几何图形中的函数问题
高中三角函数在几何中的应用解析

高中三角函数在几何中的应用解析三角函数是数学中重要的概念之一,它不仅在代数中有广泛的应用,也在几何中发挥着重要的作用。
本文将从几何的角度解析高中三角函数在几何中的应用,包括图形的旋转、角度的测量和直角三角形的性质等方面。
1. 图形的旋转与三角函数在几何中,我们经常需要讨论图形的旋转问题。
三角函数可以帮助我们描述旋转过程中图形的位置与形状的变化。
以单位圆为例,如果我们将单位圆绕原点逆时针旋转一个角度θ,那么圆上某一点P(x, y)在旋转后的位置可以通过三角函数来表示。
假设旋转后的点为P'(x', y'),则有以下关系:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ通过这些关系,我们可以利用三角函数来计算图形在旋转过程中的位置坐标,进而研究图形的旋转性质。
2. 角度的测量与三角函数在几何中,我们经常需要测量角度大小,而三角函数可以帮助我们进行角度的测量。
常见的三角函数包括正弦函数、余弦函数和正切函数。
我们可以利用这些函数来计算角度的值。
例如,在直角三角形中,角度的正弦值可以表示为对边与斜边的比值,余弦值可以表示为邻边与斜边的比值,而正切值可以表示为对边与邻边的比值。
通过三角函数的计算,我们可以准确地获得各种角度的大小,进而帮助我们解决几何中的问题。
3. 直角三角形的性质与三角函数直角三角形是几何中最基础的三角形,而三角函数恰好与直角三角形的性质相对应。
在直角三角形中,根据勾股定理可知,两个直角边的平方和等于斜边的平方。
利用三角函数的关系,我们可以用三角函数的数值表达式来表示这一关系。
以正弦函数为例,根据定义,正弦函数的值可以表示为对边与斜边的比值,而根据勾股定理,这一比值可以表示为直角边与斜边的比值的平方。
通过这种关系,我们可以发现三角函数与直角三角形的性质之间存在着紧密的联系。
综上所述,高中三角函数在几何中的应用是广泛而重要的。
几何图形中函数思想总结

几何图形中函数思想总结函数思想在几何图形中的应用是数学中的一个重要领域。
通过函数思想,我们可以给几何图形赋予更多的数学分析和推理能力,从而更好地理解和解决几何问题。
下面对几何图形中函数思想的应用进行总结。
首先,函数思想可以用来定义几何图形。
在几何学中,我们经常需要定义各种形状和大小的图形,而函数思想提供了一种很好的方法。
比如,我们可以用函数描述一个圆的形状,其方程为x^2+y^2=r^2,其中r为半径。
这样,我们就能通过该函数方程来确定圆的形状和大小。
其次,函数思想可以用来描述几何图形的运动和变化。
在几何学中,我们经常需要研究几何图形在平面上的运动和变化情况,而函数思想能够提供一个很好的分析工具。
通过将几何图形的位置或形状与某个参数关联起来,我们就可以用函数来描述图形的运动和变化。
比如,我们可以用函数描述一条直线的斜率,通过改变斜率的值,可以实现直线的平行移动或斜率变化。
函数思想还可以用来解决几何图形之间的关系问题。
在几何学中,我们经常需要研究图形之间的位置关系和相交情况,而函数思想可以提供一种很好的分析方法。
通过将几何图形的性质和特征用函数表示,我们可以通过函数的交点或相交情况来确定图形之间的位置关系。
比如,我们可以用函数表示两条直线的方程,通过求解方程组的解,可以确定两条直线的交点。
最后,函数思想还可以用来证明几何图形的性质和定理。
在几何学中,我们经常需要证明各种图形的性质和定理,而函数思想提供了一种很好的方法。
通过将几何图形的性质和特征用函数表示,我们可以利用函数的性质和运算来推导和证明各种几何定理。
比如,我们可以利用函数的导数性质来证明曲线的切线斜率等于该点的导数值。
综上所述,函数思想在几何图形中的应用是非常广泛的。
通过函数的定义、描述、分析和推导,我们可以更好地理解和解决几何问题。
因此,函数思想在几何学中的应用具有重要的意义,对于我们深入研究几何学和数学的其他分支都具有积极的推动作用。
应用几何画板解决初中数学的函数问题

应用几何画板解决初中数学的函数问题初中数学中的函数问题可以利用几何画板来解决,通过绘制图形,可以直观地理解和分析函数的性质。
下面将详细介绍几何画板在解决初中数学函数问题中的应用。
一、函数的定义和性质函数是数学中的一个重要概念,可以用几何画板来帮助理解。
通过几何画板,我们可以绘制出函数的图像,并观察图像的特点和性质。
我们要绘制函数y = 2x + 1的图像。
打开几何画板,可以选择直线工具,在坐标系上绘制出函数的图像。
通过观察图像的斜率和截距,我们可以理解函数的性质:斜率为2表示函数是一个直线,截距为1表示函数与y轴的交点为(0, 1)。
