最新数学必修三综合测试题[含答案解析]

合集下载

数学必修三全册试卷及答案

数学必修三全册试卷及答案

第I 卷(选择题)一、单选题(60分)1.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为116, 124, 118, 122, 120,五名女生的成绩分别为118, 123, 123, 118, 123,下列说法一定正确的是(B )A . 这种抽样方法是一种分层抽样B . 这五名男生成绩的方差大于这五名女生成绩的方差C .这种抽样方法是一种系统抽样D . 该班级男生成绩的平均数小于该班女生成绩的平均数2.掷两枚均匀的骰子,已知点数不同,则至少有一个是3点的概率为( C )A .B .C .D . 3.如图,矩形ABCD 中点E 位边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE 内部的概率等于( D )A .41B .31C . 32D . 21 4.某杂志社对一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数分别是( D )1031853141A . 47,45B . 45,47C . 46,46D . 46,455. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( B ) A.112 B. 310 C.15 D.1106.高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,则甲丙相邻的概率为( A )A .B .C .D . 7.将输入如下图所示的程序框图得结果( A )A .2006B .C .0D .8.98和63的最大公约数为( B )A.6 B.7 C.8 D.99.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为k:5:3,现用分层抽样方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为( B )121323142005x =20052005-A.24B.36C.30D.4010.光明中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( C )A.9B.8C.7D.611.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( B ) A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,3212.已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为( C )A.1B.C.D.2二、填空题(20分)13.一个路口的红绿灯,红灯的时间是30秒,黄灯的时间是5秒,绿灯的时间是40秒,当你到达路口时遇见红灯的概率是 0.4 .14.如图是一容量为100的样本的频率分布直方图.则由图可知样本数据的中位数大约是__13_____.15.数据,,…,平均数为6,标准差为2,则数据,,…,的方差为____16____.16.某住宅小区有居民2万人,分別为本地人和外来人,从中随机抽取200人,调査居民是否使用共享单车作为交通工具,调查的结果如表所示,则该小区居民交通工具为共享单车的人数为____9500______.第II卷(非选择题)三、解答题(70分)17.(10分)甲乙两台机床同时生产一种零件,10天中,两台机床每天生产的次品数分别是:甲 0 1 0 2 2 0 3 1 2 4乙 2 3 1 1 0 2 1 1 0 1(1)求这两组数据的平均数和标准差 1.5 1.2 1.26 0.93(2)判断一下那台机床的性能较好,并说明理由。

(经典)高中数学必修三单元测试题附答案解析

(经典)高中数学必修三单元测试题附答案解析

(数学3必修)第一章:算法初步[基础训练A组]一、选择题1.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.用二分法求方程022=-x的近似根的算法中要用哪种算法结构()A.顺序结构B.条件结构C.循环结构D.以上都用3.将两个数8,17a b==交换,使17,8a b==,下面语句正确一组是 ( )4A D.6,05.当)A6123123452345+++++xxxxx,当x=2时的值的过程中,要经过次乘法运算4①IF-THEN语句;④DO语句;⑤END语句;⑥5.将。

1.把“五进制”数)5(1234转化为“十进制”数,再把它转化为“八进制”数。

2.用秦九韶算法求多项式xxxxxxxxf++++++=234567234567)(当3=x时的值。

3.编写一个程序,输入正方形的边长,输出它的对角线长和面积的值。

4.某市公用电话(市话)的收费标准为:3分钟之内(包括3分钟)收取0.30元;超过3分钟部分按0.10元/分钟加收费。

设计一个程序,根据通话时间计算话费。

新课程高中数学训练题组(数学3必修)第一章:算法初步i=1 s=0 WHILE i<=4 s=s*x+1 i=i+1 WENDPRINT sEND[综合训练B 组] 一、选择题1.用“辗转相除法”求得459和357的最大公约数是( )A .3B .9C .17D .51 2.当2=x 时,下面的程序段结果是 ( )A .3B .7C .15D .17 3.利用“直接插入排序法”给8,1,2,3,5,7按从大到小的顺序排序,当插入第四个数3时,实际是插入哪两个数之间 ( ) A .8与1 B .8与2 C .5与2 D .5与1 4.对赋值语句的描述正确的是 ( ) ①可以给变量提供初值 ②将表达式的值赋给变量 ③可以给一个变量重复赋值 ④不能给同一变量重复赋值 A .①②③ B .①②C .②③④D .①②④5.在repeat 语句的一般形式中有“until A ”,其中A 是 ( )A . 循环变量B .循环体C .终止条件D .终止条件为真 6.用冒泡排序法从小到大排列数据13,5,9,10,7,4需要经过( )趟排序才能完成。

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

高中数学人教A版必修3综合测试题及答案 9

高中数学人教A版必修3综合测试题及答案 9

必修3综合模块测试(人教A 版必修3)卷 Ⅰ(选择题,共60分)一、选择题:本大题共12小题,在下列每小题给出的四个结论中有且只有一个是正确的,请把正确的结论填涂在答题卡上.每小题5分,共60分 1.下列给出的赋值语句中正确的是:( )A.x+3=y-2B.d=d+2C.0=xD.x-y=5 2.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) A.顺序结构 B.条件结构和循环结构 C.顺序结构和条件结构 D.没有任何结构 3. 将389化成四进位制数的末位是 A 、0 B 、1 C 、2 D 、34. 当3a =时,右边的程序段输出的结果是 A 、9 B 、3 C 、10 D 、65.下面程序框图的基本结构中,当型循环结构指的是A B C D6.右面框图表示计算1×3×5×7×…×99的算法 在空白框中应填入A .2i i =+B .21i i =-C .21i i =+D .1i i =+7. 一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为 ( )A. 3B. 4C. 5D. 68.一个容量为20的样本数据,分组后组距为10,区间与频数分布如下:(]10,20,2; (]20,30,3; (]30,40,4; (]40,50,5;(]50,60,4; (]60,70,2. 则样本在(],50-∞上的频率为 ( )A.120 B. 14 C.12 D.7109.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是( ) A. 对立事件B. 互斥但不对立事件C. 不可能事件D. 以上都不对10. 从区间()0,1内任取两个数,则这两个数的和小于56的概率是A 、35B 、45C 、1625D 、257211.如图,在正方形中撒一粒豆子,则豆子落在正方形内切圆内部的概率为A .4πB .44π-C .41π-D .4π12.同时上抛三枚硬币,落地后,三枚硬币图案两正一反的概率是A .34 B .14 C .38 D .12二、填空题(每小题4分,共16分)13. 某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做 牙齿健康检查。

