(完整版)用圆柱的体积解决问题教案

合集下载

《圆柱的体积》教案(版)

《圆柱的体积》教案(版)

一、教学目标1. 知识与技能:(1)让学生掌握圆柱体积的概念及计算公式。

(2)培养学生运用圆柱体积公式解决实际问题的能力。

2. 过程与方法:(1)通过观察、操作、交流等活动,引导学生发现圆柱体积的计算规律。

(2)培养学生运用数学知识进行推理、归纳的能力。

3. 情感态度与价值观:(1)激发学生学习数学的兴趣,培养其积极思考、勇于探索的精神。

(2)培养学生合作学习、乐于分享的良好品质。

二、教学重点与难点1. 教学重点:(1)圆柱体积的概念及计算公式。

(2)运用圆柱体积公式解决实际问题。

2. 教学难点:(1)圆柱体积公式的推导过程。

(2)运用圆柱体积公式进行灵活计算和解决问题。

三、教学准备1. 教具:圆柱模型、长方体模型、正方体模型、直尺、圆规等。

2. 学具:每个学生准备一个圆柱模型、一张白纸、一支笔。

四、教学过程1. 导入新课(1)教师出示圆柱模型,引导学生观察圆柱的特征。

(2)提问:同学们,你们能说出圆柱的体积是什么吗?2. 探究圆柱体积的计算方法(1)教师引导学生思考:圆柱的体积与哪些因素有关?(2)学生分组讨论,总结出圆柱体积与底面半径、高有关。

(3)教师引导学生推导圆柱体积公式:V = πr²h。

3. 运用圆柱体积公式解决问题(1)教师出示实际问题,如:一个底面半径为5cm,高为10cm的圆柱,它的体积是多少?(2)学生独立计算,分享解题过程和答案。

五、课堂小结1. 教师引导学生回顾本节课所学内容,总结圆柱体积的概念、计算公式及运用。

2. 学生分享自己在课堂上的收获和感受。

3. 教师鼓励学生课后运用圆柱体积公式解决更多实际问题,提高数学素养。

六、教学拓展1. 教师引导学生思考:圆柱的体积公式还可以应用于哪些几何图形?2. 学生分组讨论,发现圆锥和圆柱的体积公式类似,都是与底面半径和高有关。

3. 教师出示圆锥体积公式:V = 1/3πr²h,引导学生理解两者的联系和区别。

七、课堂练习1. 教师出示练习题目,要求学生独立完成。

《圆柱的体积》教学设计6篇

《圆柱的体积》教学设计6篇

《圆柱的体积》教学设计6篇《圆柱的体积》教学设计6篇《圆柱的体积》教学设计1 教材简析:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。

教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比拟找两个图形之间的关系,可推导出圆柱的体积计算公式。

教学目的:1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的才能4.借助实物演示,培养学生抽象、概括的思维才能。

教具:圆柱的体积公式演示教具,多媒体课件教学过程:一、情景引入1、出示圆柱形水杯。

〔1〕老师在杯子里面装满水,想一想,水杯里的水是什么形状的?〔2〕你能用以前学过的方法计算出这些水的体积吗?〔3〕讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

〔4〕说一说长方体体积的计算公式。

2、创设问题情景。

〔课件显示〕假如要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚刚那样的方法吗?刚刚的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。

〔出示课题:圆柱的体积〕〔设计意图:问题是思维的动力。

通过创设问题情景,可以引导学生运用已有的生活经历和旧知,积极考虑,去探究和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究气氛。

〕二、新课教学:设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,如今能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来讨论这个问题。