这样,我们对函数的定义和性质有了更深的理解。
二、函数的图像和方程之间的关系在初中数学中,我们经常需要通过函数的图像来确定函数的方程,或者反过来,通过函数的方程来绘制出函数的图像。
几何画板可以帮助我们更直观地理解这种关系。
已知函数y = x^2的图像是一个抛物线,我们可以打开几何画板,选择曲线工具,在坐标系上绘制出函数的图像。
通过观察图像的形状,我们可以发现这是一个开口向上的抛物线,这样就能够推测出函数的方程为y = x^2。
反过来,我们也可以通过给定的方程来绘制出函数的图像,从而验证方程的正确性。
三、函数的增减性和零点函数的增减性和零点是初中数学中的重要内容。
几何画板可以帮助我们直观地理解和分析函数的增减性和零点。
几何画板是解决初中数学中函数问题的有力工具。
通过绘制图形,我们可以直观地理解和分析函数的定义、性质、图像和方程之间的关系,以及增减性、零点、复合和反函数等概念。
推荐学生在解决函数问题时使用几何画板,以加深对函数概念的理解和掌握。
几何图形中函数解析式的求法(学法指导)

几何图形中函数解析式的求法(学法指导)几何图形中函数解析式的求法函数是初中数学的重要内容,也是初中数学和高中数学有相关联系的细节,在历年的中考试题中都占有重要的份量,而求函数的解析式则成为中考的热点。
求函数的解析式的方法是多种多样的,但是学生往往把思维固定在用“待定系数法”去求函数的解析式。
而使用待定系数法去求函数的解析式的大前提是必须根据题目的条件,选用恰当函数(如正、反比例函数,一次、二次函数)的表达式。
如果题目中能根据直接条件或间接条件给出函数的类型,当然是选用待定系数法求函数的解析式。
但我们发现,在几何图形中求函数解析式却成为初中数学考试的常见题、压轴题。
同时我们也发现,在几何图形中求函数解析式往往是无法确定所求函数的类型,因此用待定系数法进行解题是行不通的。
我们知道,函数的解析式也是等式,要建立函数解析式,关键是运用已知条件在几何图形中找出等量关系,列出以变量有关的等式。
下面以几个例子来探求在几何图形中建立函数解析式的常见类型和解题途径。
一、 用图形的面积公式确立等量关系例1、如图1,正方形ABCD 的边长为2,有一点P 在BC 上运动,设PB=x ,梯形APCD 的面积为y (1)求y 与x 的函数关系式;(2)如果S △ABP =S 体型APCD 请确定P 的位置。
分析:本题所给的变量y 是梯形的面积,因此可根据梯形面积公式B CADP图1即222)2(y y x =-+ 整理得1412+=x y在Rt ΔABC 中,∠B=90°,∠BAC=30°,AB=2 , ∴BC=332 ,∴0<x <332。
于是1412+=x y (0<x <332)为所求的函数解析式。
(2)略二、 用平行线截线段成比例,利用比例式确立等量关系例4、如图4,在ΔABC 中,AB=8,AC=6,⊙O 是ΔABC 的外接圆,且BC 是直径,⊙O 与⊙O ’内切于点A ,与边AB 、AC 分别交于点D 、E 。
一次函数与几何图形结合的问题习题

一次函数与几何图形的综合问题类型一 一次函数与面积问题1.如图,一次函数y =- x +m 的图象和y 轴交于点B ,与正比例函数y =12x 的图象交于点P (2,n ).(1)求m 和n 的值;(2)求APOB 的面积.2.如图,把Rt △ABC 放在平面直角坐标系内,其中∠CAB =90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为 .3.如图,直线y =-2x +3与x 轴相交于点A ,与y 轴相交于点B .[易错7](1)求A ,B 两点的坐标;(2)过B 点作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.4.如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),点P (x ,y )是在第一象限内直线y =-x +10上的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)当△OPA 的面积为10时,求点P 的坐标.图类型二一次函数与几何图形的规律探究问题1. (2017●安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,..在直线l上,点B1,B2,B3,...在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,...依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn-1Bn,顶点Bn的横坐为.2.