船舶结构规范设计概要
船体结构规范设计5

舷侧列板
内底板
内底板 平板龙骨 船底板 内底边板 舭列板
5.1 《内规》船体板主要公式和要求 5.1.1 外板
t a(L s )
长,m;s —肋骨或纵骨 间距,m;d—吃水,m; r—半波高, m ;a—航区系数,对A级航区a=1, B级航区 a=0.85,C级航区a=0.7;α、 β、γ—系数、按骨架形式由下表选取。
舷顶列板按《规范》2.3.5.1,其宽度 应不小于0.1D,即0.35m。 按《规范》2.3.5.2横骨架式舷顶列板 厚度在中部0.4L区域内应不小于相邻舷侧外 板的厚度,且不小于按下两式计算值: t1 =0.085 s fd E-1(L+110)=6.69 mm t2=1.05· (L+75)0.5=6.01 mm s· 式中: s=0.552m;fd=1;E=1。 实取舷顶列板t=7mm。宽大于350mm.
1.船底板
《内规》2.3.2.1要求,船中部船底板厚度应不小于:
t a(L s )
=0.85×(0.076×33.7+4.5×0.5-0.4) =3.75 mm 式中:a=0.85,α=0.076,β=4.5, γ=-0.4
《内规》2.3.2.2要求,船底板厚度尚应不小于:
t 4.8s d r
=4.8×0.5× =3.2 mm 实取t=4.0mm
1 0.75
《内规》2.3.1要求,船中部平板龙骨厚 度应较底板增厚1mm,宽度不小于0.1B和 750mm的大者,实取t=5mm ;宽度B=750mm。 《内规》2.3.3.1要求,舭列板舭列板厚 度应按船中部船底板厚度增加0.5mm,实取 t=4 mm。
C=0.0412L+4=5.345; h1=0.26C=1.39 m,但不大于0.2d=0.37 m, 实取h1=0.37 m。 实取船底板t=8mm。
船体强度与结构设计=船体结构规范设计

(3)构件布置考虑的主要原则 ●结构布置要形成横向和纵向框架结构
有利于载荷的有效传递。 ●结构布置的连续性原则
构件布置不允许突然中断,或者尺寸突然变化,避免结构的应力集中。 ●等间距性原则
横向构件间距尽量一致,纵向构件间距也尽量相同,这样构件的强度 要求相同,可减少构件品种和规格,便于制造和订货。 ●节点刚性连接原则
(2)平板龙骨:受到 较大总弯曲力矩作用, 此外船舶搁浅或进船坞 修理过程,受到坞墩反 作用力,平板龙骨需要 加厚。
舷 侧 顶 列 板
平板龙骨
3、板的局部加强
机舱开口、人孔、主机座下的力甲板
定义:纵向船中0.4L区保持连续且有效参与总弯曲的上层甲板。
设计原则:强力边板与舷顶列板连接,起着防止船体止裂 的作用,强力边板需要加厚。此外边板的宽度必须满足
(2)三种骨架型式的强度特性 ●横骨架式:横向强度较好,总纵强度较弱,不利于总纵强度,不利 于板格的稳定性 ●纵骨架式:有利于总纵强度,板格的稳定性好。总弯曲力矩大的船 舶,宜采用纵骨架式结构。 ●混合骨架式:满足结构不同部位和区域载荷特点和强度要求。
(3)构件布置考虑的主要原则 ●横骨架式:横向强度较好,总纵强度较弱,不利于总纵强度,不利于板格的稳定性 ●纵骨架式:有利于总纵强度,板格的稳定性好。总弯曲力矩大的船舶,宜采用纵骨架式 结构。 ●混合骨架式:满足结构不同部位和区域载荷特点和强度要求。
船体结构规范设计简略

