中考尺规作图题专题复习

合集下载

中考数学-尺规作图专题复习

中考数学-尺规作图专题复习

中考总复习—尺规作图一、理解“尺规作图”的含义在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.四、最基本,最常用的尺规作图,通常称基本作图。

中考尺规作图专题

中考尺规作图专题

中考专题复习:尺规作图最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;专题训练:1.已知:线段a,b求作:△ABC,使AB=a,BC=b,AC=2a.(尺规作图,不写作法,保留作图痕迹)分析:首先画线段AC=2a,再以A为圆心,a长为半径画弧,再以C为圆心,b长为半径画弧,两弧交于点B,连接AB、BC即可.解:如图所示:△ABC即为所求.,点评:此题主要考查了作图,关键是掌握作一条线段等于已知线段的方法.2.如图(1),已知直线AB及直线AB外一点C,过点C作CD∥AB(写出作法,画出图形).分析:根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD=∠EFB即可.作法:如图(2).图(1)图(2)(1)过点C作直线EF,交AB于点F;(2)以点F为圆心,以任意长为半径作弧,交FB于点P,交EF于点Q;(3)以点C为圆心,以FP为半径作弧,交CE于M点;(4)以点M为圆心,以PQ为半径作弧,交前弧于点D;(5)过点D作直线CD,CD就是所求的直线.3.已知:∠AOB,求作:∠A′O′B′=∠AOB(用尺规作图,保留作图痕迹,不写步骤).分析:(1)作射线O′B′;(2)以O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以O′为圆心,以OC的长为半径画弧,交O′A′于点C′;(4)以点D′为圆心,以CD的长为半径画弧,交前弧于点C′;(5)过C′作射线O′A′.则∠A′O′B′就是所求作的角.解:∠A′O′B′就是所求作的角.4.画出∠AOB的角平分线(要求:尺规作图,不写作图过程保留作图痕迹).分析:以点O为圆心,以任意长为半径画弧,与边OA、OB分别相交于点M、N,再以点M、N为圆心,以大于1/2 MN长为半径,画弧,在∠AOB内部相交于点C,作射线OC即为∠AOB的平分线.解:如图所示,OC即为所求作的∠AOB的平分线.5.尺规作图:线段MN的垂直平分线(不写作法,保留作图痕迹)分析:分别以M、N点为圆心,以大于1/2 MN的长为半径作弧,两弧相交于A,B两点;作直线AB,AB即为线段AB的垂直平分线.解:如图所示:AB即为所求.6.经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l 上任取两点A 、B ;(2)分别以点A 、B 为圆心,AP ,BP 长为半径画弧,两弧相交于点Q ; (3)作直线PQ .参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是: 线段垂直平分线上的点到线段两端点的距离相等7.尺规作图:画一个三角形与△ABC 全等,要求用尺规作图,保留作图痕迹. 分析:根据全等三角形的判定SSS 定理分别作DF=BC ,DE=AB ,EF=AC 即可. 解:如图所示:.8. 尺规作图:作三角形的外接圆.分析:由于三角形的外心是三角形三边中垂线的交点,可作△ABC 的任意两边的垂直平分线,它们的交点即为△ABC 的外接圆的圆心(设圆心为O );以O 为圆心、OB 长为半径作圆,即可得出△ABC 的外接圆. 解:如图所示:⊙O 即为△ABC 的外接圆.9.利用尺规作出△ABC 的内切圆(不写作法,保留作图痕迹) 分析:首先作出三角形的内角平分线进而得出得出内切圆圆心位置,利用圆心到三角形边的距离为半径画圆得出即可.解:如图所示:⊙O 即为所求.10.尺规作图,找出圆的圆心,不要求写作法,保留作图痕迹.分析:画出两条弦,分别作出两条弦的垂直平分线,两垂直平分线的交点就是圆心位置. 解:如图所示:.11.如图,已知⊙O .用尺规作⊙O 的内接正四边形ABCD .(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑.)解:作⊙O 的任意一条直径AC .作AC 的垂直平分线,与⊙O 相交于B ,D 两点. 顺次连接AB ,BC ,CD ,DA 得到正四边形ABCD . 四边形ABCD 就是所要求作的图形.强化练习:1.已知:∠AOB,点M、N.求作:点P,使点P到OA、OB的距离相等,且PM=PN.(要求:用尺规作图,保留作图痕迹,不写作法.)分析:首先作出∠AOB的平分线,作M点关于对角线对称点M',连接M'N,作M'N的垂直平分线,交角平分线的点就是P点.解:作图如右:2.如图,在Rt△ABC中,∠BAC=90°.(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论3.如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)4.已知:直线AB和AB上一点C.求作:AB的垂线,使它经过点C.小艾的作法如下:如图,(1)在直线AB上取一点D,使点D与点C不重合,以点C为圆心,CD长为半径作弧,交AB于D,E两点;(2)分别以点D和点E为圆心,大于DE长为半径作弧,两弧相交于点F;(3)作直线CF.