人教b版数学必修三测试题及答案

人教b版数学必修三测试题及答案

人教b版数学必修三测试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. -1B. 1C. 5D. 7答案:B2. 集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B。

A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B3. 已知复数z = 3 + 4i,求|z|。

A. 5B. √7C. 7D. √51答案:A4. 函数y = x^2 - 4x + c的顶点坐标为(2, -1),求c的值。

A. -1B. 3C. 5D. 9答案:B5. 已知直线方程为y = 2x + 3,求该直线与x轴的交点。

A. (-3/2, 0)B. (0, 3)C. (3/2, 0)D. (-3, 0)答案:C6. 已知等差数列{an}的首项a1 = 2,公差d = 3,求a5的值。

A. 14B. 17C. 20D. 23答案:A7. 已知向量a = (1, 2),向量b = (2, 4),求向量a与向量b的夹角。

A. π/4B. π/3C. π/2D. 2π/3答案:B8. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。

A. (2, 3)B. (-2, -3)C. (3, 2)D. (-3, -2)答案:A9. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. 1C. 2D. 0答案:A10. 已知等比数列{bn}的首项b1 = 1,公比q = 2,求b3的值。

A. 4B. 8C. 16D. 32答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(x)。

答案:3x^2 - 12x + 112. 已知圆的直径为10,求圆的半径。

答案:53. 已知向量a = (3, -4),向量b = (-4, 3),求向量a与向量b的点积。

(完整版)数学必修三综合测试题[含答案解析],推荐文档

(完整版)数学必修三综合测试题[含答案解析],推荐文档

求每班学号为 14 的同学留下进行交流,这里运用的是( )
A. 分层抽样
B.抽签抽样
C.随机抽样
D.系统抽样
3.某单位有职工 160 人,其中业务员有 104 人,管理人员 32 人,后勤服务人员 24 人,现
用分层抽样法从中抽取一容量为 20 的样本,则抽取管理人员( )
A.3 人
B.4 人
C.7 人
A. 1
B. 1
C. 1
1
D.
104
103
102
10
10. 甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为 3.2,全年比
赛进球个数的标准差为 3;乙队平均每场进球数为 1.8,全年比赛进球个数的标准差为
0.3.下列说法正确的个数为( )
①甲队的技术比乙队好 ②乙队发挥比甲队稳定
③乙队几乎每场都进球 ④甲队的表现时好时坏
)
A、2
B、4
C、7
D、8
6. 抽查 10 件产品,设事件 A:至少有两件次品,则 A 的对立事件为 ( )
A.至多两件次品
B.至多一件次品
C.至多两件正品
D.至少两件正品
7. 取一根长度为 3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于 1 m 的
概率是.( )
A. 1
B. 1
C. 1
⑵投中小圆与中圆形成的圆环的概率是多少? ⑶投中大圆之外的概率又是多少?
学习指导参考资料
完美 WORD 格式编辑 学习指导参考资料
完美 WORD 格式编辑
数学必修三模块测试 A
一、选择题:
1—5 BDBDC
二、填空题: 17 、 24
6—10 BBBBD 11—16 DABBBA

数学必修三全册试卷及答案(K12教育文档)

数学必修三全册试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数学必修三全册试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数学必修三全册试卷及答案(word版可编辑修改)的全部内容。

第I 卷(选择题)一、单选题(60分)1.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为116, 124, 118, 122, 120,五名女生的成绩分别为118, 123, 123, 118, 123,下列说法一定正确的是(B )A . 这种抽样方法是一种分层抽样B . 这五名男生成绩的方差大于这五名女生成绩的方差C .这种抽样方法是一种系统抽样D . 该班级男生成绩的平均数小于该班女生成绩的平均数2.掷两枚均匀的骰子,已知点数不同,则至少有一个是3点的概率为( C )A .103B .185C .31D .41 3.如图,矩形ABCD 中点E 位边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE 内部的概率等于( D )A .41B .31C . 32D . 21 4.某杂志社对一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数分别是( D )A. 47,45 B. 45,47 C. 46,46 D. 46,455.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( B )A。