船体结构规范设计规范法设计的基本步骤根据型线图、总布置图及任务书的要求,通过调查研究,总结分析同类船舶在结构上的优缺点,定出结构形式、肋骨间距;根据型线图和总布置图,绘制中剖面图和肋骨线型图等草图,并进行结构构件的初步布置;按规范计算船体主要构件的尺寸,规范计算与船体中部剖面图绘制是交叉进行的;根据船体中部剖面图与总布置图进行全船结构布置,即绘制基本结构图。
进而完成其它所有的图纸与文件。
确定结构尺寸的一般顺序选择合适的结构型式,确定肋骨间距;按外板、甲板、船底骨架、舷侧骨架、甲板骨架及支柱、舱壁、首尾柱、首尾结构、上层建筑及甲板室、机炉座、其他等等顺序,查规范公式进行计算,并最后选定结构尺寸;校核总纵强度。
船体结构型式的选择纵骨架式:应用于对总纵强度要求较高的大型船舶的上甲板和船底结构;横骨架式:应用于下甲板、舷侧及船端结构。
结构布置的一般原则结构的整体性原则受力的均匀性和有效传递原则结构的连续性和减少应力集中原则局部加强原则外板和甲板的设计船体外板包括:船底板(内底板、外底板)、平板龙骨、舭列板、舷侧外板和舷顶列板。
依次按照相应的规范的公式计算这几项,并确定其尺寸。
板设计的注意点如果设计船舶为散货船则需按照规范后面大开口船或散货船的相应计算公式来进行计算。
横骨架式和纵骨架式的外板计算公式不同,注意选择正确的;计算板厚时一般有2个公式,最终选择的板厚不应小于这2个公式的计算结果;注意平板龙骨和舷顶列板的厚度一般比船底板和舷侧外板厚;如果设计船为双层底则需要同时计算内底板和外底板的厚度,双舷侧也同理。
实际取值时外板一般取的比计算值大1-2mm(比如,计算值8.5mm实取10mm)。
船体骨架的设计船体估计包括:船底骨架、舷侧骨架、甲板骨架和舱壁骨架。
根据各部结构的形式选择规范的有关章节逐条进行计算,除了构件的布置、尺寸符合规范要求外,还要注意构件的相互连接设计。
注意点肋骨、纵骨、横梁、舱壁扶强材、组合肋板骨材等构件(次要构件)所要求的剖面模数或惯性矩较小,可根据规范附录直接选用型钢,一般选用不等边角钢。
船舶结构规范设计讲解

结构设计解决的主要矛盾
强度与质量的矛盾: 结构与工艺性的矛盾: 结构与使用性的矛盾:
船体结构强度与质量的矛盾
保证船体结构具有足够的强度、刚度和 稳定性是设计者应首先考虑的问题。但这 并不是说构件选得愈大、愈坚固愈好,强 度过剩会造成质量增加,钢材消耗多,建 造成本提高并减少船舶载运能力。我们希 望在保证船体结构满足强度、刚度和稳定 性的前提下,力求减轻结构质量,节约材 料,降低成本,提高船舶的营运经济性。
特点:规范根据以往的经验,且统计分析了大量型船 资料和实船测量资料,并辅之以日趋发展的结构力学 计算方法,总结出一系列的规定和经验公式,作为新 船船体结构设计的依据。利用规范设计船体结构能比 较方便地确定构件的布置与尺寸。目前,民用船舶一 般都采用规范设计。
船级社主要职责
规范监督船的建造 允许船舶正式“入级” 办各种国际协定所要求的证书 对使用中的船舶作定期检查,以确定这些
已知条件
在船舶总体设计初步完成后进行, 此时已经确定条件:
1. 主尺度 2. 型线图 3. 总布置图和按设计任务书对结构的要求
(船舶用途、航区、装载情况、建筑形成、 甲板层数、主要设备及使用要求等)
主要任务
确定整个船体结构设计的原则,如选择材料、 骨架形式、肋骨间距、分析结构质量对经济性 的影响。
