综合法与分析法(二)
用“综合法”和“分析法”解答复合应用题

用“综合法”和“分析法”解答复合应用题所谓的应用题是根据生产和日常生活中的实际问题用文字或语言表示数量关系的题目。
应用题通常分为简单应用题和复合应用题两类,用两步或两步以上的运算解答的应用题就是复合应用题。
复合应用题是由两个或两个以上的一步计算应用题组合而成的,所以它的数量关系比较复杂,解题思路和解题办法也就比较复杂,因此重视和掌握复合应用题的解题方法是解复合应用题的关键。
下面,笔者就用“综合法”和“分析法”解答复合应用题谈谈自己的一点体会。
“综合法”就是从应用题的已知条件出发,从条件和条件之间的关系、条件和问题之间的关系入手,逐步推出所求的问题。
例:某农场有两个果园共30亩,第一个果园收苹果3500箱,第二个果园收苹果2800箱,每箱苹果重100千克。
平均每亩收苹果多少千克?用“综合法”分析:已知第一个果园收的箱数和第二个果园收的箱数,可求出两个果园共收的总箱数;已知每箱的重量和总箱数,可求出总产量;已知总产量和总亩数,可求出亩产量。
“分析法”是从应用题的问题出发,根据数量关系探求解答这个问题需要具备的条件,如果题中没有给出所需的条件,就提出新的问题,再探求解答这个新问题需要具备的条件,直到所找的条件在应用题里都是已知的为止。
上题用“分析法”分析:要求每亩产量,必须知道“总产量”和“总亩数”。
题中总亩数已知而总产量题里没有给;要求出总产量,必须知道每箱的重量和总箱数,又每箱重量已知而总箱数题中没有直接给出;要求总箱数,必须知道第一个果园收的箱数(3500箱)和第二个果园收的箱数(2800箱),这些都是已知条件。
分析完毕。
“综合法”适用于数量关系比较简单、比较直接的较简单的应用题,一般是一步、两步,最多是三步应用题。
综合法是按分析过程从前往后列出算式。
“分析法”适用于数量关系比较复杂、比较隐蔽、步骤较多的题目,一般都是三步以上应用题。
分析法要从后往前,逆向写出算式。
复合应用题的解答,首先要认真审题,紧扣题中的重点句子、关键词语来理解题意。
综合法、分析法和分析综合法

综合法、分析法和分析综合法证明一个数学命题,重要的是寻找“条件”(已知)与“结论”(未知)之间的逻辑关系.寻找的方法通常分成正面思考和反面思考两大类.正面思考的方法有综合法、分析法和分析综合法等,反面思考的方法有反证法和同一法等.(一)综合法所谓综合法就是从“已知条件”出发,运用已学过的数学知识(定义、公理、定理等),一步步地进行推理,直至导出“结论”为止.综合法以“结论”为目标,由“已知”推出“可知”,逐步靠拢目标.因例1 如图1-1.已知:α⊥β,b⊥β且bα.求证:b∥α.【分析】由α⊥β和平面与平面垂直的性质定理可知,在α内,作垂直于α与β交线的直线c必垂直于β.从而由b⊥β、c⊥β和直线与平面垂直的性质定理可得,b与c重合或平行.若b与c重合,则bα,与已知条件bα不合;若 b∥c,则 b∥α.【证明】设α∩β=m,在α内作直线c⊥m.【解说】用综合法证明立体几何题,从“已知”过渡到“可知”时,必须注意挖掘几何图形的性质,充分运用性质定理去推证,这是综合法证题的一个规律.例2 如图1-2.已知:在四面体ABCD中,AB⊥DC,AC⊥BD.求证:AD⊥BC.【分析】由AB⊥DC和AC⊥BD可得出什么?注意到CD、BD都在平面BCD内,AB、AC都是这个平面的斜线,这样,已知条件就是平面BCD的两条斜线与该平面内的两条直线分别垂直.因此,由三垂线定理的逆定理可得,两条斜线的射影也分别垂直于这两条直线.于是,作AH垂直于平面BCD,垂足为H,连结BH、CH、DH,则BH⊥CD,CH⊥BD.