所以直线CF就是所求作的垂线.这样作图的依据是等腰三角形的“三线合一”,两点确定一条直如图,5.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l和直线l外一点P.求作:直线l的平行直线,使它经过点P.作法:如图2.(1)过点P作直线m与直线l交于点O;(2)在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;(3)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;(4)作直线PD.所以直线PD就是所求作的平行线.该作图的依据是三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等,两直线平行.6.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.7.如图:(1)如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等.(2)利用方格纸画出△ABC关于直线l的对称图形△A′B′C′.(3)如图,已知在△ABC中,AB=AC,AD是BC边上的高,P是AB边上的一点,试在高AD上找一点E,使得△PEB的周长最短.解:(1)如图1所示,点P即为所求;(2)如图2所示:△A′B′C′即为所求;(3)如图1所示,点E即为所求.8.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,1),C(0,1).(1)画出与△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出以C1为旋转中心,将△A1B1C1逆时针旋转90°后的△A2B2C2;(3)尺规作图:连接A1A2,在C1A2边上求作一点P,使得点P到A1A2的距离等于PC1的长(保留作图痕迹,不写作法);(4)请直接写出∠C1A1P的度数.解:(1)△A1B1C1如图所示,并写出点C1的坐标((0,﹣1));(2)△A2B2C2如图所示;(3)点P如图所示;(4)请直接写出∠C1A1P的度数为22.5°;用圆规、直尺作图,不写作法,但要保留作图痕迹.9.已知:四边形ABCD.请确定点P,使PA=PD,且点P到边BC、CD的距离相等.结论:P点即为所求.10.已知:四边形ABCD.求作:点P,使∠PCB=∠B ,且点P到边AD和CD的距离相等.解:作法:①作∠ADC的平分线DE,②过C作CP1∥AB,交DE于点P1,③以C为角的顶点作∠P2CB=∠P1CB,则点P1和P2就是所求作的点;11.尺规作图:过直线外一点作已知直线的平行线.已知:直线l 及其外一点A .求作:l 的平行线,使它经过点A .小云的作法如下:(1)在直线l 上任取一点B ,以点B 为圆心,AB 长为半径作弧,交直线l 于点C ;(2)分别以A ,C 为圆心,以AB 长为半径作弧,两弧相交于点D ;(3)作直线AD .所以直线AD 即为所求.请回答:小云的作图依据是 四条边都相等的四边形是菱形;菱形的对边平行 .12.如图,已知线段c 及锐角α,求作:Rt △ABC ,使∠C=90°,∠A=∠α,AB=c (保留作图痕迹,写出作法)解:如图,作法: (1)作∠MAN=∠α, (2)在AM 上截取AB=c ,(3)过点B 作BC ⊥AN ,交AN 于点C , 所以△ABC 即为所求作的Rt △ABC .13.在一次研究性学习活动中,同学们发现了一种直角三角形的作法,方法是(如图所示):画线段AB ,分别以点A 、B 为圆心,以大于AB 的长为半径画弧,两弧相交于点C ,连结AC ;再以点C 为圆心,以AC 长为半径画弧,交AC 的延长线于D ,连结DB .则△ABD 就是直角三角形.(1)请证明此作法的正确性;(2)请利用上述方法作一个直角三角形,使其一个锐角为30°(写出作法,保留作图痕迹). 解:(1)连结BC ,如图,∵CA=CB , ∴∠CAB=∠CBA , ∵CD=CD ,∴∠D=∠CBD ,∴∠ABC=∠ABC +∠CBD=(∠A +∠CBA +∠CBD +∠D )=×180°=90°, ∴△ABD 就是直角三角形;(2)画线段AB ,分别以点A 、B 为圆心,以AB 的长为半径画弧,两弧相交于点C ,连结AC ;再以点C 为圆心,以AC 长为半径画弧,交AC 的延长线于D ,连结DB .则△ABD 就是直角三角形. 如图,14.如图,A 、B 、C 为某公园的三个景点,景点A 和景点B 之间有一条笔直的小路,现要在小路上建一个凉亭P ,使景点B 、景点C 到凉亭P 的距离之和等于景点B 到景点A 的距离,请用直尺和圆规在所给的图中作出点P .(不写作法和证明,只保留作图痕迹)解:如图,连接AC ,作线段AC 的垂直平分线MN ,直线MN 交AB 于P . 点P 即为所求的点.15.Rt △ABC 中,∠C=90°,用直尺和圆规在边BC 上找一点D ,使D 到AB 的距离等于CD .(保留作图痕迹,不写作法)解:如图,点D 即为所求.16.如图,矩形ABCD 中,AB >AD ,E 在AD 上,将△ABE 沿BE 折叠后,A 点落在CD 上,记为点F .(1)用尺规作出点E 、F ;(2)若AB=5,AD=3,求折痕BE 的长.作法:①作BF=BA 交CD 于F .②连BF 作∠ABF 的平分线,则点E 、F 为所求.。