结构布置的一般原则和规定
结构合理布置,将直接影响船体结构的强度、 重量及工艺性等。
一般原则: 1. 结构的整体性原则: 2. 受力的均匀性和有效传递原则: 3. 结构的连续性和减少应力集中原则: 4. 局部加强原则: 基本规定:
各规范对结构布置都有一些具体规定。 骨架型式的选择(横,纵,混)
受力的均匀性和有效传递原则
船舶结构规范设计

特点
集装箱船的结构和形状跟常规货船有明显不同。 它外形狭长,单甲板,上甲板平直,货舱口达船 宽的70%--80%,上层建筑位于船尾或中部靠 后,以让出更多的甲板堆放集装箱,甲板上堆放 2—4层,舱内可堆放3—9层集装箱。集装箱船 装卸速度高,停港时间短,大多采用高航速,通 常为每小时20—23海里。近年来为了节能,一 般采用经济航速,每小时18海里左右。在沿海短 途航行的集装箱船,航速每小时仅10海里左右。 近年来,美国,英国,日本等国进出口的杂货约 有70%--90%使用集装箱运输。
沿海情况。
结构加强示意图
LWL最大吃水连线,BWL最小吃水连线
油船分类
巴拿马型(Panamax):船型以巴拿马运河(Panama Canal)通航条件为上限(譬如运河对船宽、吃水的限 制),载重吨(DWT)在6~8万吨之间
阿芙拉型(Aframax):平均运费指数最高船型,经济 性最佳,是适合白令海(Baltic Sea)冰区航行油船的 最佳船型。载重吨在8~12万吨之间
已知条件
在船舶总体设计初步完成后进行, 此时已经确定条件:
1. 主尺度 2. 型线图 3. 总布置图和按设计任务书对结构的要求
(船舶用途、航区、装载情况、建筑形成、 甲板层数、主要设备及使用要求等)
主要任务
确定整个船体结构设计的原则,如选择材料、 骨架形式、肋骨间距、分析结构质量对经济性 的影响。
为减少应力集中,所有船体构件的剖面形状应有 平顺的过渡。
例如,在甲板、平台、内底板、纵舱壁间断处,应装设肘板或其它结 构使剖面逐渐消失;骨架梁腹板高度变化时,应有一过渡区,该区段 的长度一般应不小于相邻腹板高度差的5倍。
局部加强原则
在设计过程中,对那些在使用中要承受较 大局部载荷的结构则进行适当的局部加强。
船舶设计要求标准规范

船舶设计要求标准规范船舶设计是船舶工程中至关重要的一环,对船舶的性能、安全性和舒适性有着直接的影响。
为了确保船舶的设计和建造符合国际标准,并保证船舶运营过程中的安全性和高效性,船舶设计要求标准规范被广泛应用于船舶设计过程中。
本文将以负责的船舶设计师的角度,全面介绍不同类型船舶设计所需遵守的标准与规定。
一、基础设计要求在船舶设计过程中,基础设计是一个不可或缺的部分。
基础设计要求标准规范主要包括以下几个方面:1. 船体结构设计:船体结构设计要符合国际协定规则,如国际海事组织(IMO)制定的船舶建造规则,确保船体在不同工况下的结构安全性。
2. 工程机械设计:包括船舶主机、辅机和推进系统的设计要求。
例如,船舶的动力系统设计要符合国际海上技术规范,确保船舶在航行和停泊时具备足够的推进力。
3. 操纵性和机动性设计:船舶设计要求标准规范中,对船舶的操纵性和机动性有详细的规定。
例如,根据船舶类型和用途的不同,要求具备特定的转弯半径和操舵性能,以确保船舶在不同操作情况下具备良好的运动品质。