高中数学人教A版必修3综合测试题及答案 4

必修3综合模块测试(人教A 版必修3)时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层各抽若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行( )A .每层等可能抽样B .每层不等可能抽样C .所有层用同一抽样比等可能抽样D .所有层抽同样多个体,每层都是等可能抽样 [答案] C[解析] 由分层抽样的定义可知,选C . 2.下列说法正确的有( )①随机事件A 的概率是频率的稳定性,频率是概率的近似值. ②一次试验中不同的基本事件不可能同时发生. ③任意事件A 发生的概率P(A)总满足0<P(A)<1. ④若事件A 的概率为0,则A 是不可能事件. A .0个 B .1个 C .2个 D .3个 [答案] C[解析] 不可能事件的概率为0,但概率为0的事件不一定是不可能事件,如几何概型中“单点”的长度、面积、体积都是0,但不是不可能事件,∴④不对;抛掷一枚骰子出现1点和出现2点是不同的基本事件,在同一次试验中,不可能同时发生,故②正确;任意事件A 发生的概率P (A )满足0≤P (A )≤1,∴③错误;又①正确.∴选C.3.如图是计算12+14+16+…+120的值的一个程序框图,其中在判断框中应填入的条件是( )A .i <10B .i>10C .i <20D .i >20[答案] B[解析] 最后一次执行循环体时i 的值为10,又条件不满足时执行循环体,∴i =11>10时跳出循环.4.一组数据的方差为s 2,将这组数据中的每一个数都乘以2所得到的一组新数据的方差为( )[答案] C5.在100个零件中,有一级品20个、二级品30个、三级品50个,从中抽取20个作为样本.①将零件编号为00,01,…,99,抽签取出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个; ③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下面说法正确的是( )A .不论采用哪一种抽样方法,这100个零件中每一个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每一个被抽到的概率为15,③并非如此C .①③两种抽样方法,这100个零件中每一个被抽到的概率为15,②并非如此D .采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的 [答案] A [解析] 由于随机抽样、系统抽样、分层抽样的共同特点是:每个个体被抽到的概率都相等,所以无论采用哪种抽样方法,这100个零件中每个零件被抽到的概率都是15.6.用秦九韶算法求多项式f(x)=0.5x 5+4x 4-3x 2+x -1当x =3的值时,先算的是( ) A .3×3=9 B .0.5×35=121.5 C .0.5×3+4=5.5 D .(0.5×3+4)×3=16.5 [答案] C [解析] 按递推方法,从里到外先算0.5x +4的值. 7.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( )A.19B.29C.49D.89 [答案] D[解析] 设2个人分别在x 层,y 层离开,则记为(x ,y )基本事件构成集合Ω={(2,2),(2,3),(2,4)…(2,10)(3,2),(3,3),(3,4)…(3,10) ⋮(10,2),(10,3),(10,4)…(10,10)},所以除了(2,2),(3,3),(4,4),…,(10,10)以外,都是2个人在不同层离开,故所求概率P =9×9-99×9=89.解法2:其中一个人在某一层离开,考虑另一个人,也在这一层离开的概率为19,故不在这一层离开的概率为89.8.下列程序计算的数学式是( )[答案] C[解析] 本题是一个递推累加问题,由T =T*i 经过循环依次得到1!,2!,3!,…,n !,由s =s +1/T 实现累加.故选C .[答案] C10.下面一段程序的目的是( )[答案] B[解析] 程序中,当m ≠n 时总是用较大的数减去较小的数,直到相等时跳出循环,显然是“更相减损术”.11.在所有两位数(10~99)中任取一个数,则这个数能被2或3整除的概率是( ) A.56 B.45 C.23 D.12 [答案] C12.运行如图的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素α,则函数y =x α x ∈[0,+∞)是增函数的概率为( )A.37 B.45 C.35D.34[答案] C[解析] 当x 依次取值-3,-2,-1,0,1,2,3时,对应的y 的值依次为:3,0,-1,0,3,8,15, ∴集合A ={-1,0,3,8,15},∵α∈A ,∴使y =x α在x ∈[0,+∞)上为增函数的α的值为3,8,15,故所求概率P =35.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.已知直线l过点(-1,0),l与圆C:(x-1)2+y2=3相交于A、B两点,则弦长|AB|≥2的概率为________.[答案]3 3[解析]设直线方程为y=k(x+1),代入(x-1)2+y2=3中得,(k2+1)x2+2(k2-1)x+k2-1=0,∵l与⊙C相交于A、B两点,∴Δ=4(k2-1)2-4(k2+1)(k2-2)>0,∴k2<3,∴-3 <k<3,又当弦长|AB|≥2时,∵圆半径r=3,∴圆心到直线的距离d≤2,即|2k|1+k2≤2,∴k2≤1,∴-1≤k≤1.由几何概型知,事件M:“直线l与圆C相交弦长|AB|≥2”的概率P(M)=1-(-1) 3-(-3)=33.14.把七进制数305(7)化为五进制数,则305(7)=______(5).[答案]1102[解析]∵305(7)=3×72+5=152,又152=30×5+2,30=6×5+0,6=1×5+1,1=0×5+1,∴152=1102(5),即305(7)=1102(5).15.若以连续掷两次骰子得到的点数m,n作为点P的坐标,则点P落在圆x2+y2=16外的概率是________.[答案]7 9[解析]基本事件组成集合Ω={(m,n)|1≤m≤6,1≤n≤6,m,n∈N}中共36个元素.事件A=“点P(m,n)落在圆x2+y2=16外”的对立事件中含有基本事件(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,∴P(A)=1-836=7 9.16.在半径为1的圆周上有一定点A,以A为端点任作一弦,另一端点在圆周上等可能的选取,则弦长超过1的概率为________.[答案]2 3[解析]如图,作半径为1的圆的内接正六边形ABCDEF,则其边长为AB=AF=1,当另一端点落在上时,弦长小于1,当另一端点落在上时,弦长大于1,由几何概型定义可知,概率P=23.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)(08·广东文)某初级中学共有学生2000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373x y男生377370z(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.[解析](1)∵x2000=0.19,∴x=380.(2)初三年级人数为y+z=2000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482000×500=12名.(3)设初三年级女生比男生多的事件为A,初三年级女生、男生数记为(y,z),由(2)知y+z=500,且y、z∈N,基本事件有:(245,255)、(246,254)、(247,253),…,(255,245)共11个,事件A包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个,∴P(A)=511.18.(本题满分12分)某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.[分析]对于(1)可利用各组的频率和等于1,从而可求第四小组的频率;而(2)则是利用组中值求平均分;(3)利用古典概型的概率公式可求其概率.[解析](1)因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.03.其频率分布直方图如图所示.(2)依题意,60分及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.030+0.025+0.005)×10=0.75.所以,估计这次考试的合格率是75%. 利用组中值估算这次考试的平均分,可得: 45·f 1+55·f 2+65·f 3+75·f 4+85·f 5+95·f 6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71. 所以估计这次考试的平均分是71分.(3)[40,50)与[90.100]的人数分别是6和3,所以从成绩是[40,50)与[90,100]的学生中选两人,将[40,50]分数段的6人编号为A 1,A 2,…A 6,将[90,100]分数段的3人编号为B 1,B 2,B 3,从中任取两人,则基本事件构成集合Ω={(A 1,A 2),(A 1,A 3)…(A 1,A 6),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,A 4),…,(B 2,B 3)}共有36个,其中,在同一分数段内的事件所含基本事件为(A 1,A 2),(A 1,A 3)…(A 1,A 6),(A 2,A 3)…(A 5,A 6),(B 1,B 2),(B 1,B 3),(B 2,B 3)共18个,故概率P =1836=12.19.(本题满分12分)有人提出如下的圆周率的近似算法:在右图的单位正方形内均匀地取n 个点P i (x i ,y i )(i ∈{1,2,…,n }),然后统计出以x i 、y i 、1为边长的三角形中锐角三角形的个数m ,则当n 充分大时,π≈4(n -m )n,试分析这种算法是否正确.[解析] 根据题中提出的算法, 有0<x i <1,0<y i <1,所以以x i ,y i,1为边长的三角形中,长为1的边所对的角A 为最大角,当且仅当0°<A <90°时,以x i ,y i,1为边长的三角形为锐角三角形,x 2i +y 2i >1,此时点P 在以O 为圆心,1为半径的圆的外部,即图中阴影部分.所以在图中的单位正方形内任意取一点P i ,满足以x i ,y i,1为边长的三角形为锐角三角形的概率为P =阴影部分的面积/单位正方形的面积=1-π4,当n 充分大时,m n ≈P =1-π4,∴π≈4⎝⎛⎭⎫1-m n =4(n -m )n ,所以题中给出的圆周率的近似算法是正确的.20.(本题满分12分)编写程序求1~1000的所有不能被3整除的整数之和. [解析] S =0 i =1WHILE i <=1000r =i MOD 3IF r <>0 THEN S =S +i END IF i =i +1 WEND PRINT S END21.(本题满分12分)一次掷两粒骰子,得到的点数为m 和n ,求关于x 的方程x 2+(m +n )x +4=0有实数根的概率.[解析] 基本事件共36个,∵方程有实根,∴Δ=(m +n )2-16≥0, 又∵m ,n ∈N ,∴m +n ≥4,其对立事件是m +n <4,其中有(1,1),(1,2),(2,1)共3个基本事件,∴所求概率为P =1-336=1112.22.(本题满分14分)某化工厂的原料中含有两种有效成份A 和B .测得原料中A 和B 的i 1 2 3 4 5 6 7 8 9 10 x i :A (%) 24 15 23 19 16 11 20 16 17 13 y i :B (%) 67 54 72 64 39 22 58 43 46 34 (1)作出散点图;(2)求出回归直线方程:y ^=ax +b ;(3)计算回归直线y ^=ax +b 对应的Q =∑i =110[y i -(ax i +b )]2,并和另一条直线y ^=a ′x +b ′(a ′=2a ,b ′=2b )对应的Q ′=∑i =110[y i -(a ′x i +b ′)]2比较大小.(可使用计算器)[解析] (1)散点图见下图(2)把数据代入公式,计算可知,x -=17.4,y -=49.9,∑i =110x 2i =3182,∑i =110x i y i =9228,b =∑i =110x i y i -10x -y-∑i =110x 2i -10x-2=9228-8682.63182-3027.6≈3.5324,a =y --b x -≈-11.5635,回归线方程为y ^=3.5324x -11.5635.(3)经计算:Q =∑i =110[y i -(ax i +b )]2=353.8593,Q ′=∑i =110[y i -(2ax i +2b )]2=27175.6120,∴Q <Q ′.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。