(2016●潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,.. ,正方形AnBnCnC n-1,使得点A1,A2,A3…在直线l上,点C1 ,C2,C3,...在y轴正半轴上,则点Bn的坐标是.类型三一次函数与新定义几何图形的探究1.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2, y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q 的“相关矩形”.下图①为点P,Q的“相关矩形”的示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点B在直线x=3上.若点A,B的“相关矩形”面积是4,求点B的坐标;(2)一次函数y=-2x+b的图象经过点A,交y轴于点C,若在线段AC上存在一点D,使得点D、B的对角矩形是正方形,求m的取值范围;(3)一次函数y=k x+4的图象交y轴于点C,点A、B的对角矩形且面积是12,且m>0,要使得一次函数y=k x+4的图象与该对角矩形有交点,求k的取值范围.图①。
例举与函数相关的几例几何图形问题

例举与函数相关的几例几何图形问题函数与几何图形问题呈现了完美的结合,函数与几何密不可分,其中复杂的问题可以通过分析函数与几何之间的联系来解决。
下面介绍几个常见的函数与几何图形问题。
一、抛物线:抛物线是一种二元二次函数,它的定义式为:y = ax² + bx + c,它有一个最典型的图形,类似于一个“U”字型,许多科学问题都可以使用该图来描述和解决,抛物线是应用非常广泛的几何图形。
二、双曲线:双曲线是一种三元一次函数,它的定义式为:y² = ax² + bx + c,双曲线通常由两个半双曲线组成,是几何图形当中比较复杂的一种,其在科学研究中发挥重要的作用。
三、圆形:圆形是一种二元一次函数,它的定义式为:(x-a)²+(y-b)²=r²,即圆心(a,b)与半径(r)的函数形式,圆形的函数表达式非常简单,其曲线在理论上可用无穷条线段来逼近,也是几何图形中最重要的图形之一。
四、椭圆:椭圆是一种三元二次函数,它的定义式为:(x-a)²/a²+(y-b)²/b²=1,椭圆是一种比较复杂的几何图形,它和圆形相差较大,它的定义比较复杂,其在科学研究中发挥重要的作用。
五、曲面:曲面是一种三维函数,它的定义式为:z = f(x, y),它是一种比较复杂的几何图形,其表面结构可以有多种样式,例如凸曲面、凹曲面等,曲面是应用非常广泛的几何图形之一。
总之,函数与几何图形问题是一个十分重要的课题,它们俩结合可以解决许多复杂的科学问题,上述就是常见的几种函数与几何图形问题,它们在科学研究中是扮演着重要的角色。
二次函数与几何图形综合题解题技巧

二次函数与几何图形综合题解题技巧一、求二次函数解析式。
根据y=mx+b,把一元二次方程mx+b=0化为ax+by+c=0的系数a=b,然后通过解方程得出y=mx+b的值,由于不知道b、 a的具体值,可以通过函数与几何图形的综合分析来得到它们的大致范围。
例如,已知点( 1, 1),( 3, -3),直线( x, -3),( 4, 2);在(-3, 4)、(-1, 1)处画出一个坐标平面内关于坐标轴对称的二次函数解析式;( 5, 2)处画出一个关于坐标轴对称的抛物线,使其解析式为y=x+b。
求这些二次函数的表达式。
1。
设二次函数解析式为y=mx+b。
分析:二次函数与一元二次方程有密切联系,解一元二次方程是解二次函数的基础。
设一元二次方程为x+b=0,则根据对称性可得,函数解析式为x+b=mx+c。
2。
设二次函数解析式为y=ax+by+c。
分析: a、 b、 c都是实数,且a>0,b>0。
设函数解析式为x+b=ax+by+c,代入上式可得, y=x+b/c=mx+c/c。
求出二次函数的解析式,即可求出a、 b、 c的值。
3。
设二次函数解析式为y=ax+by+c。
分析:根据对称性,可得y=bx+c, a、 b、c均为实数,且a>0, b>0。
设函数解析式为x+b=bx+c,代入上式可得, y=x+b/c=mx+c/c。
4。
设二次函数解析式为y=ax+by+c。
分析:解方程得y=mx+c,由对称性,得x+c=y+b,代入上式,可得, y=x+b/c。
二、用几何图形解题。
二、用几何图形解题,最好能画出这些图形的图像,再列式解答。
因为几何图形看似复杂,但并不难,常见的如圆的周长、扇形面积、矩形的面积等等。
以下是应用这两种方法解二次函数综合题的例子,供同学们参考: 1。
