MUSIC方法-清华大学《现代信号处理》讲义--张贤达

合集下载

《现代信号处理》教学大纲

《现代信号处理》教学大纲

《现代信号处理》教学大纲适用专业:信息与通信工程、物联课程性质:学位课网工程、电子与通信学时数:32 学分数: 2课程号:M081001 开课学期:秋季第(1)学期大纲执笔人:何继爱大纲审核人:陈海燕一、课程的地位和教学目标现代信号处理作为信息类专业研究生的一门专业基础课,是在传统数字信号处理基础上,基于概率统计的思想,用数理统计、优化估计、线性代数和矩阵计算等工具,研究有限数据量的随机信号的分析与处理,且系统可能是时变、非线性的,它是近代才发展起来的前沿学科。

主要讨论基于信号模型分析和滤波的基本理论和基本方法;以现代谱估计和自适应滤波为核心内容,并介绍现代信号处理的新技术。

该课程为众多信号处理的应用领域打下基础,包括通信、声学、图像、雷达、声纳、生物医学等领域的信号处理。

本课程的知识目标是使学生牢固掌握现代信号处理一些最基本的理论、方法和应用,并能跟踪和学习新的理论、方法和技术;内容涉及随机信号统计分析、现代谱估计、自适应滤波器、时频分析与二次型时频分布、信号多速率变换、盲信分离和阵列信号处理方法等;建立现代信号处理的知识体系,对课程内容总体把握;具有一定的实验和模拟仿真的基本知识。

了解现代信号处理重要新技术的发展趋势,为从事信息与通信工程及相关电子系统的工程设计打下坚实的基础。

本课程的能力目标是通过课程的学习提高学生的分析计算方法、演绎推理方法和归纳法等基本数学处理方法;运用数学、物理及工程概念及方法发现问题、分析问题和解决问题的能力,以及理论与实际相结合的能力;能够触类旁通,提高学生的科学学习方法;掌握通信学科的信号分析与处理基本理论和技能,思路开阔,具有运用所学知识的能力、搜集和提炼信息的能力、团队合作能力、表达能力和创新能力等。

本课程的专业素质目标通过本课程的课堂学习、单元知识及章节总结、习题及专题研讨培养学生培养良好严谨的科学研究态度和正确的思维方法,使学生敢于提出问题、善于分析问题和解决问题的能力及具有团队合作精神。

清华大学《现代信号处理》课件

清华大学《现代信号处理》课件

现代信号处理(离散随机信号处理)电子工程系本课程要讨论的主要问题:(1)对信号特性的了解随机信号(随机过程,时间序列––随机过程的一个实现)信号模型→参数估计→现代谱估计:参数化谱估计讨论信号模型及模型参数的估计问题,比较参数谱估计方法和周期图方法的优劣。

(2)对统计意义下最优滤波器设计的研究平稳条件下:Wiener滤波器理论非平稳条件下:Kalman滤波理论上的目标,实际算法可达到的最佳结果(3)对环境的自适应,具备“学习能力”的滤波算法自适应均衡、波束形成、线性自适应滤波器(4)更多信息的利用,挖掘(针对非高斯问题)线性系统、功率谱:二阶矩,高斯过程的完全刻划非线性、多谱:高阶量,循环平稳(5)对时间(空间)–––频率关系的适应性:全局特性与局域特性,小波变换,时频分析信号处理算法设计面向的几个主要因素n信噪比n先验知识n雷达n通信系统n电子对抗n对先验知识的利用:统计基础上的假设、学习过程n算法复杂性与性能要求的匹配性一些进展中的课题盲自适应信号处理序列贝叶斯估计、粒子滤波阵列信号处理等等与信号处理紧密关联的学科人工神经网络统计学习理论模式识别等等教材n张旭东,陆明泉:离散随机信号处理,2005年10月,清华大学出版社主要参考书①S. Haykin, Adaptive Filter theory, Third Edition, Prentice-Hall, 1996,//Fouth Edition 2001 (电子工业出版社均有影印本)①S.M. Kay, Modern Spectral Estimation: Theory & Application,Prentice-Hall, 1988①S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall PTR, 1993.①S. Mallat, A Wavelet Tour of Signal Processing, Academic press, 1998,Second Edition 1999①扬福生, 小波变换的工程分析与应用, 科学出版社, 2000.① D. G. Manolakis, et,al. Statistical and Adaptive Signal Processing, Mcgraw-Hall, 2000.①J. G. Proakis, et al. Algorithms for Statistical Signal Processing, Prentice hall, 2002①张贤达现代信号处理第2版清华大学出版社课程成绩n平时作业10%n2个Matlab作业40%(布置后2周内提交)n期末开卷考试50%1.1随机信号基础被噪声干扰的初相位是随机值的正弦波信号本质上均是随机的,但将信号作为随机信号处理,还是做为确定信号处理,与我们的应用目标和我们的先验知识有关,一般地,我们总是选择对应用有利的处理方式。