二、安全设计要求船舶的安全性是船舶设计中最重要的考虑因素之一。
安全设计要求标准规范主要包括以下几个方面:1. 平衡性和稳定性设计:船舶设计中要求具备充分的平衡性和稳定性,确保船舶在不同条件下保持稳定并具备抗风浪的能力。
2. 防火设计:根据船舶类型和载货种类的不同,要求船舶设计具备适当的防火措施,如采用阻燃材料和防火隔板,确保乘员和船舶设备的安全。
3. 救生设备设计:船舶应当按照国际海事组织的规定,配置适当的救生设备,如救生艇、救生衣等,以确保船舶在紧急情况下的应急反应能力。
三、环境要求随着全球环境问题的日益严峻,船舶设计也要求具备低碳环保的特性。
环境要求标准规范主要包括以下几个方面:1. 节能设计:船舶设计要求通过合理的船型设计、先进的动力装置和智能化的能源管理,达到节能降耗的目的,减少船舶对环境的不良影响。
2. 减排设计:船舶设计要求减少废气和废水的排放,采用先进的排放控制技术,确保船舶在运行过程中对海洋环境产生的污染降到最低。
船体结构规范设计2

主要构件面板的剖面积Af一般应不超过 dwtw/150(cm),其中dw为腹板的 高度(mm),tw为腹板的厚度(mm)。 主要构件应设置防倾肘板。 所有结构上的开口应尽量避开应力集中 区域,如无法避开时应作相应的补偿, 开口的角隅处均应有良好的圆角。构件 与板材直接连接时应避免出现硬点。
第2章结构规范中的一般规定
第2章结构规范中的一般规定
名词解释:船长、满载水线、主要构件、 次要构件、吃水。 简答题:规范为什么规定适用范围? 什么是船体的主要构件和次要构件? 规范对结构设计的主要要求有哪些? 构件的带板宽度是如何确定的? 规范对焊缝设计提出了哪些要求?
第2章结构规范中的一般规定
2.4.2焊缝设计
船体结构的焊缝布置应考虑到便于焊工 施焊。施焊时焊缝位置尽可能采用平焊; 船体各种焊接结构应避免将焊缝布置于 应力集中区域。在结构剖面突变之处应 有足够的过渡区域,尽量避免焊缝过分地 集中 ;
第2章结构规范中的一般规定
船体主要结构中的平行焊缝应保持一定 的距离。对接焊缝之间的平行距离应不 小于100mm,且避免尖角相交;对接焊缝 与角接焊缝之间的平行距离应不小于 50mm; 船体外板、甲板、内底板及舱壁板等之 间的连接,均应采用对接焊缝; 船体板材的连接,特别是高负荷区域的 板材一般不宜采用搭接焊缝 。
第2章结构规范中的一般规定 2.3船体构件
2.3.1结构设计的一般要求
第2章结构规范中的一般规定
各公式要求的剖面模数和惯性矩,除有 特殊规定者外均为连同带板的最小要求 数值。 各种构件除另有规定者外不应任意开孔。 如必需开孔,应充分考虑开孔后的影响, 并应经本社同意。
第2章结构规范中的一般规定
第七章 船体构规

t0.05 b(L 4117 ) 0
名义应力是指当应力低于屈服极限时应力与应变关系满足于 虎克定律这时名义应力与真实应力是一致的当应力高于屈服 极限时这时名义应力与真实应力是不一致的名义应力的综合 值称之为名义应力强度。
船中部外板,除了参加总纵弯曲外,海承受局部水压力荷重; 横骨架式板最大弯曲应力为:
在实际使用时,应根据构件在船体强度上的重要程度,以及构件的检验和 修理的可能性等,分别确定合适的值。
在近海海洋工程结构中,对于暴露在海水中的重要构件,如果有良好的通 路和维修,典型的临界疲劳累积损伤率可取0.3,否则为1.0.