求出二次函数的解析式,画出抛物线y=mx+b。
分析:首先将点( 1, 1),( 3, -3),直线( x, -3),( 4, 2) ;在(-3, 4)、(-1, 1)处画出一个坐标平面内关于坐标轴对称的二次函数解析式;再设函数解析式为x+b=mx+c,代入上式得y=mx+c/c。
三角函数在几何图形中的应用

三角函数在几何图形中的应用简介:三角函数是数学中的一门重要的分支,它在几何图形中有着广泛的应用。
本文将探讨三角函数在几何图形中的应用,包括在三角形、圆形和多边形等几何图形中的角度计算、边长计算以及面积计算等方面的应用。
一、三角函数在三角形中的应用三角形是几何学中最基本的图形之一,三角函数在三角形中的应用非常广泛。
在三角形中,我们可以利用正弦定理、余弦定理和正切定理等三角函数的性质来计算角度、边长和面积等。
1.1 角度计算在三角形中,我们经常需要计算各个角度的大小。
利用正弦函数、余弦函数和正切函数,我们可以通过已知的边长来计算角度的大小。
例如,已知三角形的两条边长a和b,以及它们之间的夹角θ,我们可以通过正弦定理sinθ = a/b来计算θ的大小。
1.2 边长计算在三角形中,我们也经常需要计算各个边长的大小。
利用正弦函数、余弦函数和正切函数,我们可以通过已知的角度来计算边长的大小。
例如,已知三角形的一个角度θ和与该角度相对应的边长a,以及另外两个边长b和c,我们可以通过余弦定理cosθ = (b² + c² - a²)/(2bc)来计算边长a的大小。
1.3 面积计算在三角形中,我们还可以利用三角函数来计算三角形的面积。
例如,已知三角形的一个角度θ和与该角度相对应的边长a和b,我们可以通过正弦函数的性质来计算三角形的面积。
三角形的面积等于底边长乘以高,而高可以通过正弦函数来计算,即面积= 1/2 * a * b * sinθ。
二、三角函数在圆形中的应用圆形是几何学中的另一个重要图形,三角函数在圆形中也有着广泛的应用。
在圆形中,我们可以利用三角函数的性质来计算圆的周长、面积以及弧长等。
2.1 周长计算在圆形中,我们经常需要计算圆的周长。
利用三角函数的性质,我们可以通过圆的半径r来计算圆的周长。
圆的周长等于2πr,其中π是一个常数,约等于3.14159。
2.2 面积计算在圆形中,我们也可以利用三角函数来计算圆的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D CBA 几何图形中的函数问题1如图,在梯形ABCD 中,AB ∥CD .(1)如果∠A =︒50,∠B =︒80,求证:AB CD BC =+.(2)如果AB CD BC =+,设∠A =︒x ,∠B =︒y ,那么y 关于x 的函数关系式是_______.2.如图,P 是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于点Q ,已知AD=6cm,AB=8cm ,设AP=x(cm),BQ=y(cm).(1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)是否存在点P ,使BQ=2AP 。
若存在,求出AP 的长;若不存在,说明理由。
3.如图,矩形EFGH 内接与△ABC ,AD ⊥BC 与点D ,交EH 于点M ,BC=10cm , AD=8cm , 设EF=x cm ,EH=y cm ,矩形EFGH 的面积为S cm2,①分别求出y 与x ,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③x 取何值时,矩形EFGH 的面积最大。
A BDABCD EFMHG5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l )如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l )中y 与x 之间的函数关系式还成立?试说明理由.6.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分)(2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示);DCA BEFDCA BEFHG已知一直角三角形纸片ABC (如图①),∠ACB =90°,AC =2,BC =4。
折叠该纸片,使点B 落在边AC 上,折痕与边BC 交于点M ,与边AB 交于点N 。
(1)若折叠后,点B 与点C 重合,试在图②中画出大致图形,并求点C 与点N 的距离; (2)若折叠后,点B 与点A 重合,试在图③中画出大致图形,并求CM 的长;(3)若折叠后点B 落在边AC 上的点P 处(如图④),设CP =x ,CM =y ,求出y 关于x 的函数关系式,并写出定义域。