最新北师大版高中数学必修三测试题全套及答案

最新北师大版高中数学必修三测试题全套及答案章末综合测评(一)统计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民,这个问题中“2 500名城镇居民的寿命的全体”是()A.总体B.个体C.样本D.样本容量【解析】每个人的寿命是个体,抽出的2 500名城镇居民的寿命的全体是从总体中抽取的一个样本.【答案】 C2.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40B.30C.20D.12【解析】系统抽样也叫间隔抽样,抽多少就分成多少组,总数除以组数=间隔数,即k=1 20040=30.【答案】 B3.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组【解析】根据频率分布表的步骤,极差组距=140-5110=8.9,所以分成9组.【答案】 B4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12C.13 D.14【解析】依据系统抽样的特点分42组,每组20人,区间[481,720]包含25组到36组,每组抽一个,则抽到的人数为12.【答案】 B5.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图1所示,则甲、乙两人在这几场比赛中得分的中位数之和是()图1A.63 B.64C.65 D.66【解析】由茎叶图知甲比赛得分的中位数为36,乙比赛得分的中位数为27,故甲、乙两人得分的中位数之和为27+36=63.【答案】 A6.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的进球技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2C.3 D.4【解析】因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确,故选D.【答案】 D7.某学校为调查学生的学习情况,对学生的课堂笔记进行了抽样调查,已知某班级一共有56名学生,根据学号(001~056),用系统抽样的方法抽取一个容量为4的样本,已知007号、021号、049号在样本中,那么样本中还有一个学生的学号为()A.014 B.028C.035 D.042【解析】由系统抽样的原理知,抽样的间隔为564=14,故第一组的学号为001~014,所以007为第一组内抽取的学号,所以第二组抽取的学号为021;第三组抽取的学号为035;第四组抽取的学号为049.故选C.【答案】 C8.从800件产品中抽取60件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数(随机数表第7行至第9行的数如下),则抽取的第4件产品的编号是()844217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954A.169 B.556C.671 D.105【解析】找到第8行第8列的数8,并开始向右读,每次读取三位,凡不在001~800中的数跳过去不读,前面已经读过的也跳过去不读,从而最先抽取的4件产品的编号依次是169,556,671,105.故抽取的第4件产品的编号是105.【答案】 D9.对具有线性相关关系的变量x,Y有一组观测数据(x i,y i)(i=1,2,…,8),其回归直线方程是:y=16x+a,且x1+x2+x3+…+x8=3,y1+y2+y3+…+y8=6,则a=()A.116 B.18C.14D.1116【解析】 因为x 1+x 2+x 3+…+x 8=3,y 1+y 2+y 3+…+y 8=6, 所以x =38,y =34,所以样本中心点的坐标为⎝ ⎛⎭⎪⎫38,34,代入回归直线方程得34=16×38+a ,所以a =1116. 【答案】 D10.(2015·安徽高考)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32【解析】 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16,故选C.【答案】 C11.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元【解析】 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元). 【答案】 B12.(2016·日照高一检测)样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定【解析】 由题意知,样本(x 1,…,x n ,y 1,…,y m )的平均数为z =nx +my m +n=nn +m x +m n +m y ,且z =ax +(1-a )y ,所以a =n n +m ,1-a =m n +m .又因为0<a <12,所以0<n n +m<12,解得n <m . 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.(2015·江苏高考)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______. 【解析】 x -=4+6+5+8+7+66=6.【答案】 614.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):【解析】 由题意,需比较s 2甲与s 2乙的大小.由于x 甲=x 乙=10,s 2甲=0.02,s 2乙=0.244,则s 2甲<s 2乙,因此甲产量比较稳定. 【答案】 甲15.(2015·湖北高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图2所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.图2【解析】(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.【答案】(1)3(2)6 00016.(2016·潍坊高一检测)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,图3是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.图3【解析】因为第一组与第二组共有20人,并且根据图像知第一组与第二组的频率之比=12.又因为第一组与第三组的频率之比是是0.24∶0.16=3∶2,所以第一组的人数为20×350.24∶0.36=2∶3,所以第三组有12÷23=18人.因为第三组中没有疗效的人数为6,所以第三组中有疗效的人数是18-6=12.【答案】 12三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某校高中三年级有503名学生,为了了解他们的身体状况,准备按1∶10的比例抽取一个样本,试用系统抽样方法进行抽取,并写出抽样过程.【解】 (1)用简单随机抽样法从503名学生中剔除3名学生. (2)采用随机的方式将500名学生编号为1,2,3,…,500. (3)确定分段间隔,样本容量为500×110=50, 分段间隔k =50050=10,即将500名学生分成50部分,其中每一部分包括10名学生,即把1,2,3,…,500均分成50段.(4)在第一段用简单随机抽样法确定起始的个体编号l ,例如,l =8.(5)按照事先确定的规则抽取样本:从8号起,每隔10个抽取1个号码,这样得到一个容量为50的样本:8,18,28,38,…,488,498.编号为8,18,28,…,488,498的学生便作为抽取的一个样本参与试验.18.(本小题满分12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2; 乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小? (2)哪台机床的生产状况比较稳定? 【解】 (1)x甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙车床次品数的平均数较小.(2)s2甲=110[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙车床的生产状况比较稳定.19.(本小题满分12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图4).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.图4(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.【解】(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,∴x=50.即参加这次测试的学生有50人.(3)达标率为0.3+0.4+0.2=0.9,∴估计该年级学生跳绳测试的达标率为90%.20.(本小题满分12分)为了了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量,结果如下:[157,161)3人;[161,165)4人;[165,169)12人;[169,173)13人;[173,177)12人;[177,181]6人.(1)列出频率分布表;(2)画出频率分布直方图;(3)估计总体在[165,177)间的比例.【解】(1)列出频率分布表:分组频数频率频率组距[157,161)30.060.015[161,165)40.080.02[165,169)120.240.06[169,173)130.260.065[173,177)120.240.06[177,181]60.120.03合计50 1.00(2)画出频率分布直方图如图:(3)因0.24+0.26+0.24=0.74,所以估计总体在[165,177)间的比例为74%.21.