最新中考数学尺规作图专题复习(含答案)教学文稿

最新中考数学尺规作图专题复习(含答案)教学文稿

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

中考专题复习《尺规作图》巩固练习(真题)含答案

中考专题复习《尺规作图》巩固练习(真题)含答案

中考专题复习《尺规作图》巩固练习(真题)含答案一、单选题1、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段2、下列画图语句中,正确的是()A、画射线OP=3cmB、连接A , B两点C、画出A , B两点的中点D、画出A , B两点的距离3、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个30°的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段4、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b5、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图6、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm7、按下列条件画三角形,能唯一确定三角形形状和大小的是()A、三角形的一个内角为60°,一条边长为3cmB、三角形的两个内角为30°和70°C、三角形的两条边长分别为3cm和5cmD、三角形的三条边长分别为4cm、5cm和8cm8、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段9、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b10、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图11、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm12、下列作图语句中,不准确的是()A、过点A、B作直线ABB、以O为圆心作弧C、在射线AM上截取AB=aD、延长线段AB到D ,使DB=AB二、填空题13、所谓尺规作图中的尺规是指:________.14、尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法________15、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是________.16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P ,连接AP并延长交BC于点D ,则∠ADB=________°.17、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P ,连结AP并延长交BC于点D ,则下列说法①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;正确的个数是________个三、作图题18、已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .19、如图所示,已知△ABC:①过A画出中线AD;②画出角平分线CE;③作AC边上的高BF20、(2016•兰州)如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)四、解答题21、已知直线l和l上一点P ,用尺规作l的垂线,使它经过点P .你能明白小明的作法吗?你是怎样作的?22、如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)答案解析部分一、单选题1、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.【分析】根据尺规作图的定义分别分析2、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.射线没有长度,错误;B.连接A , B两点是作出线段AB ,正确;C.画出A , B两点的线段,量出中点,错误;D.量出A , B两点的距离,错误选B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论3、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析4、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案5、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析7、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.三角形的一个内角为60°,一条边长为3cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm ,能唯一确定三角形形状和大小,符合题意选:D.【分析】根据基本作图的方法,及唯一确定三角形形状和大小的条件可知8、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析9、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案10、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析12、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论二、填空题13、【答案】没有刻度的直尺和圆规【考点】作图—尺规作图的定义【解析】【解答】由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规【分析】本题考的是尺规作图的基本概念14、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS ,即边边边公理【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理15、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等【分析】①以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;②任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E ,交O'A'于点C';③以C'为圆心,CD长为半径画弧,交弧C'E于点D';④过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等16、【答案】125【考点】作图—基本作图【解析】【解答】由题意可得:AD平分∠CAB ,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°【分析】根据角平分线的作法可得AD平分∠CAB ,再根据三角形内角和定理可得∠ADB的度数17、【答案】3【考点】作图—基本作图【解析】【解答】①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB ,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD【分析】根据角平分线的作法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确三、作图题18、【答案】解: 如图所示:【考点】作图—基本作图【解析】【分析】①以点B为圆心,较大的长为半径画弧,交直线AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,两弧相交于一点,过点B和这点作射线,交直线AC于点D , BD就是所求的AC边上的高;②以点C为圆心,任意长为半径画弧,交CA , CB于两点,分别以这两点为圆心,以大于这两点的距离的一半为半径画弧,两弧相交于一点,做过点C和这点的射线交AB于点E , CE即为所求的角平分线19、【答案】解答:如图所示:【考点】作图—复杂作图【解析】【分析】(1)首先找出BC的中点,然后画线段AD即可;(2)利用量角器量出∠BCA的度数,再除以2,算出度数,然后画出线段CE即可;(3)利用直角三角板,一个直角边与AC重合,令一条直角边过点B ,画线段BF即可20、【答案】解:如图所示,四边形ABCD即为所求:【考点】正多边形和圆,作图—复杂作图【解析】【分析】画圆的一条直径AC,作这条直径的中垂线交⊙O于点BD,连结ABCD就是圆内接正四边形ABCD.本题考查的是复杂作图和正多边形和圆的知识,掌握中心角相等且都相等90°的四边形是正四边形以及线段垂直平分线的作法是解题的关键.四、解答题21、【答案】解:明白.作法:①以点P为圆心,以任意长为半径画圆,与直线l相交于点A , B;②分别以AB为圆心,以任意长为半径画圆,两圆相交于点MN ,连接MN即可得出直线l的垂线【考点】作图—复杂作图【解析】【分析】根据线段垂直平分线的作法即可得出结论.22、【答案】【解答】如图所示,△A′B′C′即为△ABC关于直线m对称的图形.【考点】作图—尺规作图的定义,作图—基本作图,作图—复杂作图,轴对称图形【解析】【分析】找出点A、B、C关于直线m的对称点的位置,然后顺次连接即可.。