、已知△ABC 中,D AC BC AB ,8,6,10===是AB 边中点,将一块直角三角板的直角顶点放在D 点旋转,直角的两边分别与边BC AC ,交于F E ,。
①取运动过程中的某一瞬间,如图,画出△ADE 关于D 点的中心对称图形,E 的对称点为E ',试判断BC 于E B '的位置关系,并说明理由。
②设y BF x AE ==,,求y 与x 的函数关系式,并写出定义域。
已知:如图,在Rt△ABC中,∠A=90°,AB=AC=1,P是AB边上不与A点、B点重合的任意一个动点,PQ⊥BC于点Q,QR⊥AC于点R。
(1)求证:PQ=BQ;(2)设BP=x,CR=y,求y关于x的函数解析式,并写出定义域;(3)当x为何值时,PR已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D、E、F分别在边BC、AC、AB上(点E、F与△ABC顶点不重合),AD平分∠CAB,EF⊥AD,垂足为H.(1)求证:AE=AF:(2)设CE=x,BF=y,求x与y之间的函数解析式,并写出定义域;(3)当△DEF是直角三角形时,求出BF的长.已知一直角三角形纸片OAB,∠AOB=90°,OA=2,OB=4.将该纸片放在平面直角坐标系中(如图①),折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(1) 若折叠后使点B 与O 重合(如图②),求点C 的坐标及C 、A 两点的距离; (2) 若折叠后使点B 与A 重合(如图③),求点C 的坐标;(3) 若折叠后点B 落在边OA 上的点为B′(如图④),设OB′= x,OC = y ,求出y 关于x的函数关系式,并写出定义域.图① 图④图③ D图②如图,在菱形ABCD中,∠A = 60°,AB = 4,E是AB边上的一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M、DC于点N.(1)请判断△DMF的形状,并说明理由;(2)设EB = x,△DMF的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当x取何值时,S△DMF = 3 .如图,在长方形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A 向点B运动,点Q从点C向点D运动,且保持AP=CQ。
设AP=x,BE=y(1)线段PQ的垂直平分线与BC边相交,设交点为E求y与x的函数关系式及x取值范围;(2)在(1)的条件是否存在x的值,使△PQE为直角三角形?若存在,请求出x的值,若不存在请说明理由。
如图,已知长方形纸片ABCD的边AB=2,BC=3,点M是边CD上的一个动点(不与点C重合),把这张长方形纸片折叠,使点B落在M上,折痕交边AD与点E,交边BC于点F.(1)、写出图中全等三角形;(2)、设CM=x,AE=y,求y与x之间的函数解析式,写出定义域;能否可能等于90度?如可能,请求出此时CM的长;如不能,请说明理由.(3)、试判断BEM在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E 出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.(1) 当点P在线段ED上时(如图1),求证:BE=PD+PQ;(2)若 BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与 x的函数关系式(不要求写出自变量x的取值范围);如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)如果BC=3,设AD=x,CM=y,求y与x的函数解析式,并写出函数的定义域;(3)当点D在线段AC上移动时,∠MCE的大小是否发生变化?如果不变,求出∠MCE的大小;如果发生变化,说明如何变化.第26题图已知:如图7.四边形ABCD 是菱形,6=AB ,︒=∠=∠60MAN B .绕顶点A 逆时针旋转MAN ∠,边AM 与射线BC 相交于点E (点E 与点B 不重合),边AN 与射线CD 相交于点F .(1)当点E 在线段BC 上时,求证:CF BE =;(2)设x BE =,ADF △的面积为y .当点E 在线段BC 上时,求y 与x 之间的函数关系式,写出函数的定义域;(3)联结BD ,如果以A 、B 、F 、D 为顶点的四边形是平行四边形,求线段BE 的长.