(本小题满分12分)(2014·全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门3 5 9440 4 4 89 75 1 2 2 4 5 6 6 7 7 7 8 99 7 6 6 5 3 3 2 1 1 060 1 1 2 3 4 6 8 89 8 8 7 7 7 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1 0 070 0 1 1 3 4 4 96 6 5 5 2 0 0 8 1 2 3 3 4 56 3 2 2 2 090 1 1 4 5 6100 0 0(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【解】(1)由所给茎叶图知,将50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.22.(本小题满分12分)(2015·广东高考)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图6.图6(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解】(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1得x=0.007 5,∴直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽取比例为1125+15+10+5=1 5,∴从月平均用电量在[220,240)的用户中应抽取25×15=5(户).章末综合测评(二)算法初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的叙述中,不是解决问题的算法的是()A.从北京到海南岛旅游,先坐火车,再坐飞机抵达B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.方程x2-4=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15【解析】算法是解决某类问题的一系列步骤或程序,C只是描述了事实,没有解决问题的步骤.【答案】 C2.用二分法求方程x2-10=0的近似根的算法中要用哪种算法结构()A.顺序结构B.选择结构C.循环结构D.以上都用【解析】由求方程x2-10=0的近似根的算法设计知以上三种结构都用到.【答案】 D3.下列程序中的For语句终止循环时,S等于()S=0For M=1To10S=S+MNext输出S.A.1B.5C.10D.55【解析】S=0+1+2+3+…+10=55.【答案】 D4.下列给出的赋值语句中正确的是()A.0=M B.x=-xC.B=A=-3 D.x+y=0【解析】赋值语句不能计算,不能出现两个或两个以上的“=”且变量在“=”左边.【答案】 B5.当A=1时,下列程序输入A;A=A*2A=A*3A=A*4A=A*5输出A.输出的结果A是()A.5 B.6C.15 D.120【解析】运行A=A*2得A=1×2=2.运行A=A*3得A=2×3=6.运行A=A*4得A=6×4=24.运行A=A*5得A=24×5=120.即A=120.故选D.【答案】 D6.(2014·福建高考)阅读如图1所示的程序框图,运行相应的程序,输出的n的值为()图1A.1 B.2C.3 D.4【解析】当n=1时,21>12成立,执行循环,n=2;当n=2时,22>22不成立,结束循环,输出n=2,故选B.【答案】 B7.(2016·菏泽高一检测)执行如图2所示的算法框图,输出的S值为()图2A.2 B.4C.8 D.16【解析】运行如下:①k=0,S=1;②S=1×20=1,k=1;③S=1×21=2,k=2;④S =2×22=8,k =3.此时输出S .【答案】 C8.(2015·福建高考)阅读如图3所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为( )图3A .2B .7C .8D .128【解析】 由程序框图知,y =⎩⎪⎨⎪⎧2x ,x ≥2,9-x ,x <2.∵输入x 的值为1,比2小,∴执行的程序要实现的功能为9-1=8,故输出y 的值为8. 【答案】 C9.(2016·北京高考)执行如图4所示的程序框图,若输入的a 值为1,则输出的k 值为( )图4A .1B .2C .3D .4【解析】 开始a =1,b =1,k =0;第一次循环a=-1,k=1;2第二次循环a=-2,k=2;第三次循环a=1,条件判断为“是”,跳出循环,此时k=2.【答案】 B10.阅读如图5所示的算法框图,若输出s的值为-7,则判断框内可填写()图5A.i≥3 B.i≥4C.i≥5 D.i≥6【解析】此算法框图运行如下:①i=1,s=2;②s=1,i=3;③s=-2,i=5;④s =-7,i=7此时应结束循环.所以i=5时不满足循环条件,i=7时满足循环条件.【答案】 D11.当a=16时,下面的算法输出的结果是()If a<10 Theny=2*aElsey=a *aEnd If输出y.A.9B.32 C .10D .256【解析】 该程序是求分段函数y =⎩⎪⎨⎪⎧2a (a <10),a 2(a ≥10)的函数值,所以当a =16时y =162=256.【答案】 D12.阅读如图6所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =( )图6A .2B .3C .4D .5【解析】 m =2,A =1,B =1,i =0. 第一次:i =0+1=1,A =1×2=2, B =1×1=1,A >B ;第二次:i =1+1=2,A =2×2=4, B =1×2=2,A >B ;第三次:i =2+1=3,A =4×2=8, B =2×3=6,A >B ;第四次:i =3+1=4,A =8×2=16, B =6×4=24,A <B . 终止循环,输出i =4.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.如图7是求12+22+32+…+1002的值的算法框图,则正整数n=________.图7【解析】由题意知s=12+22+32+…+1002,先计算s=s+i2,i再加1,故n=100.【答案】10014.下面的程序运行后输出的结果是________.x=1i=1Dox=x+1i=i+1Loop While i<=5输出x.【解析】每循环一次时,x与i均增加1直到i>5时为止,所以输出的结果为6.【答案】 615.如图8给出一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值的集合为________.图8【解析】这个程序框图对应的函数为y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5.当x ≤2时,由x 2=x ,得x =0或1; 当2<x ≤5时,由2x -3=x ,得x =3;当x >5时,由1x =x ,得x =±1(舍),故x =0或1或3.【答案】 {0,1,3} 16.已知程序:【解析】 由程序知,当x >0时, 3x2+3=6.解得x =2; 当x <0时,-3x 2+5=6,解得x =-23, 显然x =0不成立. 【答案】 2或-23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)下面给出了一个问题的算法: 1.输入x .2.若x ≥4,则y =2x -1;否则,y =x 2-2x +3.3.输出y .问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多少时,输出的y 值最小?【解】 (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值.(2)当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2,所以y min =2,此时x =1.即当输入的x 值为1时,输出的y 值最小.18.(本小题满分12分)将某科成绩分为3个等级:85分~100分为“A”;60分~84分为“B”;60分以下为“C”.试用条件语句表示某个成绩等级的程序(分数为整数).【解】 程序:19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧2x +1,x <0,1,x =0,x 2+1,x >0.画出算法框图并编写算法语句,输入自变量x 的值,输出相应的函数值. 【解】 算法框图如图所示:算法语句如下:输入x;If x<0 Theny=2*x+1ElseIf x=0 Theny=1Elsey=x2+1End IfEnd If输出y.20.(本小题满分12分)给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了解决该问题的算法框图(如图9所示),图9(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法.【解】 (1)因为是求30个数的和.故循环体应执行30次,其中i 是计数变量,因此判断框内的条件就是限制计数变量i 的,故应为i >30.算法中的变量p 实质是表示参与求和的各个数,由于它也是变化的,且满足第i 个数比其前一个数大i -1,第i +1个数比其前一个数大i ,故应有p =p +i .故①处应填p =p +i ;②处应填i >30.(2)根据框图.写出算法如下: i =1 p =1 S =0 Do S =S +p p =p +i i =i +1Loop While i <=30 输出S .21.(本小题满分12分)如图10所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数关系式.并写出算法,画出算法框图,写出程序.图10【解】 函数关系如下 y =⎩⎪⎨⎪⎧2x (0≤x ≤4),8(4<x ≤8),2(12-x )(8<x ≤12).算法如下: 1.输入x .2.如果0≤x ≤4,则使y =2x ;否则执行3. 3.如果4<x ≤8,则使y =8;否则执行4.4.如果8<x≤12,则使y=2(12-x);否则结束.5.输出y.算法框图如图所示:算法语句:输入x;If x>=0And x<=4Theny=2*xElseIf x<=8Theny=8ElseIf x<=12Theny=2*(12-x)End IfEnd IfEnd If输出y.22.(本小题满分12分)设计一个算法,求满足1×2+2×3+…+n×(n+1)<1 000的最大整数n,画出框图,并用循环语句描述.【解】算法框图如下所示:用语句描述为:n=0S=0Don=n+1S=S+n*(n+1)Loop While S<1 000输出n-1.