MUSIC方法_清华大学《现代信号处理》讲义_-张贤达

MUSIC方法_清华大学《现代信号处理》讲义_-张贤达

改进方法1: (求根MUSIC方法)
基本思想:Pisarenko谐波分解 (不需一维搜索)
a H ( )G 0
j

j ( m 1)
G H a( ) 0

T
a( ) 1, e , , e
z e j
p( z ) 1, z, , z
m 1 T

波束形成器:
w opt
1 H R xx a (d ) 1 H a(d )R xx a (d )
5. 改进的MUSIC方法
改进方法1:
ˆ ( ) a H ( )Ua P( ) H a ( )GG H a( )
p
ˆ 2 U
i 1
2 i
i
H s s 2 k k
观测空间 = 信号子空间 + 噪声子空间
特征值分解后,与大特征值对 应 与小特征值对 应
子空间的几何意义:
U S, G
H H H S S S S G H U U H S, G H I H G S G G G
S S I p , GH G Im p , G H S 0 S H G 0
Vandermonde矩 阵
j p e j ( m 1) p e 1
方向矩阵
满列秩 1 2 p
1 j1 e j ( m 1)1 e
1 e j2 e j ( m 1)2
2
加性噪声

2

1 lim N N
2

n 1
N
z (n) w H E x(n)x H (n) w
2

基于MUSIC算法的相干信号DOA估计改进及应用_

基于MUSIC算法的相干信号DOA估计改进及应用_

,上述入射信号的复包络形式表示为式中,()i u t为接收的第i个信源信号的幅度值为接收的第i个信源信号的相位值的第i个信源信号的频率值。

在远场窄带情况下有如下(2)结合式(1)和式图1 均匀线阵上远场窄带信号入射(3)则信号在第l个阵元上的值为(4)在式(4)中,li g为在阵元l上第i个信号的增益大小()ln i为阵元l在t时刻的噪声值,相对于第一个阵元为第i个信号到达阵列上第l个阵元的时间延迟值(5)由式(5)可得如下的矢量等式:()()()t t t=+X AS N (6)式(6)中,X(t)为入射到阵列阵元上的信源信号的(7)其中,导向矢量为:(8)式(8)中,,c为电磁波的速度的波长源信号进行方向估计。

由于实际的工程环境里人为设置的干扰信号,或者由于多径效应导致的信号相干等。

在阵列接收的信号中,信号之间的关系可能是不相关或相干。

如果存在两个平稳信号们的相关系数可以表示为:(9)由施瓦兹不等式可知,此,对于不同信号的关系可以做出如下定义(10)因此,当两个信号相干时个常复数。

假设有n个相干信号干信号源的模型:图3 雷达发射信号与回波信号图2 防撞雷达系统实现流程式(11)中,0()s t为生成信源,其他信源信号是通过该信号的响应变换得到的。

为1n×维矢量,它的元素均为常复数。

DOA估计所以,MUSIC算法的谱估计公式为(14)在理想情况下,MUSIC可以实现很好的性能。

但是对于相干的信号法的性能会急速下降。

为了实现对相干信号的解相干或者去相关处理,需要通过对协方差矩阵经过一系列变换按照前后向空间平滑算法的思想,分割天线阵分割后的子阵的数目为m,每个阵元的数目为1p m=+−。

同样也将数据矢量则对于某个子阵k在第i次快拍的数分别对应为前向数据信号矢量()fikX和后向数据信经过协方差计算得到如下公式:(15)(16)3)针对步骤(2)中得到的数据矢量,分别求P个子阵的数据协方差矩阵的平均值:(17)(18)4)按照公式,求得前后向空间平滑方法的协方差矢量矩阵i R:f b+R R(19)图4 角度估计模块实现流程并且对N 次快拍的矩阵求平均值,则可得到:011Nii N==∑R R (20)5)得到维数为p p ×的反向单位矩阵J ,计算可得到具有Hermite 特性的Toeplitz 矩阵r R 。