从而H是△BDC的垂心,可知DH⊥BC.由DH是AD 在平面BDC内的射影和三垂线定理,可得AD⊥BC.【证明】如图1-2.过A作AH垂直于平面BCD,垂足为H,连结BH、CH、DH.(二)分析法所谓分析法就是从“结论”入手,去追溯“结论”成立的条件(即在什么条件下“结论”成立),再把所得的条件作为结论,去寻找这个新结论成立的条件.像这样,追根求源,一直追溯到“已知”为止.例3如图1-3.已知A1B1C1—ABC是正三棱柱,D是AC的中点.求证:AB1∥平面DBC1.(1994年全国高考文科、理科试题)【分析】欲证AB1∥平面DBC1,即证AB1平行于平面DBC1内的一条直线.由于D是AC的中点,联想△CAB1的中位线的性质,只需找到B1C的中点E.而由已知易得B1BCC1是矩形,B1C与BC1的交点就是E.【证明】连结B1C、BC1,设B1C∩BC1=E,再连结DE.【解说】在本例的分析中,用分析法作了一番探索后,发现了由“已知”通向“未知”的思维过程,为综合法证明铺平了道路.例4 如图1-4.已知:在四面体ABCD中,AC=BC,AD=BD.求证:AB⊥DC.【分析1】欲证 AB⊥DC,由直线与平面垂直的性质知,需证AB垂直于过DC 的某个平面.因此,需找两条相交直线,它们都垂直于AB,且与DC共面.因AB 是△CAB和△DAB的公共边,问题转化为在AB上是否存在一点M,使AB⊥MC,且AB⊥MD,但这由已知条件CA=CB和DA=DB可知.【证法1】设M是AB的中点,连结MC和MD.【分析2】如图1-5.AB在平面ABD内,CD与这个平面相交.要证AB⊥CD,若CD是平面ABD的斜线,则问题转化为证CD在平面ABD内的射影 DH(CH⊥平面ABD)垂直于AB.因DA=DB,只需证∠ADH=∠BDH.由DA=DB知,只需证AH=BH,这可由CA=CB得出.若CD⊥平面ABD,则易得CD⊥AB.【证法2】(1)当CD不垂直于平面DAB时(如图1-5),过C作CH⊥平面DAB,垂足为H,连结AH、BH、DH.于是,由(1)、(2)可知,CD⊥AB.【解说】这两种证法都需要添置适当的辅助线,而这些辅助线都是在探索“结论”成立的条件中发现的.因此,分析法是立体几何中添置辅助线的一种重要方法.(三)分析综合法综合法由“条件”靠拢“结论”是正向思维,分析法由“结论”追溯“条件”是逆向思维.因此,在思维方法上,这两种方法构成一对矛盾.分析法和综合法是证明数学命题的两种有效方法,在立体几何中都大有用武之地,但是,使用这两种方法要灵活机动,因题制宜,不可拘泥于某一种方法.有的题目,单用一种方法简直到了山穷水尽疑无路的地步,一旦改换另一种方法,思维沿着相反的方向进行,就会出现柳暗花明又一村的美景.因此,一旦把两种方法结合起来,互相穿插使用,便能加快解题速度.这样,分析法和综合法互相配合就产生了分析综合法.这种方法从一个命题的两头(“条件”和“结论”)向中间靠拢,思路清晰,目标明确,思维集中,容易找到问题的突破口,发现解题途径.例5 如图1-6,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.求证:BE=EB1.(1996年全国高考理科试题改编)在平面A1CE内可作EG⊥A1C于G,设AC的中点为F,连BF、FG,【证明】如图1-6.在截面A1EC内,过E作EG⊥A1C于G,则由截面EA1C⊥侧面A1C,得EG⊥侧面A1C.■设F是AC的中点,连结BF、FG,则由BA=BC,得BF⊥AC.∵平面ABC⊥侧面AC1,∴BF⊥侧面AC1.∴BF∥EG.从而BF、EG确定一个平面,这个平面与侧面A1C的交线为FG.又 BE∥侧面A1C,∴BE∥FG.于是 BE=FG.在△CAA1中,∵FG∥BE,BE∥AA1,∴FG∥AA1.又 F是AC的中点,。