章末综合测评(三)概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a,b是实数,那么b+a=a+b;②某地1月1日刮西北风;③当x是实数时,x2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有() A.1个B.2个C.3个D.4个【解析】由题意可知①③是必然事件,②④是随机事件.【答案】 B2.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n 个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mn D.2mn【解析】分别确定n个数对(x1,y1),(x2,y2),…,(x n,y n)和m 个两数的平方和小于1的数对所在的平面区域,再用随机模拟的方法和几何概型求出圆周率π的近似值.因为x1,x2,…,x n,y1,y2,…,y n都在区间[0,1]内随机抽取,所以构成的n个数对(x1,y1),(x2,y2),…,(x n,y n)都在正方形OABC内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得S扇形S正方形=mn,即π4=mn,所以π=4mn.【答案】 C3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是()A.310 B.112C.4564 D.38【解析】所有子集共8个,其中含有2个元素的为{a,b},{a,c},{b,c},所以概率为38.【答案】 D4.(2016·山东青岛一模)如图1所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()图1A.2-32B.2+32 C.1+32D.1-32【解析】 易知小正方形的边长为3-1,故小正方形的面积为S 1=(3-1)2=4-23,大正方形的面积为S =2×2=4,故飞镖落在小正方形内的概率P =S 1S =4-234=2-32.【答案】 A5.4张卡片上分别写有数字1,2,3,4.从这4张卡片中随机抽取2张,则抽取的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34【解析】 基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中两数字之和为奇数的有(1,2),(2,3),(1,4),(3,4),所以概率为23.【答案】 C6.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( ) A.23 B.13 C.34D.14【解析】 如图,设点M 为AB 的三等分点,要使△PBC 的面积不小于S3,则点P 只能在AM 上选取,由几何概型的概率公式得所求概率|AM ||AB |=23|AB ||AB |=23.【答案】 A7.(2016·东北八校二模)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19 B.29 C.718D.49【解析】 任意找两人玩这个游戏,共有6×6=36种猜数字结果,其中满足|a -b |≤1的有如下情形:①a =1,b =1,2;②a =2,b =1,2,3;③a =3,b =2,3,4;④a =4,b =3,4,5;⑤a =5,b =4,5,6;⑥a =6,b =5,6,总共16种,故他们“心有灵犀”的概率为P =1636=49.【答案】 D8.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8D .1-π8【解析】 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2,取到的点到O 的距离大于1的概率为2-π22=1-π4.【答案】 B9.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23B.13C.12D.512【解析】 若方程有实根,则a 2-8>0.a 的所有取值情况共6种,满足a 2-8>0的有4种情况,故P =46=23.【答案】 A10.(2016·石家庄高一检测)有分别写着数字1到120的120张卡片,从中取出1张,这张卡片上的数字是2的倍数或是3的倍数的概率是( )A.12B.34C.47D.23【解析】 是2的倍数的数有60个,是3的倍数的数有40个,是6的倍数的数有20个,∴P =60+40-20120=23.【答案】 D11.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1D .p 1<12<p 2【解析】 如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.【答案】 D12.如图2所示,在矩形ABCD 中,AB =5,AD =7.现在向该矩形内随机投一点P ,则∠APB >90°的概率为( )图2A.536B.556πC.18πD.18【解析】 由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 为区域Ω.要使得∠APB >90°,需满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A .记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求∠APB >90°的概率转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意,得μA =12π×⎝ ⎛⎭⎪⎫522=25π8,矩形ABCD 的面积μΩ=35,故所求的概率为P (A )=25π835=5π56.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,二级品的概率是0.21,则出现一级品与三级品的概率分别是________,________.【解析】 由题意知出现一级品的概率是0.98-0.21=0.77,又由对立事件的概率公式可得出现三级品的概率是1-0.98=0.02.【答案】 0.77 0.0214.如图3的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.图3【解析】 由题意得138300=S 阴5×2,S 阴=235.【答案】 23515.在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为________.【解析】 先后两次取卡片,形成的有序数对有(1,1),(1,2),(1,3),…,(1,10),…,(10,10),共计100个.因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个,故x +y 是10的倍数的概率为P =10100=110.【答案】 11016.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.【解析】 ∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+(5-2)5-0=23.【答案】23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.【解】 将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5种饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.18.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“x +y ≤3”的概率; (2)求事件“|x -y |=2”的概率.【解】 设(x ,y )表示一个基本事件,则掷两次骰子包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个基本事件.(1)用A 表示事件“x +y ≤3”,则A 的结果有(1,1),(1,2),(2,1),共3个基本事件. ∴P (A )=336=112.即事件“x +y ≤3”的概率为112. (2)用B 表示事件“|x -y |=2”,则B 的结果有(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)共8个基本事件. ∴P (B )=836=29.即事件“|x -y |=2”的概率为29.19.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和与标号之积都不小于5的概率.【解】 设从甲、乙两个盒子中各取出1个球,编号分别为x ,y ,用(x ,y )表示抽取的结果,结果有以下25种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).(1)取出的两个球上标号为相邻整数的结果有以下8种:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),故所求概率为P =825,即取出的两个球上标号为相邻整数的概率为825.(2)标号之和与标号之积都不小于5的结果有以下17种:(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),故所求概率为P =1725,故取出的两个球上标号之和与标号之积都不小于5的概率是1725.20. (本小题满分12分)把一颗骰子抛掷两次,第一次出现的点数记为a ,第二次出现的点数记为b .试就方程组⎩⎨⎧ ax +by =3,x +2y =2解答下列各题: (1)求方程组只有一组解的概率;(2)求方程组只有正数解(x 与y 都为正)的概率.【解】 (1)当且仅当a b ≠12时,方程组只有一组解;a b =12的情况有三种:⎩⎪⎨⎪⎧ a =1,b =2或⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =3,b =6.而抛掷两次的所有情况有6×6=36(种),所以方程组只有一组解的概率为P =1-336=1112.(2)因为方程组只有正数解,所以两直线的交点一定在第一象限,解方程组得 ⎩⎪⎨⎪⎧ x =6-2b 2a -b ,y =2a -32a -b .当⎩⎪⎨⎪⎧ 2a -b >0,6-2b >0,2a -3>0,或⎩⎪⎨⎪⎧ 2a -b <0,6-2b <0,2a -3<0,且a >0,b >0,。