中考数学专题复习第31章 尺规作图(含解析)

中考数学专题复习第31章 尺规作图(含解析)

第三十一章尺规作图1.(浙江省绍兴,7,3分)如图,AD为⊙O直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:对于甲、乙两人的作法,可判断()A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确【解析】将圆三等分,依次连结各等分点,即可作出圆内接正三角形.【答案】A【点评】本题主要考查圆内接正三角形的作法和判定以及圆的有关知识.19.( 山东德州中考,19,8,)有公路同侧、异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇,的距离必须相等,到两条公路,的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)AB19.【解析】分析此题的条件可知,要想到A 、B 两点的距离相等,可知点C 必在AB 的垂直平分线上;要想到两公路的距离相等,必须在两公路夹角的角平分线上.作出二者的交点即为所求.注意两公路夹角的角平分线不止一条.解:根据题意知道,点C 应满足两个条件,一是在线段的垂直平分线上;二是在两条公路夹角的平分线上,所以点C 应是它们的交点. ⑴ 作两条公路夹角的平分线或;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点,就是所求的位置.…………………(8分)注:本题学生能正确得出一个点的位置得6分,得出两个点的位置得8分.【点评】此题综合考查了角平分线的性质和线段垂直平分线的性质,解答此类题不要漏电所有符合条件的点,要注意在角的外部也有符合条件的点.(2)( 贵州铜仁,19(2),5分)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M 的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)ABFGDOE 19(2)题图【分析】根据垂直平分线上的点到两个端点的距离相等,连接AB 并作AB 的垂直平分线,然后以C 点为圆心,以AB 的长度一半为圆心画弧,与垂直平分线交于一点,即为所求的点M 位置 【解析】作图1、连结AB2、作出线段AB 的垂直平分线3、以C 点为圆心,以AB 的长度一半为圆心画弧,与垂直平分线交于一点M4、 在矩形中标出点M 的位置【点评】此题看出来图形设计作图与实际应用,本题主要利用垂直平分线的作法,属于基本作图,应牢固掌握。

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。

中考数学专题复习 专题30 尺规作图问题(教师版含解析)

中考数学专题复习 专题30  尺规作图问题(教师版含解析)

中考专题30 尺规作图问题1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考专题要求(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).【经典例题1】(2020年•台州)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【标准答案】D【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出标准答案.【答案剖析】由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD【知识点练习】(2019•丽水模拟题)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是( )A.矩形B.菱形C.正方形D.等腰梯形【标准答案】B【答案剖析】根据垂直平分线的画法得出四边形ADBC 四边的关系进而得出四边形一定是菱形。

2024年中考数学微专题复习+尺规作图+课件

2024年中考数学微专题复习+尺规作图+课件
又 ⊥ , ∴ // .