2.2.综合法与分析法-人教A版选修2-2教案

2.2.综合法与分析法-人教A版选修2-2教案
一、教学目标
1.理解综合法和分析法的概念。
2.掌握综合法和分析法的基本原理。
3.能够应用综合法和分析法解决实际问题。
4.培养学生系统思维的能力。
二、教学内容
1.综合法的概念和基本原理。
2.分析法的概念和基本原理。
3.综合法和分析法的应用。
三、教学过程
1. 导入(5分钟)
教师通过提问和讲解,引导学生了解问题解决的两种方法:综合法和分析法,并介绍本节课的教学目标和重点。
2. 讲解(25分钟)
2.1 综合法的概念和基本原理
1.综合法是从整体综合出发,从多个方面考虑,综合分析问题的方法。
2.综合法的基本原理是整体观念、多元观念和系统观念。
2.2 分析法的概念和基本原理
1.分析法是从局部出发,从单个方面考虑,分析问题的方法。
2.分析法的基本原理是简化化、抽象化和精确化。
3. 练习(25分钟)
1.给学生提供综合法和分析法的例子,让学生分别应用综合法和分析法解决问题。
2.针对不同的问题,让学生思考采用哪种方法更适合。
4. 总结(5分钟)
让学生回顾本节课的重点内容,并讲解综合法和分析法的区别和联系。
四、教学反思
本节课通过提供练习例子的方式,让学生更深入地理解了综合法和分析法的概念和应用方法。
同时,通过问题讨论的方式,培养了学生系统思维的能力。
2.2.1 综合法和分析法(人教版选修2-2)

例1:已知a>0,b>0,求证a(b2+c2)+b(c2+a2)≥4abc 1:已知a>0,b>0,求证a(b 已知a>0,b>0,求证
证明:因为b 证明:因为b2+c2
≥2bc,a>0
所以a(b2+c2)≥2abc. 所以a(b 又因为c 又因为c2+b2
≥2bc,b>0
所以b(c 所以b(c2+a2)≥ 2abc. 因此a(b 因此a(b2+c2)+b(c2+a2)≥4abc.
2
sinθ cosθ = sin β
2 2
1 - tan α 1 - tan β 求 证: = . 2 2 1 + tan α 2(1 + tan β )
11
练习. P89 EX1,EX2,EX3
12
则综合
Q2 ⇒Q3
…
Qn ⇒Q
5
例2:在△ABC中,三个内角A、B、C ABC中 三个内角A、B、C 对应的边分别为a A、B、C成 对应的边分别为a、b、c,且A、B、C成 等差数列, 成等比数列,求证△ 等差数列,a、b、c成等比数列,求证△A BC为等边三角形 为等边三角形. BC为等边三角形.
所以 a + b − 2 ab ≥ 0 所以 a + b ≥ 2 ab
a+b ≥ ab 成立 所以 2
只需证;a + b − 2 ab ≥ 0 只需证;
( a − b )2 ≥ 0 只需证; 只需证;
因为; 因为;( a − b )2 ≥ 0 成立
a+b 所以 ≥ 2
a b成立
8
综合法和分析法

综合法和分析法
一、综合法
1、一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
2、综合法的思维方向是”,即由已知条件出发,逐步推出其必要条件(由因导果),最后推导出所要证明的结论成立,故综合法又叫顺推证法或由因导果法.综合法的依据:已知条件以及逻辑推理的基本理论,在推理时要注意:作为依据和出发点的命题一定要正确.