现代信号处理讲义讲义

现代信号处理讲义讲义
信号S 噪声G
子空间:向量组 a1, ,ap 的线性组合的集合,称为 a1, ,ap 张成的空间。
p
span a1, ,a p close a1, ,a p ja j , j C
j1
信号子空间: span s1, ,sp span u1, ,up 噪声子空间: span g1, ,g p span up1, ,um
J (w) 0
w*
wopt Rxx1a(k )

wH opt
a(k
)
1
aH
(k
)wopt
,代入上式
aH
(k
1
)R xx1a( k
)
wopt
Rxx1a(k ) aH (k )Rxx1a(k )
最佳滤波器
由Capon提出,称为最小方差无畸变(MVDR)波束形成器
MVDR: minimum variance distortionless response
期望信号 干扰信号 加性噪声
E z(n) 2 lim 1 N z(n) 2 wH E x(n)xH (n) w
N N
n1
E sk (n) 2 wH a(k ) 2 p E si (n) 2 wH a(i ) 2 2 w 2 i 1,i k
wH a(k ) 1
(波束形成条件)
现代信号处理讲义
3.5 MUSIC方法
1. 阵列信号处理问题 2. 最优波束形成器 3. 子空间方法 4. MUSIC方法 5. 改进的MUSIC方法
3.5 MUSIC方法
MUSIC: Multiple Signal Classification 1. 阵列信号处理问题 (array signal processing)

现代信号处理课件

现代信号处理课件
当两种假设为等可能时,即P(H0)=P(H1)
P( H 0 ) H1 Lnl ( z ) Ln Ln ........( 1 28 ) H0 P( H1 )
则有 η=1,Lnη=0
21:20 24
§1-3最大后验概率准则 Maximum Posteriori Probability
称为最大后验概率准则,常简称为MAP准则。
即 p(z |H0) < p(z |H1)----(1-30) 时 判决为H1,否则判决为H0。 P(z | Hi), i=0, 1 为在给定观测值为z的条件下,Hi为真的概率, 此值为后验概率。
最大后验概率准则与最小总错误概率准则是等价的
21:20
26
例1: 设一个二元通信系统发送1V,0V的信号,受到2 为1/12w加性高斯噪声的干扰。系统发送1V 0V信号的 概率分别是0.6和0.4,代价分别为C00= -2, C01=8, C10= 6,
假设――所要检验的对象的可能情况或状态
检验――检测系统所做的判决过程
21:20 13
检测分类
二元检测:只有两种可能的假设
多元检测:有多个可能的假设 复合假设:信号是一随机过程的实现,其均 值或方差可处于某个数值范围内
序列检测:按取样观测值出现的次序进行处 理和判决
21:20 14
二元假设检验可能的情况
H0假设为真,判决H0(正确);代价-C00 H1假设为真,判决H0(漏警);代价-C01
H0假设为真,判决H1(虚警);代价-C10 H1假设为真,判决H1(正确);代价-C11
21:20 15
贝叶斯准则(Bayes)
代价、风险最小
源有两个输出,两个输出发生的概率已知,即先验概率已知P(H0), P(H1)分 别为假设H0和H1发生的概率。

《现代信号处理》课程教学大纲

《现代信号处理》课程教学大纲

(2) 熟悉线性时不变系统对随机信号的响应;(3) 了解估计子的性能评价标准,熟悉Cramer-Rao界;(4) 了解bayes估计和最大似然估计;(5)掌握线性均方估计和最小二乘估计。

2.重、难点提示(1) 重点是随机过程的时域、频域表示,线性均方估计和最小二乘估计;(2) 难点是随机过程相关函数与功率谱之间的关系,线性均方估计和最小二乘估计在滤波中的应用。

第2章功率谱估计(5学时)1.教学内容(1) 熟悉经典功率谱估计的方法及缺点;(2) 掌握现代功率谱估计的方法——参数模型法;(3) 掌握AR模型的Yule—Walker方程的导出;(4) 熟悉Levinson—Durbin算法;(5) 了解AR谱估计的性质和AR模型参数提取方法;(6) 掌握Capon谱估计方法。