+ +

= , = +
10.[原创新题]如图,一次函数 y = 3x 与反比例函数
y=
k
x
x > 0 的图象交于点 A 1, a ,点 B 在 x 轴正半轴
上.
(1)求反比例函数的表达式.
[答案] 将 , 代入 = ,得 = , ∴ , . 将 , 代入 =
[答案] ∵ 四边形 是菱形, ∴ = , // ,
∴△ ∼△ , ∴


=

.

设 = ,则 = − ,



=

,解得

= ,
∴ 中所作菱形 的边长为6.
5.[2023洛阳二模] 如图,在 △ ABC 中,
∴ = , ∴ ∠ = ∠ , ∴ ∠ = ∠ , ∴ // , ∴ △ =
△ = .
8.[原创新题]如图,点 A , B 在反比例函数
y=
k
x
x > 0 的图象上, AC ⊥ x 轴于点 C , BD ⊥ x
轴于点 D .已知 OC =
=
.




4.如图,已知 △ ABC .
(1)请用无刻度的直尺和圆规在边 BC , CA , AB 上
分别确定点 D , E , F ,使四边形 BDEF 是菱形,并画
出菱形 BDEF (要求:不写作法,保留作图痕迹).
[答案] 如图所示,菱形 即为所求.
(2)若 AB = 10 , BC = 15 ,求(1)中所作菱形 BDEF 的边长.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考尺规作图题专题复

集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#
320国道107国道
D
C
O B A 尺规作图中考专题复习总结
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作角的平分线;
4、作线段的中垂线;
5、已知三边,两边和其夹角或两角和其夹边作三角形;
6、已知底边和底边上的高作等腰三角形;
7、过直线上一点作直线的垂线;8、过直线外一点作直线的垂线.
轨迹交点法、代数作图法、旋转法作图、位似法作图、面积割补法作图
1、如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有
关知识,设计一种方案,确定这个圆形零件的半径.
2、 如图:107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C
和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位
置(不写作法,保留作图痕迹,写出结论)
3、 三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条
公路的距离相等,问满足要求的加油站地址有几种情况
4、过点C 作一条线平行于AB ;
5、过不在同一直线上的三点A 、B 、C 作圆O ;
6、过直线外一点A 作圆O 的切线。

7、 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线y=
x+3
上求一点P ,使△AOP 是等腰三角形,这样的P 点有几个?
8、现有、的正方形纸片和的矩形纸片各若干块,试选用这些纸片(每纸片至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空
隙,拼出的图中必须保留拼图的痕迹),使拼出的矩形面积为
,并标出
此矩形的长和宽。

二、几何画图:
1.只利用一把有刻度的直尺,用度量的方法,按下列要求画图:
1)画等腰三角形ABC 的对称轴:
2) 画∠AOB 的对称轴
2.有一个未知圆心的圆形工件.现只允许用一块三角板(注:不允许用三角板上的刻度)
画出 该工件表面上的一条直径并定出圆心.要求在图上保留画图痕迹,写出画法.
3.某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花
卉,请你帮助设计至少三种不同的方案,分别画在下面正方形图形上(用尺规作图或
画图均可,但要尽可能准确些、美观些).
4.某村一块若干亩土地的图形是ΔABC ,现决定把这块土地平均分给四位“花农”种植,
请你帮他们分一分,提供至少两种分法。

要求:画出图形,并简要说明分法。

5.如图所示,在正方形网格上有一个三角形ABC.
①作△ABC 关于直线MN 的对称图形(不写作法); 1.求△ABC 的面积. 如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD 就是一个“格点四边形”.的面积; ②在图中方格纸上画一个格点△EFG ,使△EFG 的面积等于四边形7.如图,若A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△
PQR ,则点R 应是甲、乙、丙、丁四点中的( )
A. 甲
B. 乙
C. 丙
D. 丁
8.某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛。

D C B
A 6题 7题
5题
(1)若要使花坛面积最大,请你在这块公共区域(如图)内确定圆形花坛的圆心
P ;
(2)若这个等边三角形的边长为18米,请计算出花坛的面积。