二、分析法
1、 1、一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
2、分析法的思维特点是:执果索因;分析法的书写格式:要证明命题B为真,只需要证明命题为真,从而有……,这只需要证明命题为真,从而又有……这只需要证明命题A为真,而已知A为真,故命题B必为真。
3、用分析法证明的模式:
用分析法证:为了证明命题B为真,这只需证明命题B,为真,从而有……这只需证明命题B:为真,从而有……这只需证明命题A为真.而已知A为真,故B必真.可见分析法是”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法。
特别提醒:当命题不知从何人手时,有时可以运用分析法来解决,特别是对
于条件简单而结论复杂的题目,往往更是行之有效.用分析法证明时,往往在最后加上一句步可逆,这无形中就出现了两个问题:①分析法证明过程的每一步不一定”,也没有必要要求”,因为这时仅需寻找充分条件,而不是充要条件;②如果非要”,则限制了分析法解决问题的范围,使得分析法只适用于证明等价命题了,但是,只要我们搞清了用分析法证明问题的逻辑结构,明确四种命题之间的关系,那么用分析法证明不等式还是比较方便的。
综合法和分析法

x 3 x 2
x 4,
2
展开得 2x 5 2 x 1 x 4 2x 5 2 x 3 x 2, 即
x 1 x 4 x 3 x 2 ,
2 2
只需证 x 1 x 4 x 3 x 2 , 即证x2-5x+4<x2-5x+6,即4<6,这显然成立. ∴当x≥4时, x 1
(4)a2+b2+c2≥ab+bc+ca(a,b,c∈R), (5)a+b+c,a2+b2+c2,ab+bc+ca这三个式子之间的关系,由 (a+b+c)2=a2+b2+c2+2(ab+bc+ca)得出.三式中已知两式,
第三式即可由设等式用另两式表示出来.
例2:在△ABC中,三个内角A、B、C对应的边分别 为a、b、c,且A、B、C成等差数列,a、b、c成等比数 列,求证△ABC为等边三角形.
2 2
练习:当x≥4时,证明: x 1 x 2 证明:欲证 只需证 即证
x 3 x 4.
x 1 x 2 x 3 x 4 (x≥4),
x 1 x 4 x 3 x 2 x 4 ,
x 1 x 4
2 B A C 证明: B 3 A B C
b ac a c 2ac cos B ac
2 2 2
a 2ac c 0 a c
2 2
∴△ABC为等边三角形.
练习:在锐角三角形中,A、B、C为三角形内角,求证: sinA+sinB+sinC>cosA+cosB+cosC.
董2.2.1综合法和分析法-上课用

a+b 所以 2
因为;( a b )2 0 成立
ab成立
思考:上述两种证法有什么异同?
相同
不同
都是直接证明 证法1 从已知条件出发,以已知的定义、公理、 定理为依据,逐步下推,直到推出要证明的结论 为止 综合法 证法2 从问题的结论出发,追溯导致结论成立的 条件,逐步上溯,直到使结论成立的条件和已知 条件吻合为止 分析法
分析
•将A,B,C成等差数列,转化为符号 语言就是2B=A+C; •A,B,C为△ABC的内角,这是一个隐含 条件,即A+B+C=180°; •a,b,c成等比数列转化为符号语言就是
此时,如果能把角和边统一起来,那么就可以进一 步寻找角和边之间的关系,进而判断三角形的形状,余 弦定理正好满足要求.于是,可以用余弦定理进行证明.
…
Qn Q
作 业
P50
1
2.2.1综合法和分析法(二) ——分析法
一、回顾复习——综合法(顺推证法或由因导果法)
利用已知条件和某些数学定义、公理、定理等, 经过一系列的推理论证,最后推导出所要证明的结论 成立,这种证明方法叫做综合法。其特点是:“由因导果”
用P表示已知条件、已有的定义、公理、定理 等,Q表示所要证明的结论. 则综合法用框图表示为:
例:已知a>0,b>0,求证a(b2+c2)+b(c2+a2)≥4abc
证明:因为b2+c2
≥2bc,a>0
所以a(b2+c2)≥2abc. 又因为c2+a2
≥2ac,b>0
所以b(c2+a2)≥ 2abc.
因此a(b2+c2)+b(c2+a2)≥4abc.
第2章 2.2.1(二)2.2.1 综合法和分析法(二)

2.2.1
【学习要求】
本 课 时 栏 目 开 关
综合法和分析法(二)
加深对综合法、分析法的理解,应用两种方法证明数学问 题. 【学法指导】 通过本节课的学习,比较两种证明方法的优点,进而灵活 选择证明方法,规范证明步骤,养成言之有理、论之有据 的好习惯,提高思维能力.