2.重、难点提示(1) 重点是现代功率谱估计的方法——参数模型法、Levinson—Durbin算法、Capon谱估计;(2) 难点是AR模型的Yule—Walker方程推导、Capon谱估计算法推导。

第3章维纳滤波与卡尔曼滤波(6学时)1.教学内容(1) 了解维纳滤波的条件,掌握维纳霍夫方程;(2) 掌握FIR维纳滤波器的求解,了解因果IIR滤波器的求解;(3) 掌握均方误差的概念,均方误差性能曲面及其性质;(4) 掌握FIR维纳滤波器的设计;(5) 熟悉标量卡尔曼滤波器,了解矢量卡尔曼滤波器;(6) 了解维纳滤波器和卡尔曼滤波器的应用。

2.重、难点提示(1) 重点是维纳滤波的条件、维纳滤波器求解思路、FIR滤波器的求解;(2) 难点是维纳滤波标准方程的导入、FIR滤波器的求解思路。

第4章自适应滤波器(6学时)1.教学内容(1) 熟悉自适应滤波器的原理,掌握自适应线性组合器的实现;(2) 熟悉最陡下降法的基本思想;(3) 熟悉学习曲线和收敛速度的概念及与迭代次数的关系;(4) 掌握LMS算法,了解LMS算法的改进;(5) 掌握RLS算法,了解RLS算法的改进;(6) 了解自适应滤波器应用——谱线增强器和陷波器。

[现代信号处理(第二版)].张贤达.扫描版(2)

[现代信号处理(第二版)].张贤达.扫描版(2)

信号的频谱分析式研究信号特性的重要手段之一,对于确定信号,可以用Fourier变换来考察信号的频谱特性,而对于广义平稳随机信号而言,相应的方法是求其功率谱。

功率谱反映了随机信号功率能量的分布特征,可以揭示信号中隐含的周期性以及靠的很近的谱峰等有用信息,有很广泛的应用。

在雷达信号处理中,回波信号的功率提供了运动目标的位置、强度和速度等信息(即功率谱的峰值与宽度、高度、和位置的关系);在无源声纳信号处理中,功率谱密度的位置给出了鱼雷的方向(方位角)信息;在生物医学工程中,功率谱的峰和波形,表示了一些特殊疾病的发作周期;在语音处理中,谱分析用来探测语音语调共振;在电子战中,还利用功率谱来对目标进行分类。

功率谱密度函数反映了随机信号各频率成份的功率分布情况,是随机信号处理中应用很广泛的技术。

实际应用中的平稳信号通常是有限长的,因此,只能从有限的信号中去估计信号的真实功率谱,这就是功率谱估计问题。

寻找可靠与质量优良的估计谱是这次研究的主要内容。

功率谱估计可分为非参数化方法(低分辨率分析),参数化方法(高分辨率分析),广义的功率谱分析(空间谱分析),也可以把非参数化方法称为经典谱估计,参数化方法称为现代谱估计(包括空间谱估计)这次论文从不同角度介绍了现代谱估计的一些主要算法,包括参数模型法、Pisarenko 谐波分解法、最大熵估计、多重信号分类(MUSIC)、旋转不变技术(ESPRIT)等。

参数模型法将以ARMA模型为主,以及其谱估计所需的AR、MA的参数和阶数;最大熵估计也就是Burg最大熵谱估计,它在不同约束条件下,分别与AR谱估计、ARMA谱估计等价;MUSIC 方法是一种估计信号空间参数的现代谱估计方法;ESPRIT方法是一种估计信号空间参数的旋转不变技术,其基本思想是将谐波频率的估计转变为矩阵束的广义特征值分解。

最后,这次论文还会分析它们各自的优缺点及应用场合。

并利用计算机语言对各种现代谱估计算法的进行仿真实现,并比较它们的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计的模糊
si (n)
si (n)e ji
p个信号
si (n)e j(m1)i
信号 si (n)的方向向量,(阵列响应)向量: a(i ) 1, e ji , , e j(m1)i T
A() a(1), , a( p )
Vandermonde矩 阵
方向矩阵 满列秩
其中
Rˆ xx