船级协会规定的基本剖面模数W0,对标准的船型可认为是保证船体梁不 发生疲劳断裂的最低要求。
b Y tE
柔性板
2.4
中等柔性板 2.41.0
刚性板
1.0
① 柔性板 2.4
失稳
板失稳后,较大部分的载荷会由板边缘区域承受
失稳后,仍能继续承受载荷,直到板两侧处的应 力最终达到屈服应力而耗尽承载能力为止; 此时,所施加的压缩载荷的最大值即是引起板崩溃的值,称为板的极限强度。《长江水系钢船建造规范》对船长大于50m的客货船 推荐了一个联合中剖面模数的计算方法。
在现代长江客船,若船中部干舷甲板以上围蔽结构的侧壁离船体舷侧 板向内不大于船宽的4%,则将上甲板设计为强力甲板,称为双甲板客 货船;
反之,则以干舷甲板为强力甲板,称为单甲板客货船。
对于有多层甲板的船舶,干舷甲板为离勘划载重线最近的靠上的那层甲板了, 主甲板在干舷甲板的上一层或上几层 。
对此类船舶,若机舱长度l=0.15L,机舱质量为满载排水量的6%,机舱中 心在中后0.02L处,方形系数为0.75的船,总纵弯曲力矩为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构设计解决的主要矛盾
强度与质量的矛盾: 结构与工艺性的矛盾:
结构与使用性的矛盾:
船体结构强度与质量的矛盾
保证船体结构具有足够的强度、刚度和 稳定性是设计者应首先考虑的问题。但这 并不是说构件选得愈大、愈坚固愈好,强 度过剩会造成质量增加,钢材消耗多,建 造成本提高并减少船舶载运能力。我们希 望在保证船体结构满足强度、刚度和稳定 性的前提下,力求减轻结构质量,节约材 料,降低成本,提高船舶的营运经济性。
提出船体主要钢料预估单,并为总体设计提供 船体钢料的质量重心资料。
完成工作
船体主要构件计算书;中剖面图;基本结 构图;首、尾结构图;首尾柱结构图;甲 板平面图;肋骨型线图;外板展开图;主 舱壁结构图;主机座结构图;尾轴架结构 图;主机座和推力轴承座结构图;甲板室 和上层建筑结构图;舱盖结构图和强度计 算书;通风筒、空气管和排水口布置及结 构图等。
结构尺寸:按规范计算船体主要构件的尺寸, 边计算、边绘图、边完善初始的结构布置方案。
结构布置的一般原则和规定
结构合理布置,将直接影响船体结构的强度、 重量及工艺性等。
一般原则: 1. 结构的整体性原则: 2. 受力的均匀性和有效传递原则: 3. 结构的连续性和减少应力集中原则: 4. 局部加强原则: 基本规定: 各规范对结构布置都有一些具体规定。 骨架型式的选择(横,纵,混)
受力的均匀性和有效传递原则
结构构件的布置要尽可能均匀,以避免构 件规格太多或是造成材料的浪费。 结构应保证某一构件承受外力后,能有效 地将力传递到邻近的结构构件上,以避免 某一单独的结构构件承受外力。
(例如,支柱的上下端应固定在纵、横强骨架交叉的节点 上,并且上下支柱应尽可能布置在同一垂直线上,使支柱 所承受的力能有效地传递给甲板及船底结构;当甲板或船 底为纵骨架式时,舷侧普通肋骨的端部应以肘板与邻近的 甲板及船底纵骨相连;当舷侧采用普通肋骨与强肋骨的交 替建造时,一般应设舷侧纵桁,使普通肋骨承受的载荷, 能通过舷侧纵桁传递给强肋骨。)
计算设计局限性
依赖经验: 目前,船体结构的计算设计必须辅之以经验 设计才能完成。这是由于船舶结构设计的计算 方法还不完整,计算设计一般只能在船舶中部 的结构设计中实现,对于首、尾这些复杂部分 还需参考型船进行设计。 工作量巨大。
规范设计
定义:规范设计是指按照有关部门颁布的规范来进行 船体结构的布置及构件尺寸的确定。 特点:规范根据以往的经验,且统计分析了大量型船 资料和实船测量资料,并辅之以日趋发展的结构力学 计算方法,总结出一系列的规定和经验公式,作为新 船船体结构设计的依据。利用规范设计船体结构能比 较方便地确定构件的布置与尺寸。目前,民用船舶一 般都采用规范设计。
结构与工艺性的矛盾
在结构设计时,还必须考虑到结构工艺性要求。 好的结构工艺性包括: 1. 考虑到船舶所有部位的装配和施焊的可能性; 2. 尽可能扩大分段建造范围,缩短造船周期,改善作 业条件,提高造船质量; 3. 尽量简化零部件结构,减少规范品种,尽可能采用 标准件; 4. 尽量减少零部件的曲线外形,结构上的开孔、切角 等应符合标准尺寸或常取尺寸; 5. 考虑船体结构维修与保养的可能性与方便性等。
共同规范的影响
所有IACS的成员 将贯彻CSR,从而可以有效避免 竞争导致协会成员降低技术标准的可能。 CSR要求增加船舶关键部位的钠材厚度,造船成本 的增加,致船舶的运费收入减少。 对于船舶维护,CSR提出了更高要求,这会导致船 舶的维护成本上升。 从长期来看总的成本却不见得增加,因为适当的 维护可以有效降低船舶修理的次数,缩短修理的 时间,从而提高船舶的实际运营效率。
已知条件
在船舶总体设计初步完成后进行, 此时已经确定条件:
1. 2. 3.