试一试· 双基题目、基础更牢固
也就是证明 2 a+2 b+2 c<2bc+2ac+2ab. 因为 a、b、c 为互不相等的正数且 abc=1, 所以 bc + ac>2 abc2 = 2 c ; ac + ab>2 a2bc = 2 a ; ab + bc>2 ab2c=2 b;
相加得 2 a+2 b+2 c<2bc+2ac+2ab. 所以,原不等式成立.
2.2.1(二)
跟踪训练 3 如图,正方形 ABCD 和四边形 ACEF 所在的平面互相垂直,EF∥AC,AB= 2,CE=EF=1. (1)求证:AF∥平面 BDE;
本 课 时 栏 目 开 关
(2)求证:CF⊥平面 BDE.
证明 (1)如图,设 AC 与 BD 交于点 G. 1 因为 EF∥AG,且 EF=1,AG= AC=1, 2 所以四边形 AGEF 为平行四边形.
研一研· 题型解法、解题更高效
2.2.1(二)
题型二 例2
选择恰当的方法证明等式
已知△ABC 的三个内角 A,B,C 成等差数列,对应 1 1 3 的三边为 a,b,c,求证: + = . a+b b+c a+b+c
本 课 时 栏 目 开 关
a+b+c a+b+c 证明 要证原式,只需证 + =3, a+b b+c c a 即证 + =1, a+b b+c bc+c2+a2+ab 即只需证 =1, 2 ab+b +ac+bc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1 综合法与分析法(二)
一、基础过关
1.已知a≥0,b≥0,且a +b =2,则
( ) A .a≤12 B .ab≥12
C .a 2+b 2≥2
D .a 2+b 2≤3 2.已知a 、b 、c 、d∈{正实数},且a b <c d
,则 ( ) A.a b <a +c b +d <c d
B.a +c b +d <a b <c d
C.a b <c d <a +c b +d D .以上均可能
3.下面四个不等式: ①a 2+b 2+c 2≥ab+bc +ac ; ②a(1-a)≤14; ③b a +a b
≥2; ④(a 2+b 2)(c 2+d 2)≥(ac+bd)2. 其中恒成立的有
( ) A .1个 B .2个 C .3个 D .4个
4.若实数a ,b 满足0<a<b ,且a +b =1,则下列四个数中最大的是
( ) A.12 B .2ab C .a 2+b 2 D .a
5.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是________.
6.如图所示,SA⊥平面ABC ,AB⊥BC,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F.
求证:AF⊥SC.
证明:要证AF⊥SC,只需证SC⊥平面AEF ,只需证AE⊥SC(因为______),只需证______,只需证AE⊥BC(因为________),只需证BC⊥平面SAB ,只需证BC⊥SA(因为______).由SA⊥平面ABC 可知,上式成立.
二、能力提升
7.命题甲:(14
)x 、2-x 、2x -4成等比数列;命题乙:lg x 、lg(x +2)、lg(2x +1)成等差数列,则甲是乙的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件
8.若a>b>1,P =lg a·lg b,Q =12(lg a +lg b),R =lg(a +b 2
),则 ( ) A .R<P<Q B .P<Q<R C .Q<P<R D .P<R<Q
9.已知α、β为实数,给出下列三个论断:①αβ>0;②|α+β|>5;③|α|>22,|β|>2 2.以其中的两个论断
为条件,另一个论断为结论,你认为正确的命题是________.
10.如果a ,b 都是正数,且a≠b,求证:
a b +b a >a + b.
11.已知a>0,求证:
a 2+1a 2-2≥a+1a
-2.
12.已知a 、b 、c∈R ,且a +b +c =1,求证:(1a -1)(1b -1)(1c
-1)≥8.
13.已知函数f(x)=x 2+2x +aln x(x>0),对任意两个不相等的正数x 1、x 2,证明:当a≤0时,f x 1+f x 22>f(x 1+x 22
).
三、探究与拓展
14.已知a ,b ,c ,d∈R ,求证:
ac +bd≤a 2+b 2c 2+d 2.(你能用几种方法证明?)。