板书课题:圆柱的体积。

1.探究推导圆柱的体积计算公式。

3.1.3《圆柱的体积》(教案)2023-2024学年数学六年级下册

3.1.3《圆柱的体积》(教案)2023-2024学年数学六年级下册

3.1.3《圆柱的体积》(教案)20232024学年数学六年级下册作为一名经验丰富的教师,我始终相信“寓教于乐”的教学理念。

今天,我要分享的是3.1.3《圆柱的体积》这一课的教学设计。

一、教学内容本节课的教学内容主要包括六年级下册数学教材中的第三章“圆柱与圆锥”,第一节“圆柱的体积”。

在这一节中,学生需要学习圆柱体积的计算公式,并通过实际操作,理解圆柱体积的求解过程。

二、教学目标1. 理解圆柱体积的概念,掌握圆柱体积的计算公式;2. 能够运用圆柱体积的计算公式解决实际问题;3. 培养学生的动手操作能力和团队协作能力。

三、教学难点与重点本节课的重点是圆柱体积计算公式的理解和运用,难点是理解圆柱体积的求解过程。

四、教具与学具准备1. 圆柱模型;2. 直尺、圆规等绘图工具;3. 计算器;4. 练习题。

五、教学过程1. 实践情景引入:我会拿出一个圆柱模型,让学生观察并描述圆柱的特点,引导学生思考圆柱体积的求解方法。

2. 讲解圆柱体积的概念和计算公式:我会用PPT展示圆柱体积的定义和计算公式,让学生跟随我的讲解,理解圆柱体积的求解过程。

3. 例题讲解:我会选取一道典型的例题,讲解求解圆柱体积的步骤,让学生通过例题,理解圆柱体积的求解方法。

4. 随堂练习:我会设计一些练习题,让学生在课堂上练习,巩固所学知识。

5. 动手操作:我会让学生分组,利用教具和学具,自己动手求解圆柱体积,培养学生的动手操作能力和团队协作能力。

六、板书设计板书设计主要包括圆柱体积的计算公式和相关知识点,以便学生随时查阅。

七、作业设计答案:(1)282.7cm³;(2)502.4cm³。

八、课后反思及拓展延伸课后,我会反思本节课的教学效果,看是否达到了教学目标,学生是否掌握了圆柱体积的计算方法。

同时,我会设计一些拓展延伸题目,让学生课后思考,进一步巩固所学知识。

重点和难点解析在上述教学设计中,有几个关键的细节是需要特别关注的。

圆柱的体积教案(优秀5篇)

圆柱的体积教案(优秀5篇)

圆柱的体积教案(优秀5篇)《圆柱的体积》教案篇一教学目标1.经历同桌合作,测量、计算圆柱形物体体积的过程。

2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。

3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。

教学重点能根据学生自己测量的数据进行圆柱体积的计算。

教学难点给出圆柱底面周长如何计算圆柱的体积。

教具准备学生自备的茶叶筒或露露瓶。

教学过程一、测量茶叶筒的体积1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?生:茶叶筒的高,底面直径或半径。

师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。

学生同桌合作测量并计算。

2.交流测量数据的方法和计算的结果。

3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。

如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?生:利用周长先求出半径,再进行计算。

师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。

或用皮尺测量。

请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。

二、巩固练习1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?2.独立完成练一练的1-3题。

三、家庭作业1.练一练的。

第4小题。

2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?圆柱的体积《圆柱的体积》教案篇二一、把握教材,目标定位《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。

圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。

小学数学圆柱的体积教案6篇

小学数学圆柱的体积教案6篇

小学数学圆柱的体积教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、培训计划、心得体会、条据文书、活动方案、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, training plans, experiences, document documents, activity plans, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!小学数学圆柱的体积教案6篇教案是教师评估学生的学习成果和教学效果,为学生的个性化发展提供指导,有了教案教师对教学问题进行解决和处理,这有助于提高教师的问题管理能力,下面是本店铺为您分享的小学数学圆柱的体积教案6篇,感谢您的参阅。

《圆柱的体积》教案(通用10篇)

《圆柱的体积》教案(通用10篇)

《圆柱的体积》教案《圆柱的体积》教案(通用10篇)作为一无名无私奉献的教育工作者,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。