已知:如图,在菱形ABCD 中,AB =4,∠B =60°,点P 是射线BC 上的一个动点,∠PAQ =60°,交射线CD 于点Q ,设点P 到点B 的距离为x ,PQ =y . (1)求证:△APQ 是等边三角形;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)如果PD ⊥AQ ,求BP 的值.A M NDCBEF(图7)ACB (备用图)BCD边长为4的正方形ABCD 中,点O 是对角线AC 的中点, P 是对角线AC 上一动点,过点P 作PF⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设PA=x ,S ⊿PCE =y , ⑴ 求证:DF =EF ;(5分)⑵ 当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;(3分) ⑶ 在点P 的运动过程中,⊿PEC 能否为等腰三角形?如果能够,请直接写出PA 的长;如果不能,请简单说明理由。
(2分)(1)如图,在正方形ABCD 中,AB=2,将一块足够大的三角板的直角顶点P 放在正方形的中心O 处,将三角板绕O 点旋转,三角板的两直角边分别交边AB 、BC 于点E 、F.(1)①试猜想PE 、PF 之间的大小关系,并证明你的结论; ②求四边形PEBF 的面积.(2)现将直角顶点P 移至对角线BD 上其他任意一点,PE 、PF 之间的大小关系是否改变?第26题图 D C B AEFP。
ODCBA备用图O 。
并说明理由.若BP 的长为,试用含有的代数式表示四边形PEBF 的面积S.(3)如果将(2)中正方形ABCD 改为矩形ABCD ,其中 AB=2,AD=、PF 之间的大小关系是否改变?如果不变,请说明理由;如果改变,请直接写出它们之间的关系.如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .(1) 由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论;(2) 联结DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域; (3) 如果正方形的边长为2,FG 的长为25,求点C 到直线DE 的距离.(供操作实验用)(供证明计算用)DABGD:如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB .(1)求证:① PE=PD ; ② PE ⊥PD ;(2)设AP =x , △PBE 的面积为y .① 求出y 关于x 的函数关系式,并写出x 的取值范围;② 当x 取何值时,y 取得最大值,并求出这个最大值..如图(1),直角梯形OABC 中,∠A= 90°,AB∥CO, 且AB=2,OA=2,∠BCO= 60°。
(1)求证: OBC 为等边三角形;(2)如图(2),OH⊥BC 于点H ,动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为1/秒。
设点P 运动的时间为t 秒,ΔOPQ 的面积为S ,求S 与t 之间的函数关系式,并求出t 的取值范围;(3)设PQ 与OB 交于点M ,当OM=PM 时,求t 的值。
图(1) 图(2) (备用图) A B CP D E1在梯形ABCD 中, AD ∥BC ,cm AD CD AB 5===,BC =11cm ,点P 从点D 开始沿DA 边以每秒1cm 的速度移动,点Q 从点B 开始沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (cm 2).(1)求y 关于x 的函数解析式,并写出它的定义域;(2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值;(3)在移动的过程中,是否存在x 使得PQ=AB ,若存在求出所有x 的值,若不存在请说明理由.如图,在直角梯形COAB中,CB∥OA,以O为原点建立直角坐标系,A、C的坐标分别为A(10,0)、C(0,8),CB=4,D为OA中点,动点P自A点出发沿A→B→C→O的线路移动,速度为1个单位/秒,移动时间为t秒.(1)求AB的长,并求当PD将梯形COAB的周长平分时t的值,并指出此时点P在哪条边上;(2)动点P在从A到B的移动过程中,设⊿APD的面积为S,试写出S与t的函数关系式,并指出t的取值范围;(3)几秒后线段PD将梯形COAB的面积分成1:3的两部分?求出此时点P的坐标.。