9.如图,平行四边形纸条ABCD 中,E 、F 分别是边AD 、BC 的中点。

张老师请同学们
将纸条的下半部分平行四边形ABEF 沿EF 翻折,得到一个V 字形图案。

(1)请你在原图中画出翻折后的图形平行四边形A 1B 1FE ;(用尺规作图,不写画法,保留
作图痕迹)
(2)已知∠A=63°,求∠B 1FC 的大小。

12某公园有一个边长为4动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限.
(1)按圆形设计,利用图1画出你所设计的圆形花坛示意图;
(2)按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图;
(3)若想新建的花坛面积较大,选择以上哪一种方案合适请说
明理由 .
13、作一个半圆,使圆心在直角三角形ABC 直角边AC 上,且
与斜边AB 直角边BC 都相切
14、问题探究
C 8题
(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..
点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..
的点P ,并说明理由.
问题解决
(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块
全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图
③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).
【补充】
1、已知ΔABC ,求作一点P ,使点P 到AB 、AC 的距离相等,且到边AC 的两端点距离相等。

2、 如图,A 、B 、C 三个小区中间有一块三角形的空地,现计划在这块空地上建一个超市,使得它到三个小区的距离相等,请你用尺规作图的方法确定超市所在位置。

3、如图,有分别过A 、B 两个加油站的公路1l 、2l 相交于点O ,现准备在∠AOB 内建一个油库,要求油库的位置点P 满足到A 、B 两个加油站的距离相等,而且P 到两条公路1l 、2l 的距离也相等。

请用尺规作图作出点P (不写作法,保留作图痕迹).
4、如图,A 、B 是两个蓄水池,都在河流a 的同旁,为了方便灌溉作物,要在河边建一个抽水
站,将河水送到A 、B 两池,问该站建在河边哪一点,可使所修的渠道最短,试在图中画出该点(不写作法,但要保留作图痕迹)
5、如图,A 、B 是两个小区,都在公路a 的同旁,为了方便小区居民乘车,要在路边建一个车站
牌,使得站牌到A 、B 两地的距离相等,问该站建在路边哪一点,试在图中画出该点(不写作法,但要保留作图痕迹)
6、如图所示,∠ABC 内有一点P ,在BA 、BC 边上各取一点P 1、P 2,使△PP 1P 2的周长最小.
7、如图,A 为马厩,B 为帐篷,牧马人一天要从马厩牵出马,先到草地边牧马,再到河边饮马,
然后回到帐篷。

请你帮他确定这一天的最短路线。

8、如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.
9、如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.
⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积;
⑵ 这样的直线有多少条请你用语言描述出这样的直线.
10、求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.
D C B A ① D C
B A ③ D
C B A ② (第14题 B
草地 河 A
11、已知:直线a 、b 、c ,且a b c ∥∥.
求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.
12、求作一正方形,使其面积等于已知ABC ∆的面积.
【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得
212x ah =,所以x 是12
a 与h 的比例中项. 13、只用圆规,不许用直尺,四等分圆周(已知圆心
14、如果花园形状是任意四边形ABCD ,四边形内部有一条折线小路AEC 刚好平分四边形面积,现在小区的物业公司想把折线小路修成直线小路,由于各种条件限制,小路要通过点A ,并且只能修在AC 和点E 之间,同时还要平分四边形面积,请你帮助设计 相关题目
有一块梯形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图上),并给予合理的解释。

15、采用构图法建立一个网格,并在网格中
①作一个三角形使其两边为无理数且其面积为6
②画一个底边长是4,面积为8的等腰三角形
③画一个面积是10的等腰三角形
16、在ABC △中,AB 、BC 、AC 面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为
1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图①所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.
(1)请你将ABC △的面积直接填写在横线上.__________________
17、点c 为线段BD 上一动点,分别过点B,D 作A B ⊥BD ,ED ⊥BD,连接AC,EC 已知AB=5,DE=1,BD=8,设CD=X
(1) 用含x 的代数式表示AC+CE 的长;
(2) 请问点C 满足什么条件时,求AC+CE 最小值
(3) 根据(2)中的规律和结论,构图求代数式42+x +9)12(2+-x 的最小值。

18、过Y 轴上A 、B 两点O
,在X 轴上找一点C ,使∠ACB 最大。

A
B
O X
Y。

相关文档
最新文档