优秀的教案都具备一些什么特点呢?下面是小编整理的《圆柱的体积》教案,欢迎大家分享。

《圆柱的体积》教案篇1教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。

教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。

2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

二、解决实际问题1、练习三第7题。

学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。

2、练习三第5题。

(1)指导学生变换公式:因为V=Sh,所以h=VS。

也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

3、练习三第8题。

(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

4、练习三第9、10题(1)学生独立审题,完成9、10两题。

(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。

利用这个底面积再求出另一个圆柱的体积。

三、布置作业完成一课三练的相关练习。

《圆柱的体积》教案篇2教学内容:人教版小学数学六年级下册《圆柱的体积》P25-26。

教学目标:1.经历探究和推导圆柱的体积公式的过程。

圆柱的体积⑴数学教案

圆柱的体积⑴数学教案

圆柱的体积⑴数学教案标题:圆柱的体积数学教案一、教学目标:1. 知识与技能:- 学生能够理解和掌握圆柱体的概念。

- 学生能熟练运用公式计算圆柱体的体积。

2. 过程与方法:- 通过实际操作,引导学生探索和理解圆柱体的体积公式。

- 通过问题解决,培养学生分析问题和解决问题的能力。

3. 情感态度与价值观:- 培养学生的观察力和空间想象力。

- 增强学生对数学学习的兴趣和自信心。

二、教学重难点:重点:理解并掌握圆柱体的体积公式。

难点:运用公式解决实际问题。

三、教学过程:(一)导入新课教师展示一些生活中常见的圆柱形物体,如水杯、铅笔等,提问:“这些物体有什么共同的形状?”引导学生回答出“圆柱形”。

(二)新知讲解1. 引导学生回忆学过的平面图形面积公式,特别是圆形面积公式,并提出问题:“如果将这个圆形沿直径旋转一周,会形成什么立体图形?”引发学生思考,得出结论——圆柱体。

2. 接着,教师演示如何用一个圆形绕其直径旋转一周得到一个圆柱体,让学生直观感知圆柱体的形成过程。

3. 教师介绍圆柱体的定义:以矩形的一边为轴旋转一周所形成的立体图形叫做圆柱体。

然后请学生观察并描述圆柱体的特征。

4. 提出问题:“我们已经知道如何求圆的面积,那么如何求圆柱体的体积呢?”激发学生思考。

5. 教师解释圆柱体的体积公式V=πr²h,并进行推导。

先让学生回顾圆的面积公式S=πr²,然后指出圆柱体的底面积就是圆的面积,所以底面积为πr²;又因为圆柱体的高是h,所以圆柱体的体积V就是底面积乘以高,即V=πr²h。