1 N
N
x(n)xH (n)
n1
lim min
N
1 N
N n 1
z(n) 2
min wH R xxw
P
x(n) A( )s(n) e(n) a(k )sk (n) a(i )si (n) e(n) i 1,i k
期望信号 干扰信号 加性噪声
阵列:多个天线的组合 每个天线——阵元:天线、传感器
假设:⑴窄带信号 si (n) :点信源 ⑵远场(far field):波前——平面波
波达方向 i (DOA: direction of arrival):入射线与法线 之间的夹角,可以有正有负
——波长
i

2
d

sini
d 2 (半波长条件):若不满足该条件,会出现DOA估
Ee(n) 0 E e(n)eH (n) 2I
E{e(n)eT (n)} O 令复白噪声分量ei (n) xi (n) jyi (n),则 E{ei (n)ej (n)} 0, i j E{ei2 (n)} E{xi2 (n)} E{yi2 (n)} j2E{xi (n) yi (n)}
J (w) w*

0
wopt Rxx1a(k )
又 woHpta(k ) 1 aH (k )wopt ,代入上式


aH
(k
1
)R xx1a( k
)
wopt

Rxx1a(k ) aH (k )Rxx1a(k )
最佳滤波器
由Capon提出,称为最小方差无畸变(MVDR)波束形成器
现代信号处理讲义
清华大学自动化系 张贤达
3.5 MUSIC方法
1. 阵列信号处理问题 2. 最优波束形成器 3. 子空间方法 4. MUSIC方法
5. 改进的MUSIC方法
3.5 MUSIC方法
MUSIC: Multiple Signal Classification 1. 阵列信号处理问题 (array signal processing)
0 (实部和虚部不相关,具有相同方差)
假设3:P Es(n)sH (n) 满秩矩阵(非奇异)
Rxx E x(n)xH (n)
E A()s(n) e(n)A()s(n) e(n)H
A()E s(n)sH (n) AH () E e(n)eH (n)
N个快拍 , x(N) ,求空
2. 最优波束形成器
DOA估计:波束形成器
设计一个滤波器 w1, , wm 抽头(权系数),
m
z(n) wi*xi (n) i 1
加权求和
输出信号 z(n) 只包含 xd (n) —— 期望信号 拒绝其他信号 —— 干扰信号
最小输出能量(MOE: minimum output energy)准则:
(波束形成条件)
w
H
a(i
)

0,
ik
(干扰拒绝条件,零点形成条件)
则 E z(n) 2 E sk (n) 2 2 w 2
在 wH a(k ) 1 约束条件下,使 E z(n) 2 min
Largange乘子法:
J (w) E z(n) 2 1 wHa(k ) 其中 E z(n) 2 wH Rxxw
Hale Waihona Puke APAH 2Im p p p pm
121
特征值分解:


UH R xxU Σ


UH APAH U 2I Σ


2 pp 0

2I
0
R xx 的特征值:
i




2 ii
2
E z(n) 2 lim 1 N z(n) 2 wH E x(n)xH (n) w
N N
n1
E sk (n) 2 wH a(k ) 2 p E si (n) 2 wH a(i ) 2 2 w 2 i 1,i k
wH a(k ) 1
1 N z(n) 2
N n1
min
m
z(n) wH x(n) w, x(n) wi*xi (n) i 1
1
N
N n1
z(n) 2

1 N
N n1
wH x(n) 2

wH

1 N
N
x(n)xH
(n)

w
n1


min
1 N
N n1
z(n) 2
min wH Rˆ xxw
MVDR: minimum variance distortionless response
关键:求 a(k ) k
空间谱:
P(k
)

aH
(k
1
)Rxx1a(k )
最大幅值对应的 k 即为所求。
3. 子空间方法
假设1:对于不同的 i 值,向量 a(i ) 线性独立
假设2:各阵元上复加性噪声具有零均值、相同方差, 且不相关
1 2 p
1



e j1

e j(m1)1
1 e j2
e j (m1)2
1
e j p


e j(m1) p
p
信号模型 xk (n) ak (i )si (n) ek (n), k 1, , m i 1
阵元k上的观测数据
x(n) x1(n), , xm(n)T
s(n) s1(n), , sp (n)T
e(n) e1(n), , em(n)T
A() a(1), , a( p )(m p)
阵列信号处理的数学模型:
x(n) A()s(n) e(n)
阵列信号处理的问题:已知数据向量 x(1), 间参数 1, , p 波达方向
相关文档
最新文档