最新高中数学人教A版必修3综合测试题(含答案解析) 5

必修3综合模块测试(人教A 版必修3)一、选择题(每小题各5分, 共60分)1.设x 是10021,,,x x x 地平均数,a 是4021,,,x x x 地平均数,b 是1004241,,,x x x 地平均数,则下列各式中正确地是( ) A.4060100a b x B. 6040100a b x C. x a b D. 2a bx2.在样本地频率分布直方图中,共有5个长方形,若正中间一个小长方形地面积等于其它4个小长方形地面积和地14,且样本容量为100,则正中间地一组地频数为()A.80 B.0.8 C.20 D.0.23.某大学自主招生面试环节中,七位评委为考生A打出地分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为85,复核员在复核时,发现有一个数字(茎叶图中地x)无法看清,若统计员计算无误,则数字x应该是()A.5 B.6 C.7 D.94. 下列各数中与1010相等地数是())4(A.76 B.)8(103)9(C .)3(2111D .)2(1000100 5. 某算法地程序框如图所示,若输出结果为12,则输入地实数x 地值是 ( )A .32B .52 D .4 6. 在长为10地线段AB 上任取一点P ,并以线段AP 为一条边作正方形,这个正方形地面积属于区间]81,36[地概率为( )A.209 B.15 C.310 D.257. 从高一(9)班54名学生中选出5名学生参加学生代表大会,若采用下面地方法选取:先用简单随机抽样从54人中剔除4人,剩下地50人再按系统抽样地方法抽取5人,则这54人中,每人入选地概率()A.都相等,且等于1 B.都相等,10且等于554C.均不相等 D.不全相等8.把标号为1,2,3,4地四个小球随机地分发给甲、乙、丙、丁四个人,每人分得一个。

事件“甲分得1号球”与事件“乙分得1号球”是()A.互斥但非对立事件 B. 对立事件 C.相互独立事件 D. 以上都不对9.袋中有大小相同地黄、红、白球各一个,每次从中任取一个,有放回地取3次,则下列事件:⑴颜色全同;⑵颜色不全同;⑶颜色全不同; ⑷无红球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修三综合测试题一、选择题1.算法的三种基本结构是( )A .顺序结构、模块结构、条件分支结构B .顺序结构、条件结构、循环结构C .模块结构、条件分支结构、循环结构D .顺序结构、模块结构、循环结构2. 一个年级有12个班,每个班有学生50名,并从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是( )A.分层抽样B.抽签抽样C.随机抽样D.系统抽样3. 某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( )A.3人B.4人C.7人D.12人4.一个容量为20的样本数据,分组后组距与频数如下表.则样本在区间(-∞,50)上的频率为( )A.0.5B.0.25C.0.6D.0.75、把二进制数)2(111化为十进制数为 ( )A 、2B 、4C 、7D 、8 6. 抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 ( )A.至多两件次品B.至多一件次品C.至多两件正品D.至少两件正品7. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是.( )A.21B.31 C.41 D.不确定 8.甲、乙2人下棋,下成和棋的概率是21,乙获胜的概率是31,则甲不胜的概率是( ) A. 21 B.65 C.61 D.32 9.某银行储蓄卡上的密码是一种4位数号码,每位上的数字可在0到9中选取,某人只记得密码的首位数字,如果随意按下一个密码,正好按对密码的概率为( )A . 4101 B. 3101 C.2101 D.101 10. 甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3.下列说法正确的个数为( )①甲队的技术比乙队好 ②乙队发挥比甲队稳定③乙队几乎每场都进球 ④甲队的表现时好时坏A.1B.2C.3D.411.已知变量a ,b 已被赋值,要交换a, b 的值,应采用下面( )的算法。