(三)课堂活动1. 让学生分组,每组准备一张纸,一支铅笔,一把直尺和一个圆规。

让他们按照刚才的方法制作一个圆柱体,然后测量并计算其体积。

2. 组织学生进行讨论,分享他们的实验结果,以及在计算过程中遇到的问题和解决办法。

(四)巩固练习提供一些关于圆柱体体积的题目,让学生进行解答,以此来检查他们是否掌握了本节课的知识点。

1.3《圆柱的体积》(教案)2023-2024学年数学六年级下册

1.3《圆柱的体积》(教案)2023-2024学年数学六年级下册

1.3《圆柱的体积》(教案)20232024学年数学六年级下册在上一节课,我们已经学习了圆柱的表面积的计算方法。

这节课,我们将继续深入研究,探讨圆柱的体积的计算方法。

一、教学内容我们使用的教材是《数学六年级下册》,本节课的教学内容是第1.3节——圆柱的体积。

我们将通过引入实践情景,讲解例题,并设计随堂练习,让学生掌握圆柱体积的计算方法。

二、教学目标通过本节课的学习,我希望学生们能够理解圆柱体积的概念,掌握圆柱体积的计算方法,并能应用于实际问题中。

三、教学难点与重点本节课的重点是圆柱体积的计算方法,难点是理解圆柱体积的概念和计算公式的推导过程。

四、教具与学具准备为了帮助学生们更好地理解圆柱体积的概念,我将准备一些实际的圆柱形状的物体,如圆柱形的饮料瓶、圆柱形的笔筒等。

同时,我还会准备一些图纸,让学生们在课堂上画出圆柱的横截面和立体图。

五、教学过程2. 讲解圆柱体积的概念:我会用语言和教具相结合的方式,讲解圆柱体积的概念,让学生明白圆柱体积的定义和计算方法。

3. 讲解例题:我会选择一些典型的例题,讲解解题思路和计算方法,让学生通过例题理解圆柱体积的计算方法。

4. 随堂练习:在讲解完例题后,我会设计一些随堂练习题,让学生们自己动手计算,巩固所学知识。

5. 板书设计:在课堂上,我会将圆柱体积的计算公式和步骤板书在黑板上,方便学生们理解和记忆。

六、作业设计作业题目:计算下面圆柱的体积。

一个底面半径为5cm,高为10cm的圆柱。

答案:圆柱的体积= π × r² × h= 3.14 × 5² × 10= 3.14 × 25 × 10= 785(cm³)七、课后反思及拓展延伸本节课结束后,我会反思教学效果,看学生们是否掌握了圆柱体积的计算方法,并对一些学有余力的学生进行拓展延伸,引导他们思考圆柱体积在实际生活中的应用。

这就是我对于《圆柱的体积》这一节课的教学设计和安排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学教案
课题:用圆柱的体积解决问题
教师:杜克辉
圆柱体积的综合应用
教学内容:教材第27页的例7
教学目标:
1、通过观察比较,掌握不规则物体的体积的计算方法。

2、培养学生观察、概括的能力,利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。

3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。

教学重点:通过观察比较,掌握不规则物体的体积的计算方法。

教学难点:利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。

教学过程:
一、问题引入,导入新课。

1、提出问题师:在学习长方体和正方体的体积时,我们遇到过求不规则的物体的体积的问题,你们
还记得是怎样解决的吗?
2、揭示课题:解决问题
3、二、探究新知,引导归纳
1、教学例7 出示例7,
(1)读题,理解题意:
条件:瓶子内直径是8厘米,瓶内水高7厘米,瓶子倒置后无水部分的高18厘米的圆柱。

问题:这个瓶子的容积是多少?
(2)质疑。

这个瓶子是圆柱吗?怎样求出它的容积?
(3)实物演示。

用两个相同的酒瓶,内装同样多的水进行演示。

(4)尝试解决。

3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=1256(cm3) =1256(ml)
答:这个瓶子的容积是1256ml。

2、引导归纳。

求不规则的物体的体积的方法:可以利用体积不变的特性,把不规则图形转化成规则的图形再求容积。

三、巩固练习
1、完成教材第27页的“做一做”习题。

四、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
五、作业
课后练习题第10题、11题、12题
板书设计:解决问题
例7 3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=1256(cm3)
=1256(ml)
答:这个瓶子的容积是1256ml。

教学反思:
本节课是在学生已经学习了圆柱的体积计算公式的基础上开展的,大多数学生通过上节课的课堂练习以及家庭作业已经能够熟练运用体积公式计算直观圆柱形容器的容积,这对本节课的后续计算奠定了良好基础。

但是对于例7非直观圆柱形容器的容积计算,很多同学一开始无处着手。

通过课件将瓶子正置及倒置的情况分开讨论,然后逐步引导,从而最终使学生明白该瓶子的容积在数值上就相当于两个小圆柱的体积。

紧接着,两个及时的模仿练习再次让大家感受到解决此类问题的关键就在于“转换”和“构建”,及:将无法直接计算体积的物体转换成可计算体积的物体的体积;又或者将原不规则的物体换个角度或方向,从而便于我们构建新的可计算体积的物体,进而得出解题思路和问题答案。

相关文档
最新文档