主尺度 型线图 总布置图和按设计任务书对结构的要求 (船舶用途、航区、装载情况、建筑形成、 甲板层数、主要设备及使用要求等)
主要任务
确定整个船体结构设计的原则,如选择材料、 骨架形式、肋骨间距、分析结构质量对经济性 的影响。 解决结构设计中的主要技术问题,确定构件的 尺寸和连接方式,同时应充分考虑结构施工的 可行性。
结构与使用性的矛盾
1. 2.
结构布置与构件尺寸要符合使用要求。例如
货船的结构布置要便于装卸货物; 旅客及船员住舱应有足够净空高; 支柱的布置应不妨碍总体布置及机器设备安装的 要求等。
3.
因此结构设计要与总体、轮机和设备的设计密切 配合,树立整体观念,保证船舶各方面都有良好的 性能。此外,根据使用要求在选取构件尺寸时要合 理地考虑锈蚀、磨损余量及其他特殊加强,以降低 维修费用和提高使用年限。
结构设计的方法
计算设计 规范设计
计算设计
定义:船体结构的计算设计是根据结构力学的原理来 确定满足强度、刚度和稳定性要求的船体结构布置及 构件尺寸。 发展:电子计算机技术的发展,给计算设计提供了迅 速有效的工具,加之结构优化设计理论的发展,结构 的计算设计将有较大的发展。 军船:对于设计技术要求较高,对结构质量控制严格 的军用船舶,只能用计算设计。
船体规范设计的局限性
规范制订中某些不合理因素限制了新型结构 设计的合理性 不断诞生的新型船舶无法依据规范进行结构 设计
造船新材料的问世也使得原有规范不能用规范法设计的基本步骤
调查分析:根据对母型船的调查研究和所设计 船的特殊要求,分析所设计船的船体强度要求, 选择合适的建造规范。 结构形式:根据型线图和总布置图,绘制中剖 面图、基本结构图和肋骨线型图等草图,并进 行结构构件的初步布置。
船级社主要职责
规范监督船的建造
允许船舶正式“入级” 办各种国际协定所要求的证书 对使用中的船舶作定期检查,以确定这些 船是否仍保持在“级”内。
共同规范
2006年4月1日,国际船级社协会(IACS)油船和散 货船共同结构规范(Common Structure Rule,CSR) 正式实施。该规范应用了当前船舶科学发展前沿 的新技术、新材料、新理念。CSR对船舶强度的评 估范围,较传统的有很大延伸。CSR规范首次明确 区分了净尺寸和腐蚀增量,同时考虑了船舶的服 务、极限、疲劳、破损4种有限状态,应用了以载 荷为第一设计准则的力学理论公式,是一套符合 基于目标型标准的规范体系。 满足国际海事组织对于船舶使用寿命的更高要求 是CSR的目的之一。