, 点P 到OE 的距离222()||OP OP OF OP OE -=-= 如图建立坐标系,… 解3:利用“三垂线定理”,过P 作OF 垂线PG ,则PG ⊥平面 ,过G 作GH 垂直OE ,连接PH ,则PH ⊥ 如图建立坐标系,…10. 选C.设D 为AC 中点,则2()PA PC PD PB R λλ+==∈,所以AC 边上的中线与角平分线重合,知△ABC 是以B 为顶点的等腰三角形,A 点是4×4的格点第一列中的点.①当i=1时,B 点是第二列格点中的点,C 点是第三列格点中的点, 此时腰长为、、的△ABC 分别有6个、4个、2个,②当i=2时,B 点是第三列格点中的点,C 点是第四列格点中的点,11.解:设1(),2z bi b R b =+∈⇒=12. 1111133v =⨯⨯⨯=13.解:0.182161200a a =⇒=,则1200(204198216222)360b c +=-+++=,则360602001200x x =⇒= (在样本中的比例与总体中的比例 ) 14.由2z x y =+得,2y x z =-+。