A. a=b, b=a B a=c, b=a, c=b C a=c, b=a, c=a D c=a, a=b, b=c12.从10个篮球中任取一个,检验其质量,则应采用的抽样方法为( ) A 简单随机抽样 B 系统抽样 C 分层抽样 D 放回抽样13.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现抽取30人进行分层抽样,则各职称人数分别为( )A 5,10,15B 3,9,18C 3,10,17D 5, 9, 1614.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论哪个是正确的( )A A,C 互斥B B,C 互斥 C 任何两个都互斥D 任何两个都不15.某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过三次而接通电话的概率为( )A 9/10B 3/10C 1/8D 1/1016. 回归方程yˆ=1.5x -15,则 A.y =1.5x -15 B.15是回归系数aC.1.5是回归系数aD.x =10时,y =0二、填空题17.两个数168,120的最大公约数是__________。

18.阅读右面的流程图,输出max 的含义____________。

19.已知},......,,{321n x x x x 的平均数为a ,标准差是b,则23 ..., ,23 ,2321+++n x x x 的平均数是_____。

标准差是________.20.对一批学生的抽样成绩的茎叶图如下:则 表示的原始数据为 .21.在边长为25cm 的正方形中挖去腰长为23cm 的两个等腰直角三角形(如图),现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是 .22.下列是容量为100的样本的频率分布直方图,试根据图形中的数据填空。

(1)样本数据落在范围〔6,10〕内的频率为 ;(2)样本数据落在范围〔10,14〕内的频率为 ;(3)总体数据在范围〔2,6〕内的概率为 。

三、解答题 8 9 21 5 35 2 8 4 43 9 84 1 65 5 4 3 2 开始输入a ,b ,ca>b max:=b max:=a c>max max:=c 输出max 结束是否否是数据样本组距频率1418106200.090.080.030.0223.由经验得知,新亚购物广场付款处排队等候付款的人数及其概率如下:求:(1)至多2人排队的概率;(2)至少2人排队的概率。

+++++的程序框图,写出对应的程序。

24.画出1234 (100)25. 抛掷两颗骰子,求:(1)点数之和出现7点的概率;(2)出现两个4点的概率.26.如图在墙上挂着一块边长为16cm的正方形木板,上面画了大、中、小三个同心圆,半径分别为2cm,4cm,6cm,某人站在3m处向此木板投镖,设击中线上或没有投中木板时都不算,可重新投一次.问:⑴投中大圆内的概率是多少?⑵投中小圆与中圆形成的圆环的概率是多少?⑶投中大圆之外的概率又是多少?数学必修三模块测试A一、选择题:1—5 BDBDC 6—10 BBBBD 11—16 DABBBA 二、填空题:17、 24 18、 a.b.c 中的最大者 19、a+2 、 b20、 35 21、96625 22、0.32 0.40 0.12三、解答题:23. 解:记“付款处排队等候付款的人数为0、1、2、3、4、5人以上”的事件分别为A 、B 、C 、D 、E 、F ,则由题设得P (A )=0.1,P (B )=0.16, P (C )=0.30, P (D )=0.3 0, P (E )=0.1, P (F )=0.04.(1)事件“至多2人排队”是互斥事件A 、B 、C 的和A+B+C ,其概率为P (A+B+C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56,至多2人排队的概率为0.46。

(2)“至少2人排队”的对立事件是“至多1人排队”。

而“至多1人排队”为互斥事件A 、B 的和A+B ,其概率为P (A+B )=P (A )+P (B )=0.1+0.16=0.26,因此“至少2人排队”的概率为1-P (A+B )=1-0.26=0.74.24.框图:略 程序:25.解:作图,从下图中容易看出基本事件空间与点集S={(x ,y )|x ∈N ,y ∈N ,1≤x ≤6,1≤y ≤6}中的元素一一对应.因为S 中点的总数是6×6=36(个),所以基本事件总数n=36.(1A 包含的基本事件数共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P (A )=61366=. (8分)(2)记“出现两个4点”的事件为B ,则从图中可看到事件B 包含的基本事件数只有1个:(4,4).所以P (B )=361. 26. 解:镖投在板上任何位置的可能性相等,故概率与面积应成正比,设所求概率分1p ,2p , 3p 于是有:649256361ππ===正方形大圆s s p 6452562025616362ππππ==-=-=正方形中园大圆s s s p 161256162563ππ-=-=-=正方形中园正方形s s s p 第15章 弹簧元件15.1 弹簧元件的的功用和类型弹簧受外力作用后能产生较大的弹性变形,在机械设备中广泛应用弹簧作为弹性元件。

弹簧的主要功用有:1)控制机构的运动或零件的位置,如凸轮机构、离合器、阀门以及各种调速器中的弹簧;2)缓冲及吸振,如车辆弹簧和各种缓冲器中的弹簧;3)储存能量,如钟表、仪器中的弹簧;4)测量力的大小,如弹簧秤中的弹簧。

弹簧的种类很多,从外形看,有螺旋弹簧、环形弹簧、碟形弹簧、平面涡卷弹簧和板弹簧等。

螺旋弹簧是用金属丝(条)按螺旋线卷饶而成,由于制造简便,所以应用最广。

按其形状可分为:圆柱形(下图a 、b 、d )、截锥形(下图c )等。

按受载情况又可分为拉伸弹簧(下图a )、压缩弹簧(下图b 、c )和扭转弹簧(下图d )。

环形弹簧(下图a )和碟形弹簧(下图b )都是压缩弹簧,在工作过程中,一部分能量消耗在各圈之间的摩擦上,因此具有很高的缓冲吸振能力,多用于重型机械的缓冲装置。

平面涡卷弹簧或称盘簧(下图c ),它的轴向尺寸很小,常用作仪器和钟表的储能装置。

板弹簧(下图d )是由许多长度不同的钢板叠合而成,主要用作各种车辆的减振装置。

本章主要介绍圆柱螺旋拉伸、压缩弹簧的结构和设计。

15.2 圆柱螺旋拉伸、压缩弹簧的应力与变形一、弹簧的应力圆柱螺旋拉伸及压缩弹簧的外载荷(轴向力)均沿弹簧的轴线作用,它们的应力和变形计算是相同的。

现以圆柱螺旋压缩弹簧为例进行分析。

下左图所示为一圆柱螺旋压缩弹簧,轴向力F作用在弹簧的轴线上,弹簧丝是圆截面的,直径为d,弹簧中径为D2,螺旋升角为a。

相关文档
最新文档